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Abstract. Similar to verifiable shuffling (mixing), we consider the prob-
lem of verifiable rotating a given list of homomorphic encryptions. The
offset by which the list is rotated (cyclic shift) should remain hidden.
Basically, we will present zero-knowledge proofs of knowledge of a rota-
tion offset and re-encryption exponents, which define how the input list
is transformed into the output list. We also briefly address various appli-
cations of verifiable rotation, ranging from ‘fragile mixing’ as introduced
by Reiter and Wang at CCS’04 to applications in protocols for secure
multiparty computation and voting.

We present two new, efficient protocols. Our first protocol is quite elegant
and involves the use of the Discrete Fourier Transform (as well as the
Fast Fourier Transform algorithm), and works under some reasonable
conditions. We believe that this is the first time that Fourier Transforms
are used to construct an efficient zero-knowledge proof of knowledge.

Our second protocol is more general (requiring no further conditions)
and only slightly less efficient than the DFT-based protocol. Unlike the
previously best protocol by Reiter and Wang, however, which relies on
extensive use of verifiable shuffling as a building block (invoking it four
times as a sub-protocol), our construction is direct and its performance
is comparable to the performance of a single run of the best protocol for
verifiable shuffling.

1 Introduction

The well-known problem of verifiable shuffling (or, mixing) is to transform a
given list of homomorphic encryptions into a list of randomly permuted, random
re-encryptions of these encryptions, such that (i) it can be verified that the
multiset of plaintexts for the input list and output list are identical, and (ii) the
permutation used remains hidden. The original idea of mixing was introduced
by Chaum, along with applications in anonymous email and voting [3], and the
explicit goal of verifiability was introduced by Sako and Kilian, as part of a
paper on voting [24]. Many improved protocols for verifiable shufflers/mixers
have been published since, as well as many applications. A basic property is
that a cascade of verifiable shufflers is again a verifiable shuffler, which enables
mutually distrusting parties to take turns in permuting a given list such that no
party knows the permutation for the final output list (unless all parties collude).



In this paper we consider the related problem of verifiable rotating a given
list of homomorphic encryptions. Rather than requiring the use of a random
permutation, as in shuffling, we require that a random rotation πr(k) = k − r
(mod n), where the offset r, 0 ≤ r < n, is chosen uniformly at random. Clearly,
a cascade of verifiable rotators is also a verifiable rotator, for which no party
knows by which offset the final output list has been rotated (unless all parties
collude).

Verifiable rotation has actually been introduced by Reiter and Wang in the
context of mixing [21]. They define ‘fragile mixing’ as a form of mixing that
deters leaking of information: namely, when a single correspondence between an
element on the input list and an element of the output list is revealed, then
the correspondence between all elements of the input list and output lists is
revealed. A fragile mix is therefore restricted to the use of rotations (called “loop
permutations” in [21]). The protocol by Reiter and Wang, however, uses four
invocations of a verifiable shuffle protocol (and some further work) to perform a
verifiable rotation. We will reduce this to the work of about one verifiable shuffle,
by following a completely different, more direct approach to the problem.

Apart from fragile mixing, however, there are many more applications of ver-
ifiable rotations. An important application arises in the context of secure integer
comparisons, as noted first in [20]. A common step in many integer compari-
son protocols [2, 1, 10, 8, 20], requires parties to find out whether a special value
occurs in a given list of encryptions. For example, whether there is a 0 among
otherwise random values. The position of the special value should remain hidden.
To this end, the list will be randomly permuted before decrypting the encryp-
tions. However, rather than using a fully random permutation, as commonly
proposed, a random rotation suffices to hide the position of the special value.

Similarly, it is easily seen that for protocols such as Mix & Match [16], which
involve mixing of truth tables of Boolean gates, it suffices to apply a random
rotation to the rows of a truth table, rather than a fully random permutation.
The reason is that in the matching stage exactly one row will match, and a
random rotation fully hides the corresponding row of the original truth table.
The same observation applies to other forms of ‘garbled circuit evaluation’, which
can be seen as variations on Yao’s original method [27]. Likewise, in protocols
for secure linear programming [17] the position of the pivot in each iteration of
the simplex algorithm must be hidden to avoid leakage of information. Again,
we note that the use of a rotation instead of a general permutation suffices.

Finally, we note that further applications exist in the context of electronic
voting, where randomly rotated lists of encryptions are used in the construc-
tion of encrypted ballot forms (see, e.g., Prêt-à-Voter voting systems by Ryan
et al. [23, 22] and references therein): voters get a receipt in which one out of
n positions is marked; due to a random rotation, the marked position does not
reveal the identity of the candidate chosen. Recently, [26] presented a secure pro-
tocol for determining the winner of an election in a preferential electoral system.
The goal at some intermediate point is to hide the position of a distinguished
value in every row of a matrix of encrypted values. They achieve that by first



rotating the row vectors in the clear, and later the rotation offsets are concealed
by using verifiable mixes of each of the column vectors. The use of verifiable
rotation would provide an alternative to the use of shuffling steps.

The goal of this paper is thus to design efficient protocols for verifiable rota-
tions. Given a list X0, X1, . . . , Xn−1 of (homomorphic) encryptions, a rotation
is performed by picking an offset r, 0 ≤ r < n, at random, and creating a
list of encryptions Y0, Y1, . . . , Yn−1, where each Yk is a random re-encryption of
Xk−r.1 As the rotation offset r remains hidden if the underlying cryptosystem
is semantically secure, a zero-knowledge proof is used to prove the correctness
of a rotation. By using a non-interactive zero-knowledge proof, one obtains a
verifiable rotation.

1.1 Our Contributions

We develop two new, efficient protocols for proving the correctness of a rotated
list of homomorphic encryptions. These protocols allow for a direct construction
of a cascade of verifiable rotators, which can be used to efficiently implement
fragile mixing, among other applications, as highlighted above. Whereas the
verifiable rotation protocol of [21] required the work of at least four verifiable
shuffles, the work of our protocols is approximately equal to that of a single
shuffle only—in some cases even slightly better than the currently best protocol
for verifiable shuffling, due to Groth [12]. Note that a priori it is not clear whether
verifiable shuffling is harder than verifiable rotation, or the other way around.

Our first protocol is a Σ-protocol and makes essential use of the Discrete
Fourier Transform (DFT). To the best of our knowledge this is the first time that
the DFT is actually used in the construction of an efficient zero-knowledge proof.
The Σ-protocol turns out to be competitive with the best protocols for shuffling
known to date. However, our DFT-based protocol relies on some constraints on
the parameters, which should be met in order for the DFT to be applicable. For
instance, in case we use ElGamal encryptions for a group of prime order q, we
assume that n | q−1, where n denotes the length of the list of rotated encryptions.
This ensures the existence of an n-th root of unity modulo q. Furthermore, to
take full advantage of the Fast Fourier Transform (FFT) algorithm, we assume
that n is an integral power of two.2

Our second protocol is more general and does not put any constraints on
the parameters. Although it is not a (3-move) Σ-protocol, it is a 6-move honest-
verifier zero-knowledge protocol for which we are able to prove knowledge sound-
ness as well (more precisely, witness extended emulation). This general protocol
is computationally only slightly more expensive than the DFT-based Σ-protocol.

1 Throughout the paper, indices are reduced modulo n. E.g., Xk−r is short for
Xk−r (mod n)

2 These constraints can be relaxed, for instance, by using the DFT for a quadratic
extension of Fq, which exists provided n | q2 − 1. Similarly, for the FFT it suffices if
all prime factors of n are small, rather than requiring that n is a power of two. We
do not consider these relaxations in this paper.



Both protocols can be made non-interactive using the Fiat-Shamir heuris-
tic, yielding efficient (publicly) verifiable non-interactive zero-knowledge proofs,
secure in the random oracle model.

2 Preliminaries

We present our protocols assuming homomorphic ElGamal as the underlying
cryptosystem. However, our results can be readily extended to other homomor-
phic cryptosystems, such as the Paillier cryptosystem.

2.1 Discrete Log Setting

Let G = 〈g〉 denote a finite cyclic (multiplicative) group of prime order q for
which the Decision Diffie-Hellman (DDH) problem is assumed to be infeasible.

Homomorphic ElGamal Cryptosystem. For public key h ∈ G, a message m ∈ Zq
is encrypted as a pair (a, b) = (gr, gmhr) for r ∈R Zq. Given the private key
α = logg h, decryption of (a, b) is performed by calculating b/aα = gm and then
solving for m ∈ Zq. As usual, it is assumed that m belongs to a sufficiently small
subset of Zq to make recovery of m feasible.

This encryption scheme is additively homomorphic: given (a1, b1) = (gr1 ,
gm1hr1) and (a2, b2) = (gr2 , gm2hr2), an encryption of m1 + m2 is obtained by
pairwise multiplication (a1, b1)(a2, b2) = (a1a2, b1b2) = (gr1+r2 , gm1+m2hr1+r2).
Homomorphic ElGamal is semantically secure under the DDH assumption.

As a shorthand notation for an encryption (gr, gmhr), we write E(m, r). More-
over, E(m) will denote an ElGamal encryption of m ∈ Zq, where the randomiza-
tion is suppressed from the notation.

Pedersen Commitment. Given h̃ ∈ G, a Pedersen commitment to m ∈ Zq is the
value b = gmh̃r where r ∈ Zq. This commitment is opened by revealing m and
r. The scheme is unconditionally hiding and computationally binding assuming
that logg h̃ cannot be computed. We use C(m, r) to denote a Pedersen commit-
ment to m using randomness r, and abbreviate this to C(m) when suppressing
the randomization from the notation.

Efficiency. As performance measure for our protocols we will count the number
of exponentiations. Note that because of “Shamir’s trick” [9], which is a special
case of Straus’ algorithm [25], the complexity of single, double and even triple
exponentiations (gr11 , gr11 g

r2
2 and gr11 g

r2
2 g

r3
3 ) are comparable.

2.2 Zero-Knowledge Proofs of Knowledge

A rotator must convince a verifier that the output list is indeed a rotation of
the input list, without giving away any information on the offset used between



these lists. For this purpose we use standard notions for zero-knowledge and
knowledge soundness

A proof, or argument, of knowledge for a relation R = {(x,w)} is a protocol
between a prover and a verifier. Both parties get a value x as common input
while the prover gets a witness w as private input such that (x,w) ∈ R. At the
end of the protocol, the verifier decides whether it accepts or rejects the proof.

A proof must be complete and sound. Completeness means that given a pair
(x,w) ∈ R, the proof is accepting if both prover and verifier follow the protocol.
Soundness captures the fact that a cheating prover cannot succeed convincing
a verifier if the prover does not know a witness w for x. This is shown by
the definition of a knowledge extractor which uses the prover to compute a
witness, see, e.g., [11]. A proof is zero-knowledge if there exists a simulator
that given x and access to a malicious verifier, produces a view of the protocol
that is indistinguishable from the view when the verifier interacts with a real
prover. In honest-verifier zero-knowledge (HVZK) proofs the verifier is assumed
to be honest but curious. Additionally, an HVZK proof is called special HVZK
(SHVZK) when the simulator can produce views for a given challenge of the
verifier.

Examples of special honest-verifier zero-knowledge proofs of knowledge are
the well-known Σ-protocols [6, 4]. These are 3-move protocols where the prover
acts first. They satisfy the so-called special-soundness property.

Our first protocol is a Σ-protocol. For our second protocol, we will actually
show the existence of a knowledge extractor along the lines of Groth [12, 15].
Concretely, we show that our protocols have a witness-extended emulator. This
notion, introduced by Lindell [18] implies knowledge soundness as defined by
Damg̊ard and Fujisaki [7], as shown in [14].

Informally, the witness-extended emulation property says that given an ad-
versarial prover that produces an acceptable proof with some probability ε, there
exists an expected polynomial time algorithm E, called witness-extended emu-
lator, that produces indistinguishable transcripts which are accepting with (es-
sentially) the same probability ε. If the transcript is accepting then a witness is
provided as well. The emulator has rewindable black-box access to the prover.

It can easily be shown that a Σ-protocol has the witness-extended emulation
property [13]. This fact will be used in our security proofs.

3 DFT-based Solution

Let X = (X0, X1, . . . , Xn−1) be a list of homomorphic ElGamal encryptions. A
random rotation is performed by picking a random offset r, 0 ≤ r < n, and com-
puting a list of encryptions Y = (Y0, Y1, . . . , Yn−1), where Yk = Xk−r(gsk , hsk),
sk ∈R Zq, for k = 0, . . . , n−1. The challenge is to provide an efficient proof that
the output list Y is correctly formed, for a given input list X.

The key mathematical tool for our first protocol is the Discrete Fourier Trans-
form (DFT). Using the DFT one can express conveniently that two lists of



encryptions are rotated version of each other, which allows for an efficient Σ-
protocol to make a rotation verifiable.

3.1 Discrete Fourier Transform

Discrete Fourier Transform over Finite Fields. For simplicity, we present the
DFT over the field Zq for prime q. Suppose n | q − 1 and let α ∈ Zq denote
an n-th root of unity modulo q, that is, α is an element of order n in Zq. So,
αn = 1 mod q.

The DFT for a sequence xk ∈ Zq w.r.t. α is a sequence x′k ∈ Zq defined as

x′k =
n−1∑
j=0

xjα
kj .

Borrowing terminology from Fourier analysis, a Fourier Transform converts a
sequence in the time domain into a sequence in the frequency (transformed) do-
main. The DFT can be seen as a linear transformation given by a Vandermonde
matrix Akj = (αkj). The inverse DFT (IDFT), which takes a sequence in the
frequency domain and converts it back to the time domain, is given by

xk = n−1
n−1∑
i=0

x′iα
−ik.

Rotating Lists of Encryptions. Consider two sequences x0, x1, . . . , xn−1 and
y0, y1, . . . , yn−1 such that yk = xk−r. The key property is now, with 0 ≤ k < n:

y′k =
n−1∑
j=0

yjα
kj =

n−1∑
j=0

xj−rα
kj =

n−1∑
j=0

xjα
k(j+r) = αrkx′k = βkx′k,

where β = αr. Hence, if we first apply DFT to a sequence x0, x1, . . . , xn−1

yielding x′0, x
′
1, . . . , x

′
n−1, then compute y′0, y

′
1, . . . , y

′
n−1 by setting

y′k = βkx′k = αrkx′k,

for 0 ≤ k < n, and finally apply IDFT to obtain sequence y0, y1, . . . , yn−1, it
follows by construction that yk = xk−r and thus, the two sequences are a rotation
of each other.

We use this approach to perform efficient rotations of list of encryptions
by means of a cascade of verifiable rotators. Since the coefficients αkj can be
computed publicly, one can apply DFT and IDFT to an encrypted sequence
using just the homomorphic properties. These transformations are performed
once, at the beginning and at the end of the cascade, respectively. The rotators
will pass on transformed sequences between each other.

Concretely, each verifiable rotator will perform the following transformation
to a given list of encryptions E(x′0), . . . ,E(x′n−1):

E(y′k) = E(x′k)β
k

(gsk , hsk), for k = 0, 1, . . . , n− 1, (1)



with sk ∈R Zq and β = αr, r ∈R {0, 1, . . . , n − 1}. The purpose of the random
re-encryptions (gsk , hsk) is to hide the rotation offset r being used.

The transformation at the beginning of the cascade of rotators can be done
publicly, using the homomorphic property:

E(x′k) =
n−1∏
j=0

E(xj)α
kj

.

Similarly, the transformation at the end of the cascade, if desired, can be done
publicly. Below, we will introduce the use of the Fast Fourier Transform (FFT)
algorithm to perform these transformation using n log n exponentiations only.
This way the cost of the transformation at the beginning (and possibly at the
end) of the cascade is amortized over the length of the cascade. When the length
of the cascade is Ω(log n), the work will be O(n) per rotator.

3.2 DFT-based Protocol

Σ-protocol. To make a rotation verifiable, we provide a proof that the list of
encryptions are transformed according to Eq. (1). To this end, a rotator needs
to prove that it knows a value β ∈ Zq with βn = 1 (mod q) and values s0, s1, . . . ,
sn−1 ∈ Zq such that Eq. (1) holds. We show how this can be done very efficiently
using standard techniques.

Let (ak, bk) = X ′k and (dk, ek) = Y ′k be ElGamal encryptions. The rotator
has to prove that it knows β ∈ Zq such that βn = 1, and values s0, . . . , sn−1 ∈ Zq
such that

dk = aβ
k

k gsk , ek = bβ
k

k hsk .

To prove that the exponents are of the form βk, the prover produces auxil-
iary homomorphic Pedersen commitments C(β),C(β2), . . . ,C(βn−1), and proves
that this sequence is indeed a sequence of powers of some β. As a stepping-
stone, we use the efficient Σ-protocol for showing that z = xy for commitments
C(x),C(y),C(z) (see [5]). Starting with a commitment to β, we prove iteratively
the knowledge of its powers as follows. Let c0 = C(1), then successively con-
struct the commitments c1 = C(β) = cβ0 h̃

t0 , c2 = cβ1 h̃
t1 = C(β2), c3 = cβ2 h̃

t2 =
C(β3), . . . , cn−1 = cβn−2h̃

tn−2 = C(βn−1) and apply a Σ protocol to show that
one and the same exponent β is used for all these commitments when expressed
this way.

To prove that βn = 1 holds, we let the rotator compute cn = cβn−1h̃
tn−1 =

C(βn) as well and prove that this is a commitment to 1. This can be done by
applying a proof of knowledge of the discrete log of cn/g with respect to the
base h̃, as cn/g = h̃t

∗
n−1 , for some value t∗n−1 (see below).

Finally, now given (ak, bk) = X ′k, ck = C(βk), and (dk, ek) = Y ′k, the rotator
has to prove that it knows values sk, t∗k, β

k such that

ck = gβ
k

h̃t
∗
k , dk = aβ

k

k gsk , ek = bβ
k

k hsk .

where t∗k =
∑k
j=0 β

k−jtj .
The Σ-protocol which combines all these steps is shown in Fig. 1.



Prover Common input: Verifier
(knows β, sk s.t. β ∈ 〈α〉, (ak, bk) = X ′k

dk = aβ
k

k gsk , ek = bβ
k

k hsk ) (dk, ek) = Y ′k

m̃, b ∈R Zq
C̃ = h̃m̃

mk, tk, uk, vk, m̃k ∈R Zq
ck+1 = cβk h̃

tk

Ck+1 = cbkh̃
mk

C̃k = guk h̃m̃k

Dk = a
uk
k gvk

Ek = b
uk
k hvk

−̃
C, {ck+1, Ck+1, Dk, Ek, C̃k}n−1

k=0
−−−−−−−−−−−−−−−−−−−−−−−−−→

t∗−1 = 0 ←−−−−−−−−−−−−
λ
−−−−−−−−−−−−− λ ∈R Zq

t∗k =
∑k
j=0 β

k−jtj
σ = b+ λβ,

η = m̃+ λt∗n−1

ψk = mk + λtk
µk = uk + λβk

νk = vk + λsk
ρk = m̃k + λt∗k−1

−−−−
σ, η, {ψk, µk, νk, ρk}n−1

k=0
−−−−−−−−−−−−−−−−−−−−−−→ h̃η

?
= C̃(cn/g)λ

cσk h̃
ψk

?
= Ck+1c

λ
k+1

gµk h̃ρk
?
= C̃kc

λ
k

a
µk
k gνk

?
= Dkd

λ
k

b
µk
k hνk

?
= Eke

λ
k

Fig. 1. Proof of a rotation in the transformed domain of ElGamal encryptions, where
c0 = g and k runs from 0 to n− 1.

Efficiency. From Fig. 1 we can see that the generation of the proof requires 5n
double exponentiations, while the verification requires 4n triple exponentiations.

An issue in the efficiency of a cascade of rotators is the computation of the
DFT and possibly the IDFT under the encryptions. Although the DFT and the
IDFT can be applied just using homomorphic properties, these steps may be a
computational bottleneck as they involve the computation of n n-way exponen-
tiations (which naively costs n2 single exponentiations). However, e.g., assuming
that n is an integral power of 2, one can apply the Fast Fourier Transform algo-
rithm to reduce the computational complexity to O(n log n) exponentiations.



To illustrate the application of the FFT algorithm, assuming that n = 2`,
then the DFT computation under encryptions can be split in the following way:

E(x′k) =
n−1∏
j=0

E(xj)α
kj

=
n/2−1∏
j=0

E(x2j)α
k2j

E(x2j+1)α
k(2j+1)

=
n/2−1∏
j=0

E(x2j)α
2kj

n/2−1∏
j=0

E(x2j+1)α
2kj

αk

.

Noting that α2 is a n/2-th root of unity modulo q, we have reduced the prob-
lem of computing the DFT of a sequence of length n to solving two DFTs of
sequences of half length. We note that these two DFTs can be computed in
parallel because they are independent of each other. If tn is the number of ex-
ponentiations required to compute one element of the DFT of length n, then
we get that tn = tn/2 + 1. Finally, the total number of exponentiations is ntn.
In particular when n is a power of two, n log n exponentiations are required in
total.

When using a cascade of rotators, the rotators will keep the sequence in the
frequency domain. If so desired, the DFT and its inverse need to be applied
only before and after the entire cascade. With this observation, we only need to
transform at the first and final rotator in a cascade of rotators, and it helps as
one can average the total work for transforms over the length of the cascade. In
the special case of a cascade of n rotators, the work per rotator will be linear.

In some applications it may be reasonable to assume that the input and
output lists are in transformed form. Another observation is that if the final
output list of a cascade is going to be decrypted anyway, one may leave out the
inverse DFT, and decrypt the transformed sequence. Then one can perform the
inverse DFT on the plaintexts (depending on the homomorphic cryptosystem
this may give an advantage, for ElGamal one would still need exponentiations).

Extensions. Using n-th roots of unity in extension fields of Zq with the condition
that n | q−1 can be weakened. Given a fixed n, we can adjust the extension field
that we work with. This will come at the expense of increased communication
and computation.

4 General Solution

The DFT-based protocol presented above puts some constraints on the parame-
ters involved. In this section we present a different approach that does not such
constraints.

We use a two-stage approach, similar to the approach for verifiable shuffles in
[19, 12, 15]. We first present an auxiliary protocol to prove that a list of known
committed values has been rotated. In the proofs of security we also use the
Schwartz-Zippel lemma.



Lemma 1 (Schwartz-Zippel). Let p be a multivariate polynomial of degree
d over Zq. Then the probability that p(x1, x2, . . . , xm) = 0 for randomly chosen
x1, x2, . . . , xm over Zq is at most d/q.

We will use it for the case that d = 1 to test that two sequences have the same
values. That is, given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), then if

n−1∑
j=0

βjxj =
n−1∑
j=0

βjyj ,

for β0, β1, . . . , βn−1 ∈R Zq, it follows that (x0, x1, . . . , xn−1) 6= (y0, y1, . . . , yn−1)
with probability at most 1/q.

4.1 Rotation of Known Committed Values

Let α0, α1, . . . , αn−1 be some publicly known values. The prover produces some
commitments c0, c1, . . . , cn−1, for which it will prove knowledge of an offset r
and randomizers s0, s1, . . . , sn−1 satisfying:

ck = gαk−r h̃sk , for k = 0, 1, . . . , n− 1. (2)

Building Blocks. We will use a Σ-protocol dl-or(G, γ0, γ1, . . . , γn−1) to prove
that, given randomly selected challenges β0, β1, . . . , βn−1, G =

∏n−1
j=0 c

βj

j is a
commitment to one of γ0, γ1, . . . , γn−1 as defined in the protocol of Fig. 2.

Intuitively, the initial commitments c0, c1, . . . , cn−1 commit to a rotation of
α0, α1, . . . , αn−1 if the prover knows the inner product of a random vector with
one of the possible rotated versions of the vector with the α-values.

Theorem 1. The protocol pub-rotof Fig. 2 is a special honest-verifier zero-
knowledge proof of knowledge with witness-extended emulation that a prover
knows an integer r, 0 ≤ r < n and randomizers s0, s1, . . . , sn−1 such that Eq. (2)
holds.

Proof. To show completeness, let commitments c0, c1, . . . , cn−1 be defined as
in Eq. (2). For challenge β0, β1, . . . , βn−1 the values γ0, γ1, . . . , γn−1 and the
commitment G are then computed. Observe that G is a commitment to the
value

∑n−1
j=0 αj−rβj due to the homomorphic properties, which is equal to γr. As

G is a commitment to γr, the proof dl-or will be accepted by the verifier.
To show SHVZK, we construct a simulator as follows. Given challenges

β0, β1, . . . , βn−1 and λ, it follows that the values γ0, γ1, . . . , γn−1 and G can
be computed as specified by the protocol. From the SHVZK property of the Σ-
protocol dl-or(G, γ0, γ1, . . . , γn−1), there exists a simulator which produces an
indistinguishable view when it is given challenge λ and all public information,
namely G, γ0, γ1, . . . , γn−1.

We show knowledge soundness through witness-extended emulation. Witness
extended emulation can be shown using standard techniques as done in [12, 14,



Prover Common input: Verifier
(knows r, sk s.t. α0, α1, . . . , αn−1,

ck = gαk−r h̃sk ) c0, c1, . . . , cn−1

β0, β1, . . . , βn−1 ∈R Zq

←−
β0, β1, . . . , βn−1
−−−−−−−−−−−−−

dl-or(G, γ0, γ1, . . . , γn−1)

u, {λj , tj}j 6=r ∈R Zq
{fj = gλjγj h̃tjG−λj}j 6=r

fr = h̃u −−−−
f0, f1, . . . , fn−1
−−−−−−−−−−−−−−−→

←−−−−−−−−−−
λ
−−−−−−−−−−− λ ∈R Zq

λr = λ−
∑
j 6=r λj

tr = u+ λr
∑n−1
j=0 sjβj −−−−−−

{λk, tk}n−1
k=0

−−−−−−−−−−−−−−→ λ
?
=

∑n−1
j=0 λj

h̃tk
?
= ak(G/gγk )λk

Fig. 2. Protocol pub-rot for proving a rotation of known committed values, where

γk =
∑n−1
j=0 αj−kβj , for k = 0, 1, . . . , n− 1, and G =

∏n−1
j=0 c

βj

j .

15]. The idea is to describe an emulator that runs in expected polynomial time
producing a view indistinguishable from that of the protocol and at the same
time gives a witness with the same probability as an adversarial prover produces
an accepting conversation. This is achieved by first letting the prover run on
random selected challenges, and if it is accepting, the witness is extracted using
rewinding techniques until a sufficient number of transcripts have been obtained.
As we use theΣ-protocol dl-or as building block, we will make use of its witness-
extended emulator, denoted as Edl-or.

The description of the emulator E is as follows. E picks random challenges
β

(1)
= β

(1)
0 , β

(1)
1 , . . . , β

(1)
n−1 and plays the witness-extended emulator for dl-or,

Edl-or, on G(1) and γ(1) as defined in the protocol. This invocation will give a
transcript of dl-or along with a witness if the transcript is accepting. If the
transcript is not accepting, E outputs no witness along with (β

(1)
, view(1)) as

the view of the protocol.
Otherwise, we have a valid transcript and a witness of dl-or. Namely, an

integer r(1) and a randomizer t(1) such that G(1) = C(γ(1)

r(1)
, t(1)).

The prover is rewound and fresh challenges β(i)
0 , β

(i)
1 , . . . , β

(i)
n−1 are chosen, for

i = 2, 3, . . . , n until n valid transcripts and n witnesses for dl-or are obtained,
by subsequently invoking Edl-or. From all these n witnesses, E is able to compute
the witness. After this is done, the output of E is the witness plus β

(1)
attached

to the first view obtained from Edl-or.



We first show how E manages to get a witness. Then, we show that this
extractor runs in expected polynomial time and argue that E gives an accepting
view plus a witness with essentially the same probability that the prover is able
to produce accepting conversations.

From all of witnesses obtained, we get the following equalities, with 1 ≤ i ≤ n.

G(i) = C(γ(i)

r(i) , t
(i)). (3)

Also, as specified by the protocol, we have

G(i) =
n−1∏
j=0

c
β

(i)
j

j . (4)

By construction, the vectors β
(i)

with i = 1, 2 . . . , n are linearly independent
with overwhelming probability (for n polynomial in the size of q). The linear
independence of the vectors β

(i)
implies the existence of elements dk,i such that∑n

k=1 β
(i)
dk,i is the (k+ 1)-st standard unit vector of Znq , for k = 0, 1, . . . , n− 1.

This implies that

ck =
n∏
k=1

( n−1∏
j=0

c
β

(i)
j

j

)dk,i .

By Eq. (4), it in turn implies that

ck =
n∏
k=1

(G(i))dk,i =
n∏
k=1

C(γ(i)

r(i) , t
(i))dk,i =

n∏
k=1

C(dk,iγ
(i)

r(i) , dk,it
(i)) =

= C(
n∑
k=1

dk,iγ
(i)

r(i) ,

n−1∑
k=0

dk,it
(i))

Therefore, we find an opening of the commitment ck. Let α̃k =
∑n
k=1 dk,iγ

(i)

r(i)

and sk =
∑n
k=1 dk,it

(i).
We now prove that α̃k are a rotated version of the elements αk. From Eqs. (3)

and (4), and using the binding property of the commitment scheme, it follows
that

n−1∑
j=0

β
(i)
j α̃j = γ

(i)

r(i) =
n−1∑
j=0

β
(i)
j αj−r(i) ,

for all i = 1, 2, . . . , n.
As the β

(i)
j are randomly chosen, we conclude, using the Schwartz-Zippel

lemma, that with overwhelming probability α̃j = αj−r(i) holds. This shows that
indeed the committed values in ck are a rotated list of the αk. Note that this
allows us to conclude that r(i) = r(j) for all i 6= j.

In summary, we have found an integer r and randomizers s0, s1, . . . , sn−1

such that ck = C(αk−r, sk) which is actually the witness for pub-rot.



We now argue that E runs in expected polynomial time. Let ε̃ denote the
probability that querying Edl-or on independently random selected β’s results
in an accepting transcript. Then getting an accepting transcript and therefore
a witness will take expected time (1/ε̃)T , where T is the expected running time
of Edl-or. Therefore, the total expected running time of the repeated calls to
Edl-or made by E is T + ε̃(n− 1)T/ε̃ = nT .

Let ε denote the probability that a real prover gives an accepting proof of
pub-rot. To check that the difference between ε and ε̃ is negligible, we observe
that ε can be seen as a weighted sum of probabilities

∑
β(1/qn)εdl-or(β), where

εdl-or(β) is the success probability of the prover in dl-or when it got challenges
β. On the other hand, the probability that we get an accepting answer in the first
query to Edl-or in E happens with probability

∑
β(1/qn)ε̃dl-or(β) where ε̃dl-or(β)

denotes the probability that Edl-or gives an accepting conversation on relation
induced by challenges β. We can conclude that |ε − ε̃| is negligible, using the
fact that |εdl-or(β) − ε̃dl-or(β)| is negligible which is true by definition of witness
extended emulator for dl-or. ut

Efficiency. After the verifier submitted the challenges β, the commitment G
is computed using an n-way exponentiation, which roughly costs n/2 double
exponentiations. Then the prover has to give the dl-or proof based on G and
the γ’s. The latter requires n double exponentiations for the prover and the
verifier separately. Therefore, we have 1.5n double exponentiations to produce
the proof, and 1.5n to verify it.

4.2 General Rotation

Given two lists of encryptions, X0, X1, . . . , Xn−1 and Y0, Y1, . . . , Yn−1, the prover
shows that it knows an integer r, 0 ≤ r ≤ n−1, and randomizers s0, s1, . . . , sn−1

satisfying:
Yk = Xk−r(gsk , hsk) for k = 0, 1, . . . , n− 1. (5)

For this task, we propose the protocol presented in Fig. 3.

Building Blocks. In this protocol, besides of the proof for rotation of known
contents, we use an additional proof of knowledge. The proof eq-exp(h, Y,A)
allows the prover to show the knowledge of α, r, t such that h = C(α, r) and
A = Y αE(0, t), where Y is an encryption. This proof is actually a basic Σ-
protocol.

Before going into the security analysis, we note that the protocol requires
6 rounds of interaction. This is because some rounds in the involved building
blocks can be run in parallel. Namely, we can combine the first set of messages
from eq-exp with the first answer from the prover in the protocol description
of Fig. 3. Also the first round of pub-rot can be directly connected with the
challenge coming from eq-exp. In the security analysis, however, we will use the
modular description of the protocol.



Prover Verifier
Common input:

(knows r, sk s.t. Xk = (ak, bk),
Yk = (ak−r, bk−r)(g

sk , hsk )) Yk = (dk, ek)
α0, α1, . . . , αn−1 ∈R Zq

←−
α0, α1, . . . , αn−1
−−−−−−−−−−−−−

uk, tk ∈R Zq
hk = gαk−r h̃uk

Ak = (d
αk−r

k , e
αk−r

k )(gtk , htk )

v =
∑n−1
k=0 (αk−rsk + tk)

−−
{hk, Ak}n−1

k=0 , v
−−−−−−−−−−−−−→

{eq-exp(hk, Yk, Ak)}n−1
k=0

ok, pk,mk ∈R Zq
fk = gok h̃pk

Fk = (d
ok
k , e

ok
k )(gmk , hmk ) −−−−−−−

{fk, Fk}n−1
k=0

−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−

λ
−−−−−−−−−−−− λ ∈R Zq

τk = ok + λαk−r
ρk = pk + λuk
µk = mk + λtk

−−−−−
{τk, ρk, µk}n−1

k=0
−−−−−−−−−−−−−−−−→ gτk h̃ρk

?
= fkh

λ
k

(d
τk
k , e

τk
k )(gµk , hµk )
?
= FkA

λ
k

pub-rot(α0, . . . , αn−1, h0, . . . , hn−1) ∏n−1
j=0 AjX

−αj

j

?
= (gv, hv).

Fig. 3. Protocol gen-rot for proving a rotation of ElGamal encryptions, where k runs
from 0 to n− 1.

Theorem 2. The protocol gen-rot is a special honest-verifier zero-knowledge
proof of knowledge with witness extended emulation that a prover knows an in-
teger r, 0 ≤ r < n and randomizers s0, s1, . . . , sn−1 such that Eq. (5) holds.

Proof. To prove that the protocol for general rotation is SHVZK, we will con-
struct a simulator, given X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1, and the random
challenges α0, α1, . . . , αn−1 (along with all the challenges for pub-rot and the
one for eq-exp).

The simulator runs as follows. First, it computes Ak = Xαk

k E(0, vk) for ran-
dom vk. The assignment for Ak is somewhat arbitrary and there are various
ways to do it, as long as it guarantees that the proof is accepting.



Now, the simulator creates commitments h0, h1, . . . , hn−1 all of them to 0 (or
any value). Despite this choice, the simulators for both pub-rot and eq-exp will
still produce transcripts that are indistinguishable from real ones. Combining the
obtained transcripts with the computed array of commitments hk, encryptions
Ak, and the value v, the resulting view is indistinguishable to a real transcript
of gen-rot.

For witness-extended emulation we construct the emulator E as follows.
Given challenges α(1) = (α(1)

0 , α
(1)
1 , . . . , α

(1)
n−1), E runs the prover until it gets

responses h
(1)
, k

(1)
, v(1), after this, the witness-extended emulators Eeq-exp and

Epub-rot are run. With some probability ε̃, they will produce an accepting tran-
script. If this is not the case, E outputs no witness along with the transcripts ob-
tained from the witness-emulators and the prover. Else, E will rewind the prover
and choose fresh random challenges α(i), until n accepting conversations are ob-
tained in total. For each of them, let α(i)

0 , α
(i)
1 , . . . , α

(i)
n−1 denote the challenges

selected by E. For each of these cases, respective witness-extended emulators for
pub-rot and eq-exp’s are run in order to extract their witnesses.

This is the information necessary to compute the witness for gen-rot. We
show now, how E is able to compute an integer r and randomizers s0, s1, . . . , sn−1

such that Eq. (5) holds.
We have for a particular iteration of i = 1, 2, . . . , n, and for every j with

0 ≤ j ≤ n− 1 that

A
(i)
j = Y

b
(i)
j

j E(0, t(i)j ), and
h

(i)
j = C(b(i)j , u

(i)
j ).

(6)

for some values b, t and u.
We have also witnesses for pub-rot. That is, there exist integers r(i) and

randomizers w(i)
j such that

h
(i)
j = C(α(i)

j−r(i) , w
(i)
j ). (7)

From (6) and (7), due to the binding property of the commitment scheme,
it follows that b(i)j = α

(i)

j−r(i) and u
(i)
j = w

(i)
j . One of the consequences is that

A
(i)
j = Y

α
(i)

j−r(i)

j E(0, t(i)j ). (8)

As all these equations are based on accepting conversations then the verifi-
cations of the proof passes, and therefore,∏n−1

j=0 A
(i)
k∏n−1

j=0 X
α

(i)
j

j

=

∏n−1
j=0 Y

α
(i)

j−r(i)

j E(0, t(i)j )∏n−1
j=0 X

α
(i)
j

j

= E(0, v(i)). (9)

This implies that,

n−1∏
j=0

(
Yj−r(i)

Xj

)α(i)
j

= E(0, v(i) −
n−1∑
j=0

t
(i)
j )



From this last equality, we can conclude using the Schwartz-Zippel lemma that
the Xk and Yk encrypt the same elements up to a rotation of these elements,
implying also that r(i) = r(j) for all i 6= j. We denote that rotation offset as r.3

Let Zj = Yj−r

Xj
and ñk = v(i) −

∑n−1
j=0 t

(i)
j . The aim now is to extract the

randomness used in Zj which is by homomorphic properties the randomness
used to re-blind the rotated list Yj .

As the challenges throughout the extraction process are selected indepen-
dently at random, it implies that the vectors α(i) are linearly independent. This
enables the existence of elements dk,i such that

∑n−1
j=0 dk,iα

(i) is the (k + 1)-st
standard unit vector in Znq , for k = 0, 1, . . . , n− 1. Therefore,

Zk =
n∏
k=1

n−1∏
j=0

Z
α

(i)
j

j

dk,i

= E(0,
n∑
k=1

dk,iñk),

that enables us to extract sk =
∑n
k=1 dk,iñk.

The way of arguing that E runs in expected polynomial time is similar to
the protocol for known contents. ut

Efficiency. First, we calculate the computational cost to prove one invocation
of eq-exp. This requires 3 double exponentiations and 3 triple exponentiations
to produce, and 3 triple exponentiations to verify the proof.

Now, the number of exponentiations required to compute gen-rot. The
prover must compute the commitments hk, costing n double exponentiations.
The encryptions Ak need 2n more double exponentiations. Then, 3n for eq-
exp and 1.5n for pub-rot, totalling 7.5n double exponentiations for the prover
to give a proof.

The verifier needs to check the eq-exp and pub-rot which requires 3n triple
exponentiations and 1.5n double exponentiations, respectively. The verification
at the end of the proof requires 2 more n-way exponentiation. Then, the total
cost for the verifier is 5.5n double exponentiations.

5 Comparison and Concluding Remarks

To the best of our knowledge, the protocol by Reiter and Wang [21] is the only
one that presents protocols for proving a rotation. Their construction works in
general given that appropriate homomorphic cryptosystem has been set up. In
fact, they show a protocol to prove that a permutation has been applied making
use of 4 invocations to the proof of shuffle.

Table 1 presents a comparison of the computational complexities for various
protocols for rotation. In all cases, we assume that the protocols are based on
homomorphic ElGamal and Pedersen commitments. For simplicity, we count
3 If this is not the case, this must be because the plaintexts in Xk are all the same for

all k. This is not a problem though, we just take r = 0 and the rest of the procedure
will still be applicable.



Table 1. Performance figures for proving a rotation.

Protocol Prove Verify Rounds

Loop permutations [21] 16n 10n 30

Proposed: DFT-based 5n 4n 3

Proposed: General 7.5n 5.5n 6

the number of double exponentiations. Additionally, for the protocol in [21] we
assume that they use the proof of shuffle by Groth [12] which is one of the most
efficient.
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