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Abstract. Searchable encryption schemes provide an important mechanism to
cryptographically protect data while keeping it available to be searched and ac-
cessed. In a common approach for their construction, the encrypting entity chooses
one or several keywords that describe the content of each encrypted record of
data. To perform a search, a user obtains a trapdoor for a keyword of her interest
and uses this trapdoor to find all the data described by this keyword.
We present a searchable encryption scheme that allows users to privately search
by keywords on encrypted data in a public key setting and decrypt the search
results. To this end, we define and implement two primitives: public key encryp-
tion with oblivious keyword search (PEOKS) and committed blind anonymous
identity-based encryption (IBE). PEOKS is an extension of public key encryp-
tion with keyword search (PEKS) in which users can obtain trapdoors from the
secret key holder without revealing the keywords. Furthermore, we define com-
mitted blind trapdoor extraction, which facilitates the definition of authorisation
policies to describe which trapdoor a particular user can request. We construct
a PEOKS scheme by using our other primitive, which we believe to be the first
blind and anonymous IBE scheme. We apply our PEOKS scheme to build a pub-
lic key encrypted database that permits authorised private searches, i.e., neither
the keywords nor the search results are revealed.

Keywords: Blind identity-based encryption, searchable encryption, public key
encryption with keyword search.

1 Introduction

Vast quantities of sensitive personal data are retained for the purpose of network foren-
sics and cyber investigations [1]. The advantages of the availability of such data for the
investigation of serious crimes and the protection of national security are considerable.
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However, these advantages must be counterpoised by the dangers that such data could
fall into the wrong hands.

The encryption of retained data is a desirable counter measure against data theft.
But how, then, can the investigator, such as the police or a secret service, search the data
without having to decrypt the whole database? What if the investigator should only be
given access to data that fulfills certain criteria? This seems to be a hard problem, as
the criteria themselves may be sensitive and thus requiring protective measures, such as
encryption. Moreover, a secret service is often reluctant to reveal the type of queries it
wants to run on the encrypted database.

We consider a scenario in which an investigator searches for data described by mul-
tiple keywords without revealing the keywords or the search results to the database
server. This scenario is akin to the private searching of streaming data presented in [2].
While in [2] the data is searched as it is generated (and can thereafter be discarded), in
our scenario data is first stored in encrypted form and can be searched at a later stage. To
provide a high level of security we make use of asymmetric cryptography. The database
server only possesses the public encryption key (and cannot decrypt the retained data
itself). In this way, data that is already encrypted remains secure even against a strong
adversary that breaks into the database server. The decryption key is stored by a security
server, which will only be involved when executing search queries.

As the details of queries made are to be obscured even from the security server, it
is necessary to impose some restrictions on the investigator. Thus we introduce some
checks and balances to avoid abuse by overzealous or malicious investigators. One ob-
vious restriction is in the number of queries that the investigator can make. An un-
reasonable number of requests may be an indication of abuse. Another restriction that
we consider is to involve a judge in granting search warrants to the investigator. The
keyword is still hidden, but the security server is guaranteed that a judge (or another
authority figure) has approved the search for a specific keyword.

In [3] the authors build an encrypted and searchable audit log. They propose two
schemes, one based on symmetric encryption and one based on asymmetric encryption.
They conclude that asymmetric encryption provides better security, as it reduces the
trust in the encrypting entity. Our work can be seen as an extension of their asymmet-
ric scheme with the possibility to obliviously search the encrypted database. For the
symmetric case, in which the audit log server knows all the information needed for de-
crypting the database, the problem of performing oblivious searches is covered by [4,
5]. The problem of oblivious searching on public key encrypted data is more difficult.

Outline of our solution. In [3], the asymmetric searchable encryption scheme is based
on identity-based encryption (IBE) [6]. The keywords themselves are used to encrypt
the database, i.e., they are the identity strings of the IBE scheme. The anonymity prop-
erty of Boneh-Franklin IBE scheme [6] ensures that a ciphertext does not leak the iden-
tity string used to generate the encryption. The security server holds the master secret
key that is used to derive the secret keys corresponding to the keywords that are needed
for searching. A similar technique for searchable encryption was formalized as public
key encryption with keyword search (PEKS) by [7]. In PEKS, the derived keys are re-
ferred to as search trapdoors, which can be given to third parties to grant them search
rights.
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When trying to build an oblivious search mechanism for such a database we have
to address two difficulties: hiding the keywords from the security server and hiding
the search results from the database. For the former, we present two new cryptographic
primitives. The first one is committed blind anonymous IBE. In this context, anonymous
means that the ciphertext does not leak the key (identity) under which it was encrypted
[8, 9] and blind means that a user can request the decryption key for a given identity
without the key generation entity learning the identity [10]. The work of [10] describes
how to construct blind key derivation protocols for [11] and [12, 13], but these schemes
are not anonymous. Moreover, it is much harder to derive a blind key derivation pro-
tocol for the Boneh-Franklin IBE scheme [6] used in [3], and we are interested in IBE
schemes that do not require random oracles for their security proofs. (As shown by [14–
16], a scheme may be insecure even if proven secure in the random oracle model.) As
a corollary to our results, we obtain the first instantiation of [3] secure without random
oracles.

We design a committed blind anonymous IBE scheme based on the anonymous IBE
scheme due to [9]. As the scheme in [9] is only selective ID secure [11], we extend it
with adaptive ID security [17] and prove the modified scheme secure. For the modified
scheme we design a blind key extraction protocol. This leads to the first blind anony-
mous IBE scheme we are aware of. We extend the definition of blind IBE to allow
for the derivation of a secret key for a committed identity. This allows the key gener-
ation entity to enforce authorisation policies on the identities for which a secret key is
requested, as described in [18].

The second primitive we present is public key encryption with oblivious keyword
search (PEOKS), which we implement using our committed blind anonymous IBE
scheme. First, we extend the definition of PEKS to incorporate the encryption of a se-
cret message when computing a searchable encryption. This secret message can contain
a symmetric key, which allows PEKS to be used directly in settings such as [3]. Then
we define blind key extraction with committed keywords, which facilitates the use of
a policy that states for which keywords a trapdoor can be extracted while still keeping
them hidden from the trapdoor generation entity.

In order to hide the search results from the database one could in theory down-
load the whole database and then use PEOKS to do the search. This is inefficient. We
describe a data structure that allows to use private information retrieval (PIR) [19] to
improve the communication efficiency of the search.

Our contribution. We define and construct the first blind anonymous IBE scheme. We
generalize PEKS to be usable in settings such as [3], and we extend it to incorporate the
facility to perform oblivious keywords searches (PEOKS). Both our blind anonymous
IBE scheme and our PEOKS scheme support committed blind key extraction and thus
allow for complex policies. Finally, we describe the first public key encrypted database
that allows for oblivious searches, i.e., both the keywords and the search results remain
hidden.

Outline of the paper. In Sect. 2 we introduce basic concepts and security assumptions
and in Sect. 3 we define committed blind anonymous IBE and PEOKS. We construct
a committed blind anonymous IBE scheme and we show how to apply it to build a
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PEOKS scheme in Sect. 4. In Sect. 5, we describe the use of PEOKS to construct a
privacy-preserving searchable encrypted database. Finally, Sect. 6 draws a conclusion
and discusses future work.

2 Technical Preliminaries

A function ν is negligible if, for every integer c, there exists an integer K such that for
all k > K, |ν(k)| < 1/kc. A problem is said to be hard (or intractable) if there exists
no probabilistic polynomial time (p.p.t.) algorithm on the size of the input to solve it. ε
denotes the empty string.

Bilinear Maps. Let G1, G2 and GT be groups of prime order p. A map e : G1×G2 →
GT must satisfy the following properties:

(a) Bilinearity. A map e : G1 ×G2 → GT is bilinear if e(ax, by) = e(a, b)xy;
(b) Non-degeneracy. For all generators g ∈ G1 and h ∈ G2, e(g, h) generates GT ;
(c) Efficiency. There exists an efficient algorithm BMGen(1k) that outputs (p,G1, G2,

GT , e, g, h) to generate the bilinear map and an efficient algorithm to compute
e(a, b) for any a ∈ G1, b ∈ G2.

The security of our scheme is based on the following number-theoretic assumptions:

Definition 1 (Decision BDH). Given g, ga, gb, gc ∈ G1, h, ha, hb ∈ G2, and Z ∈ GT
for random exponents a, b, c ∈ Zp, decide whether Z = e(g, h)abc or a random element
from GT . The Decision BDH assumption holds if all p.p.t algorithms have negligible
advantage in solving the above problem.

Definition 2 (Decision Linear). Given g, ga, gb, gac, gbd, Z ∈ G1, h, ha, hb ∈ G2 for
random exponents a, b, c, d ∈ Zp, decide whether Z = gc+d or a random element
in G1. The Decision Linear assumption holds if all p.p.t algorithms have negligible
advantage in solving the above problem.

Commitment Schemes. A commitment scheme is a two phase scheme that allows a
user to commit to a hidden value, while preserving the ability of the user to reveal the
committed value at a later stage. The properties of a commitment scheme are hiding:
the value committed to must remain undiscovered until the reveal stage, and binding:
the only value which may be revealed is the one that was chosen in the commit stage.

We use the perfectly hiding commitment scheme proposed by Pedersen [20]: Given
a groupG of prime order pwith generators g and h, generate a commitmentC to x ∈ Zp
by choosing at random openx ← Zp and computing C = gxhopenx . The commitment
is opened by revealing x and openx.

Proofs of Knowledge. We use several existing results to prove statements about discrete
logarithms; (1) proof of knowledge of a discrete logarithm modulo a prime [21], (2)
proof of knowledge of the equality of some element in different representations [22],
(3) proof that a commitment opens to the product of two other committed values [23–
25], and (4) proof of the disjunction or conjunction of any two of the previous [26].
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These results are often given in the form of Σ-protocols but they can be turned into
zero-knowledge protocols using efficient zero-knowledge compilers [27, 28].

When referring to the proofs above, we follow the notation introduced by Ca-
menisch and Stadler [29] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms.

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y =
gαhβ and ỹ = g̃αh̃δ holds”, where y, g, h, ỹ, g̃, and h̃ are elements of some groupsG =
〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that some elements in
the representation of y and ỹ are equal.) The convention is that letters in the parenthesis,
in this example α, β, and δ, denote quantities whose knowledge is being proven, while
all other values are known to the verifier. There exists a knowledge extractor which can
extract these quantities from a successful prover.

3 Definitions of Committed Blind Anonymous IBE and PEOKS

3.1 Anonymous Identity-Based Encryption

We recall the definition of identity-based encryption [6]. An IBE scheme Π consists of
the algorithms (IBESetup, IBEExtract, IBEEnc, IBEDec):

IBESetup(1k) outputs parameters params and master secret key msk .
IBEExtract(params,msk , id) outputs the secret key sk id for identity id .
IBEEnc(params, id ,m) outputs ct encrypting m under id .
IBEDec(params, sk id , ct) outputs message m encrypted in ct .

An IBE scheme is anonymous [30], if it is not possible to associate the identity id
used to encrypt a message m with the resulting ciphertext ct (in the context of public
key encryption this is also known as key privacy [31]).

Abdalla et al. [30] define anonymity through a security game in which the adver-
sary receives a ciphertext encrypted with an identity that is randomly picked from two
identities of his choosing. The adversary has to guess the identity used to encrypt the
ciphertext. As in [8], we combine this game with the standard chosen plaintext security
game for IBE in which the adversary needs to guess which message out of two possible
messages was encrypted.4

Definition 3 (Secure Anonymous IBE [30]). Let k be a security parameter. An anony-
mous IBE scheme Π is secure if every p.p.t. adversary A has an advantage negligible
in k in the following game:
Setup. The game runs IBESetup(1k) to generate (params,msk).
Phase 1. A may query an oracle OIBEExtract(params,msk , id) polynomially many
times with input id . The oracle then runs IBEExtract(params,msk , id) and returns

4 We define an adaptive identity security game as this is required by our IBE to PEOKS trans-
formation.
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the associated sk id .
Challenge. A presents the simulator two target identities id0, id1, which have not
been queried in Phase 1, and two challenge messages m0, m1. The simulator se-
lects two random bits b1 and b2, and returns to A the challenge ciphertext ct =
IBEEnc(params, idb1 ,mb2).
Phase 2. A may again query oracle OIBEExtract(params,msk , id) polynomially many
times on id provided id is not id0 or id1.
Guess.A outputs b′1, b

′
2. We define the advantage ofA as |Pr[b′1 = b1∧b′2 = b2]−1/4|.

3.2 Committed Blind Anonymous IBE

In standard IBE schemes, a key generation centre KGC executes the key extraction al-
gorithm IBEExtract that returns the secret key sk id corresponding to input identity id .
Green and Hohenberger [10] propose extracting the secret key in a blinded manner. The
blinding action obscures the identity from the KGC. We extend this concept by propos-
ing a committed blind anonymous IBE scheme, where the KGC is given a commitment
to the requested identity. A user can reveal partial information about the identity or
prove statements about it using efficient zero-knowledge proofs about commitments
[32, 25].5

A committed blind anonymous IBE scheme consists of the algorithms Π of an IBE
scheme, a secure commitment scheme Commit, and the protocol IBEBlindExtract:

IBEBlindExtract(U(params, id , openid),KGC(params,msk ,C )) generates the se-
cret decryption key sk id for U’s identity id in an interactive key issuing protocol
between U and the KGC. If C = Commit(id , openid), U’s output is a decryption
key sk id and the output of the KGC is empty. Otherwise both parties output ⊥.

Green and Hohenberger [10] construct a security argument for blind-IBE by defin-
ing two properties for the IBEBlindExtract protocol: leak freeness and selective-failure
blindness. Leak freeness requires that IBEBlindExtract is a secure two-party computa-
tion that does not leak any more information than IBEExtract.6 Selective-failure blind-
ness requires that a potentially malicious authority does not learn anything about the
user’s identity during the IBEBlindExtract protocol. Additionally, it cannot cause the
IBEBlindExtract protocol to selectively fail depending on the user’s choice of identity.
We provide adapted versions of these properties for committed blind anonymous IBE.

Definition 4 (Leak Freeness [10]).
An IBEBlindExtract protocol of an IBE scheme is leak free if, for all efficient adver-
saries A, there exists an efficient simulator S such that for every value k, no efficient
distinguisher D can determine whether it is playing Game Real or Game Ideal with
non-negligible advantage, where

5 Technically this can be seen as restricting the blind key derivation queries to a certain language,
membership of which is proven in zero-knowledge.

6 It also implies that the user is required ‘to know’ the id for which she needs a key to be
extracted. We also require that she knows the opening to the commitment.
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Game Real: Run IBESetup(1k). As many times as D wants, he picks a commitment C
and A’s input state . A runs IBEBlindExtract(A(params, state),KGC(params,
msk ,C )) with the KGC. A returns the resulting view to D.

Game Ideal: Run IBESetup(1k). As many times asD wants, he picks a commitment C
and initial input state . S obtains (params, state) and may choose values id and
openid to query an oracleOIBEExtract that knows msk and is parameterized with C .
If C = Commit(id , openid), the oracle returns key sk id ← IBEExtract(params,
msk , id), otherwise ⊥. S returns a simulated view to D.

Definition 5 (Selective-Failure Blindness [33]).
An IBEBlindExtract protocol is said to be selective-failure blind if every adversary
A has a negligible advantage in the following game: A outputs params and a pair
of identities id0, id1. A random bit b ∈ {0, 1} is chosen, and A is given two fresh
commitments Cb, C1−b and black-box access to two oracles: U(params, idb, openidb

)
and U(params, id1−b, openid1−b

). The U algorithms produce sk b, sk1−b respectively.
If sk b 6=⊥ and sk1−b 6=⊥, A receives (sk0, sk1); if only sk1−b =⊥, (ε,⊥); if only
sk b =⊥, (⊥, ε); and if sk b = sk1−b =⊥, A receives (⊥,⊥). Finally, A outputs his
guess b′. The advantage of A in this game is |Pr[b′ = b]− 1/2|.

Following [10], we define a secure committed blind anonymous IBE as follows.

Definition 6 (Secure Committed Blind Anonymous IBE).
A committed blind anonymous IBE scheme (Π, IBEBlindExtract,Commit) is secure if
and only if: (1) The underlying Π is a secure anonymous IBE scheme, (2) Commit is a
secure commitment scheme, and (3) IBEBlindExtract is leak free and selective-failure
blind.

3.3 Public Key Encryption with Oblivious Keyword Search

We recall and extend the definition of PEKS [7]. A PEKS scheme Υ = (KeyGen,
PEKS,Trapdoor,Test) consists of the algorithms:

KeyGen(1k) outputs a public key Apub and secret key Apriv .
PEKS(Apub,W,m) outputs a searchable encryption SW of m under keyword W .
Trapdoor(Apub, Apriv,W ) outputs a trapdoor TW that allows to search for the key-

word W .
Test(Apub, SW , TW ′) outputs the message m encoded in SW , if W = W ′; otherwise

it outputs ⊥.

This definition of PEKS extends the standard definition [7] by encoding a secret m into
the PEKS element SW generated by the PEKS algorithm. Test outputs this secret when
a match occurs.

A secure PEKS scheme must be chosen plaintext attack (CPA) secure and consistent
[30]. CPA security requires that an attacker cannot distinguish two PEKS elements gen-
erated for keywords and messages of his choice, even if given oracle access to Trapdoor
for other keywords. Consistency requires that if the searchable encryption and the trap-
door are computed using different keywords, then algorithm Test should output⊥ upon
such input.



8

In PEKS, the party holding the secret key Apriv runs the Trapdoor algorithm to ob-
tain the trapdoor TW for a keyword W . Public key encryption with oblivious keyword
search (PEOKS) is an extension of PEKS in which a user U performing a search can ob-
tain in a committed and blinded manner the trapdoor TW from the trapdoor generation
entity T GE . The T GE only learns a commitment to the search term.

A PEOKS scheme consists of the algorithms Υ of a PEKS scheme, a secure commit-
ment scheme Commit used to commit to keywords, and the following BlindTrapdoor
protocol:

BlindTrapdoor(U(Apub,W, openW ), T GE(Apub, Apriv,C )) generates a trapdoor TW
for a keywordW in an interactive protocol between U and T GE . If C=Commit(W,
openW ), U’s output is the trapdoor TW and the output of T GE is empty. Otherwise
both parties output ⊥.

Leak freeness and selective-failure blindness can be defined for BlindTrapdoor follow-
ing the definition for IBEBlindExtract.7 We define the security of PEOKS similarly to
that of a committed blind anonymous IBE scheme, assuming a secure underlying PEKS
scheme.

Definition 7 (Secure PEOKS).
A PEOKS scheme (Υ , BlindTrapdoor, Commit) is secure if and only if: (1) The under-
lying Υ is a secure PEKS scheme, (2) Commit is a secure commitment scheme, and (3)
BlindTrapdoor is leak free and selective-failure blind.

4 Construction of a Committed Blind Anonymous IBE Scheme
and a Transformation to PEOKS

4.1 The Underlying Anonymous IBE Scheme

We present an anonymous IBE scheme that is adaptive identity secure in the stan-
dard model, based on the anonymous IBE scheme proposed by Boyen-Waters [9].
The Boyen-Waters scheme is selective identity secure. We use a transformation due
to Naccache [12], a variant of that of Waters [17], to achieve the required adaptive
identity security. The use of such a transformation was proposed by Boyen-Waters
[9]. We provide what we believe to be the first proof of security for this variant. Our
scheme supports asymmetric bilinear maps, allowing the use of a wider range of po-
tentially more efficient implementations using different pairing types [34]. Let identity
id ∈ {0, 1}`×n and let id1‖ . . . ‖idn = id be the separation of id into ` bit integers id i.
Let H1(id) = g0

∏n
i=1 g

idi
i and H2(id) = h0

∏n
i=1 h

idi
i . Our anonymous IBE scheme

Π = (IBESetup, IBEExtract, IBEEnc, IBEDec) consists of the following algorithms :

IBESetup(1k). Run BMGen(1k) to obtain a bilinear map setup (p,G1, G2, GT , e, g,
h). Choose values α, z0, z1, . . . , zn, t1, t2, t3, t4 ← Z∗p and keep msk = (α, t1, t2,

7 The inputs are mapped 1-to-1. KeyGen is used instead of IBESetup and Trapdoor instead of
IBEExtract.
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t3, t4) as the master key. Compute the system parameters as

params =
(
Ω = e(g, h)t1t2α, g, h, g0 = gz0 , . . . , gn = gzn , v1 = gt1 , . . . ,

v4 = gt4 , h0 = hz0 , . . . , hn = hzn

)
.

IBEExtract(params,msk , id). Choose two random values r̃1, r̃2 ← Z∗p and compute
the key

sk id =
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2(id)−r̃1t2 , h−αt1H2(id)−r̃1t1 , H2(id)−r̃2t4 ,

H2(id)−r̃2t3
)
.

IBEEnc(params, id ,msg). To encrypt a message msg ∈ GT , choose s, s1, s2 ← Zp,
and generate the ciphertext

ct =
(
Ωs ·msg , H1(id)s, vs−s11 , vs12 , v

s−s2
3 , vs24

)
.

IBEDec(params, sk id , ct). Parse sk id as (d0, d1, d2, d3, d4) and ct as (c′, c0, c1, c2,
c3, c4) and return

msg = c′ · e(c0, d0) · e(c1, d1) · e(c2, d2) · e(c3, d3) · e(c4, d4).

Theorem 1. The scheme Π is an adaptive identity secure anonymous IBE scheme un-
der the DBDH and DLIN assumptions. Please see the full version for the proof.

4.2 Blind Extraction Protocol

We introduce an interactive blind key extraction protocol IBEBlindExtract, which ex-
tends algorithm IBEExtract.

Intuition behind our construction Generating a randomly distributed secret key by
means of the IBEBlindExtract protocol requires the values r̃1, r̃2 to be jointly chosen
by the user and the key issuer in a manner which prevents either party from learning
anything about the other’s randomness. This prevents a user that learns the issuer’s ran-
domness from potentially decrypting messages of other users and an issuer that learns
a user’s randomness from potentially breaking the blindness of the key issued.

The key issuer, KGC, chooses random values r̂1, r̂2 ← Z∗p , and the user U picks
random values r′1, r

′
2 ← Z∗p . The key generation protocol may be implemented using

standard secure two-party computation techniques [35], as a protocol in which the user
inputs r′1, r

′
2 and theKGC inputs α, t1, t2, t3, t4, r̂1, r̂2. The user’s output in the protocol

is a secret key

sk id = (hr̃1t1t2+r̃2t3t4 , h−αt2H2(id)−r̃1t2 , h−αt1H2(id)−r̃1t1 , H2(id)−r̃2t4 ,

H2(id)−r̃2t3) ,

with r̃1 = r̂1r
′
1 and r̃2 = r̂2r

′
2. The KGC learns nothing further, and outputs nothing.

By decomposing this protocol into sub-protocols, whose results only require simple
arithmetic operations (addition and multiplication), we obtain an efficient protocol.
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Construction Our committed blind anonymous IBE scheme consists of the algorithms
Π of the underlying IBE scheme, the Pedersen commitment scheme Commit, and the
following IBEBlindExtract protocol:

IBEBlindExtract(U(params, id , openid)↔ KGC(params,msk ,C )).

1. KGC chooses at random r̂1, r̂2 ← Z∗p , and the user U chooses at random u0, u1, u2

← Zp and u3, r
′
1, r
′
2 ← Z∗p . Implicitly, r̃1 = r̂1r

′
1 and r̃2 = r̂2r

′
2. U computes

Cu3 = Commit(u3, openu3
), and KGC computes Cr̂1 = Commit(r̂1, open r̂1)

and Cr̂2 = Commit(r̂2, open r̂2). KGC and U make use of a two-party protocol
for simple arithmetics modulo p (parameterized by Cu3 , Cr̂1 , and Cr̂2 ). U in-
puts u0, u1, u2, u3, openu3

, r′1, r
′
2 and KGC inputs α, t1, t2, t3, t4, r̂1, open r̂1 , r̂2,

open r̂2 , openx0
, openx1

, openx2
. If Cu3 = Commit(u3, openu3

), Cr̂1 = Commit
(r̂1, open r̂1), and Cr̂2 = Commit(r̂2, open r̂2) the output of KGC is

x0 = (r̂1r′1t1t2 + r̂2r
′
2t3t4) + u0 (mod p) ,

x1 = −(u3/r
′
1 · αt2) + u1 (mod p) ,

x2 = −(u3/r
′
1 · αt1) + u2 (mod p).

Provided that KGC does not abort at that moment, U obtains Cx0 = Commit(x0,
openx0

), Cx1 = Commit(x1, openx1
) and Cx2 = Commit(x2, openx2

) as output.
Otherwise, both parties output ⊥. In Sect. 4.3 we show how to efficiently realise
such a protocol.

2. U computes ID′ = H2(id)u3 , where u3 is a blinding value, and sends ID′ toKGC.
U proves that the identity in ID′ corresponds to Cid and that ID′ is well-formed
using Cu3 . KGC returns ⊥ if the proof fails. Details about this proof of knowledge
can be found in Appendix A.

3. KGC computes

sk id
′ =(hx0 , hx1ID ′−r̂1t2 , hx2ID ′−r̂1t1 , ID ′−r̂2t4 , ID ′−r̂2t3).

4. KGC sends the blinded key sk id
′ = (d′0, d

′
1, d
′
2, d
′
3, d
′
4) to U , and engages in a proof

of knowledge that it is correctly constructed. The proof assures U that KGC’s cho-
sen values r̂1, r̂2, openr̂1 , openr̂2 , t1, t2, t3, t4, x0, x1, x2, openx0 , openx1 , openx2

correspond to sk id
′ and to the commitments Cr̂1 ,Cr̂2 ,Cx0 ,Cx1 and Cx2 (see Ap-

pendix A). If the proof fails, U returns ⊥. Otherwise, she computes

sk id = (d0, d1, d2, d3, d4) = (d′0h
−u0 , (d′1h

−u1)r
′
1/u3 , (d′2h

−u2)r
′
1/u3 , d′3

r′2/u3 ,

d′4
r′2/u3) .

Theorem 2. The IBEBlindExtract protocol provides a leak-free and selective-failure
blind committed blind extraction protocol for the adaptive identity secure anonymous
IBE scheme.

Proof. Leak freeness: Note that the simulator S can rewind an instance of the adversary
A that he runs internally. He simulates the communication between the distinguisher D
and A by passing D’s input to A and A’s output to D.
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In the two party protocol S can provide random input. Using rewinding techniques,
S extractsA’s input r′1, r′2, and u0, u1, u2, u3 to the two party computation protocol. In
the next step of the blind issuing protocol A must send ID ′ = H2(id)u3 together with
a proof of knowledge of a correct representation of ID ′ and Cid . S uses its rewinding
access to A in order to also extract id , and openid .

Next S submits id , openid toOIBEExtract to obtain a valid secret key sk id = (d0, d1,

d2, d3, d4). S returns (d0·hu0 , d
u3/r

′
1

1 hu1 , d
u3/r

′
1

2 hu2 , d
u3/r

′
2

3 , d
u3/r

′
2

4 ) toA. These values
are distributed in the same way as in IBEBlindExtract.

Selective-failure blindness: A provides params, and two identities id0, id1. The game
chooses a random bit b. A is given commitments Cb = Commit(idb, openb) and
C1−b = Commit(id1−b, open1−b). A has blackbox access to two oracles U(params,
id1−b, open1−b) and U(params, idb, openb).

Note that once an oracle U is activated, A can run a two-party protocol with the
oracle, the result of which are three randomly distributed values in Zp (x0, x1, x2). In
the next step, the oracle provides a randomly distributed value in G2 (ID ′), to A. Then
the oracle performs a zero-knowledge proof with A.

Suppose thatA runs one or both of the oracles up to this point. Up to now the distri-
butions of the two oracles are computationally indistinguishable. (Otherwise we could
break the security of the two party computation, the hiding property of the commitment
scheme or the witness indistinguishability of the zero-knowledge proof. The latter is
implied by the zero-knowledge property of the proof system.)
A must provide values (d′0, d

′
1, d
′
2, d
′
3, d
′
4) and a proof that these values were cor-

rectly computed. We can assume thatA chooses these values using an arbitrary complex
strategy. We show that any adversary A can predict the output ski of U without further
interaction with the oracles:

1. A does the proof of Step 4 internally with itself. If the proof fails, it records sk0 =
⊥. Otherwise, the adversary temporarily records sk0 = IBEExtract(params,msk ,
id0).

2. In turn, A generates different (d′0, d
′
1, d
′
2, d
′
3, d
′
4) and executes a second proof of

knowledge (again internally), now for the second oracle. It performs the same
checks and recordings for sk1 and id1.

3. Finally the adversary predicts (sk0, sk1), if both sk0 6=⊥ and sk1 6=⊥; (ε,⊥), if
only sk1 =⊥; (⊥, ε), if only sk0 =⊥; and (⊥,⊥), if sk0 = sk1 =⊥.

These predictions result in the same distributions as that returned by the oracle, as the
same checks are performed. Moreover, note that for the case that keys are returned by
the game they are in both cases equally distributed random keys because of the random
values r′1 and r′2 contributed by the oracles.

4.3 Two-Party Protocol for Modulo Arithmetics

The protocol uses a public key additive homomorphic encryption scheme with encryp-
tion and decryption functions HEnc and HDec, such that the following hold: HEnc(x)⊗
y = HEnc(xy) and HEnc(x) ⊕ HEnc(y) = HEnc(x + y). In addition, the encryption
should be verifiable [36], meaning it should allow for efficient proofs of knowledge
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about the encrypted content. The key pair is generated by the KGC and is made avail-
able to U .

We describe an efficient committed two-party computation protocol for computing
algebraic terms with addition and multiplication modulo a prime p that generalises ideas
presented in [37]. The round complexity of the protocol is 3 if non-interactive proofs of
knowledge are used and 12 if interactive proofs of knowledge are used.8

Let x1, . . . , xN , openx1
, . . . , openxN

∈ Zp and y1, . . . , yM , openy1 , . . . , openyM

∈ Zp be the secret input variables and openings of U and KGC respectively and let
Cx1 , . . . ,CxN

and Cy1 , . . . ,CyM
be public commitments to the xi and yi. We provide

a protocol for computing the multivariate polynomial
∑L
`=1 a`

∏N
n=1 x

u`n
n

∏M
m=1 y

v`m
m

where u11, . . . , uLN , v11, . . . , vLM ∈ {0, 1} and a` ∈ Zp are publicly known values.
The parties can do parts of the computation locally: U sets X` = a`

∏N
n=1 x

u`n
n

mod p and KGC sets Y` =
∏M
m=1 y

v`m
m mod p. To prove that the computation was

done correctly U computes commitment CX`
= Commit(X`, openX`

) and KGC com-
putes CY`

= Commit(Y`, openY`
).

The parties can complete the computation using homomorphic encryption as de-
scribed in the following protocol (The message space of the homomorphic encryption
needs to be at least 2k`p2). The

⊕
operator denotes the homomorphic addition of mul-

tiple ciphertexts.

U � - KGC
{e`}L`=1� {e` = HEnc(Y`)}L`=1

ex =
(⊕L

`=1(e` ⊗X`)
)

PK1� -
⊕(HEnc(r)⊗ p) ex -

PK2� -
x = Dec(ex)

openx ← Zp

Cx� Cx = gxhopenx

PK3� -

The KGC encrypts each Y` and sends it to the user. The proof PK1 assures U that
CY`

was computed correctly using the values in commitments Cyi
and that the e` are

encryptions of the values committed to in the CY`
.

Next, U computes the encrypted result. The term r · p, 0 < r < (2k − 1)`p is
added to avoid possible modulo overflows from revealing any statistically significant
information about U’s input. U proves toKGC in PK2 that CX`

was computed correctly
using the values in commitments Cxi

and that ex was computed correctly using the
values committed to in the CY`

.
As a last step,KGC decrypts ex, does a single modulo p reduction to obtain the result

of the computation, and commits to the result in commitment Cx. In PK3 KGC proves to
the user that Cx contains the same value modulo p as encrypted in ex. For details on how
to do the proofs PK1, . . . ,PK3 we refer to [29, 38]. An efficient implementation of such
a protocol is presented in [37] using the Paillier homomorphic encryption scheme [39].

8 The round complexity can be reduced by interleaving the proofs and piggybacking some of
the messages.
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4.4 Transformation to PEOKS

We construct a suitable PEKS scheme for our application scenario using the anonymous
IBE scheme presented in Sect. 4.1. We follow a generic transformation by Abdalla et
al. [30] from IBE to PEKS. The transformation takes as input the algorithms Π of a
secure IBE scheme and returns a PEKS scheme Υ = (KeyGen,PEKS,Trapdoor,Test).
Note that our scheme differs from preexisting schemes as Test returns a secret message
in case of a match:

KeyGen(1k) runs algorithm IBESetup(1k) and returns the key pair (Apub, Apriv), the
(params,msk) of the IBE scheme.

PEKS(Apub,W,msg) takes as input public keyApub, keywordW and message msg . It
outputs a searchable encryption SW of message msg under keywordW as follows:
1. Generate a random value C2 ∈ {0, 1}k.
2. Compute C1 = IBEEnc(Apub,W,msg‖C2).
3. Output the tuple SW = (C1, C2).

Trapdoor(Apub, Apriv,W ) outputs a trapdoor TW = IBEExtract(Apub, Apriv,W )
that enables a search for the keyword W .

Test(Apub, SW , TW ′) parses SW as (C1, C2) and computesM = IBEDec(Apub, TW ′ ,
C1). If M = msg‖C2, it outputs the message msg encoded in SW ; if there is no
match, it outputs ⊥.

In order to achieve the oblivious property in our PEOKS scheme, we extend algo-
rithm Trapdoor to a BlindTrapdoor protocol. Our PEOKS scheme is thus composed
of the algorithms Υ of the PEKS scheme, a secure commitment scheme Commit, and a
BlindTrapdoor protocol where

BlindTrapdoor(U(Apub,W, openW ), T GE(Apub, Apriv,C )) generates a trapdoor TW
for a keywordW by running protocol IBEBlindExtract(U(Apub,W, openW ),KGC
(Apub, Apriv,C )).

5 Authorised Private Searches on Public Key Encrypted Data

We describe a public key encrypted database that enables oblivious searches. Our con-
struction is similar to the audit log presented in [3]. Each data record is encrypted using
a fresh random symmetric key and associated with several searchable encryptions. Each
searchable encryption is generated using input of a keyword that describes the content
of the record, and a secret message that contains the symmetric key. Once an investiga-
tor obtains a trapdoor that matches a searchable encryption (i.e., both were computed on
input the same keyword), she is returned the symmetric key that allows her to decrypt
the record.

In constructing authorised private searches, we ensure that neither the keywords of
interest for the investigator nor the search results are revealed. For the first property,
we employ the PEOKS scheme. The investigator runs protocol BlindTrapdoor with
the trapdoor generation entity (T GE) in order to retrieve a trapdoor for a committed
keyword in a blind manner. The committed blind extraction allows the T GE to con-
struct policies detailing the data that a particular investigator can obtain. To enforce
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these restrictions, the T GE requires the investigator to prove in zero-knowledge that
the keyword used to compute the commitment belongs to a certain language. We also
consider a party (such as a judge) in charge of deciding which keywords can be utilized
by the investigator, and describe how the investigator obtains a search warrant from the
judge and shows it to the T GE . The judge and the T GE are only involved in providing
search warrants and trapdoors respectively, and can remain off-line when not required
to perform these tasks.

To obscure the search results, we describe a data structure that allows the use of
a PIR scheme and that integrates concepts from [40] to improve the efficiency of the
searches9. Since the PIR queries are made over encrypted data, we also ensure that
the investigator does not obtain any information about data described by keywords for
which she was not authorised to retrieve a trapdoor. It should also be noted that, due to
the public key setting, the database only stores the public key of the PEOKS scheme.
Thus, in the event that it gets corrupted, records encrypted prior to corruption remain
secure (forward secrecy).

Details on data storage. We describe a data structure in which only one searchable
encryption per keyword is computed, while still allowing each data record to be de-
scribed by several keywords. Once the investigator finds the searchable encryption that
matches her trapdoor, she receives the information needed to decrypt all the data records
described by the corresponding keyword. This mechanism of data storage allows for an
efficient search (not all the searchable encryptions need to be tested) and is privacy en-
hancing in so far as it hides the number of keywords that describe a record from the
investigator.

We use encrypted linked lists and store the encrypted nodes at random positions
in the PIR database to hide which node belongs to which linked list, as introduced in
[40]. We construct one linked list per keyword. Each node in the linked list contains the
information required to retrieve and decrypt one record associated with the keyword. A
node contains a PIR query index PR for the data record and the key KR used to encrypt
the record. It also stores a PIR query index to the next node on the list, and the key
used to encrypt it. To encrypt the nodes and the records of data, we employ a symmetric
encryption algorithm Enc.

When the data holder adds a keyword W for which no searchable encryption has
previously been computed, he chooses a symmetric key KN1 and runs algorithm PEKS
(Apub,W,KN1 ||PN1) to compute the searchable encryption. PN1 is the PIR query in-
dex to the first node of the list and KN1 is the symmetric key used to encrypt this node.
He then builds the node N1 = (PR,KR, PN2 ,KN2), computes Enc(KN1 , N1), and
stores the node in the position given by PN1 . Finally, he deletes PN1 and KN1 from his
memory but keeps values PN2 and KN2 . PN2 and KN2 are the PIR query index and the
key for the next node in the list. In position PN2 a flag is stored to indicate the end of
the list.

9 The amount of PIR queries may give some indication about the number of records retrieved.
This information can be hidden through dummy transactions up to an upper limit on the num-
ber of matching records.
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When the data holder chooses this keyword to describe another record R′, it builds
the second node N2 = (PR′ ,KR′ , PN3 ,KN3), runs Enc(KN2 , N2), and stores the en-
crypted node in the position given by PN2 . It deletes PN2 and KN2 from his memory
but keeps PN3 and KN3 to facilitate adding another node to the list. He also stores the
flag in PN3 . This iterative procedure is applied as many times as required.

If a data record is described by several keywords, one node per keyword is generated
and stored in its corresponding linked list. All these nodes contain the same PIR query
index to the data record and the same key used to encrypt the record.

Authorizing and performing private searches. An investigator that wants to search on
the encrypted database follows the procedure:

1. The investigator requests authorisation from the judge to perform a search on a
given database for a particular keyword W . Assuming the investigator holds the
relevant credentials, the judge grants a warrant. In practice, this means that the
investigator runs a protocol GetCredential with the judge, which returns to the in-
vestigator a credential cred with attribute W from the judge.

2. The investigator requests a trapdoor from the T GE . This is a three step process:
(a) The investigator has a commitment C = Commit(W, openW ) to the keyword
W for which she wants to receive a trapdoor, and sends C to the T GE .
(b) The investigator and the T GE run an interactive protocol, ShowCredential. This
verifies the validity of the credential presented by the investigator and the claim that
the keyword used to compute the commitment is the same as the keyword contained
in the credential’s attributes.
(c) The investigator and the T GE execute the BlindTrapdoor protocol, with inves-
tigator inputApub,W, openW and T GE inputApub, Apriv,C . The protocol returns
no output to the T GE , and a trapdoor TW to the investigator.

3. The investigator downloads the list of PEKS elements for all the keywords.
4. If an investigator performs a successful Test for a PEKS element (using the correct

trapdoor), the algorithm returns the key and PIR query index pair that correspond to
the first node of the list. The investigator uses the PIR scheme to retrieve the node
and the first record. As above, each node returns sufficient information to link to
the next node, until all data related to the keyword have been returned.

Remark. GetCredential and ShowCredential can be implemented using conventional
signatures: during GetCredential the judge signs C = Commit(W, openW ) to create
the credential cred (a signature on C ); in the ShowCredential protocol the investigator
sends cred together with C and the T GE verifies the signature. More sophisticated
credential protocols [41–45] allow the implementation of more complex policies, such
as, e.g., the time restricted searches described below.

Time restricted searches. In PEKS, the notion of temporary keyword search [30] im-
plies that searchable encryptions and trapdoors are related to a specific time period in
such a way that, even if the keyword used to compute them is the same, they do not
match if the time period is different. The simplest way to build PEKS with tempo-
rary keyword search is to concatenate keywords W and time periods t when computing
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searchable encryptions and trapdoors. When applying this solution to our database, mul-
tiple linked lists are generated for the same keyword concatenated, each corresponding
to a different time frame.

This function is useful to provide searches in which the investigator is allowed to
obtain all records described by a specific keyword that were stored within a restricted
period of time. In this case, the credential issued by the judge is extended to contain two
additional attributes t1 and t2 corresponding to a start time-stamp and end time-stamp
which limit the period of an investigation. When showing the credential to the T GE ,
the investigator computes a commitment to W ||t and also proves that t1 ≤ t ≤ t2. This
can for instance be done using the techniques described in [32].

6 Conclusion and Future Work

We have defined and implemented a searchable encryption scheme, PEOKS, that allows
for oblivious searches on public key encrypted data. For this purpose, we have extended
the PEKS primitive by adding blind trapdoor extraction with committed keywords. In
order to implement PEOKS, we have defined committed blind anonymous IBE and we
have provided a construction of such a scheme. Finally, we applied PEOKS to build a
public key encrypted database that permits authorised private searches.

As future work we leave the design of a blind key extraction protocol secure under
concurrent execution. Furthermore, more efficient anonymous identity-based encryp-
tion schemes with more light weight key derivation protocols would translate directly
into highly efficient PEOKS. Unfortunately, the scheme in [8] does not seem fit for our
purposes as it uses stateful randomness in the secret key generation phase.

We observe that in a practical application it is likely that an investigator would want
to search for data described by a predicate formed by conjunctions and disjunctions
of keywords. Future work would focus on using attribute-hiding predicate encryption
[46] to build a scheme that permits oblivious searches on encrypted data by specifying
predicates of keywords.
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A Proofs of Knowledge of Correct Key Derivation

Proof for Step 2 The KGC has commitment Cu3 to u3, and Cid to the user’s choice
of id . In Step 2 of our IBEBlindExtract protocol the user does the following proof of
knowledge to convince the KGC that her message ID′ is well formed:

PK{(id1, . . . , idn, u3, id1 · u3, . . . , idn · u3, openid, openu3 ,

openid · u3) : Cid = (
n∏
i=1

(h2l(i−1)

0 )idi)hopenid

1 ∧ (1)

n∧
i=1

0 ≤ idi < 2l ∧ Cu3 = hu3
0 h

openu3
1 ∧ (2)

1 = C u3
id (

n∏
i=1

((1/h0)2
l(i−1)

)idi·u3)(1/h1)openid·u3∧ (3)

ID′ = hu3
0

n∏
i=1

hidi·u3
i } . (4)

The user proves that id is correctly encoded in ID ′. This is done in two steps: (1) and
(2) prove that id is correctly split up into its n components id i; (3) and (4) prove that
ID′ contains a blinded version ofH2(id). This requires to prove multiplicative relations
between u3 and the idi in (3).

Proof for Step 4 The user has commitments Cr̂1 ,Cr̂2 and Cx0 , Cx1 , and Cx2 . In Step
4 of our IBEBlindExtract protocol the KGC does the following proof of knowledge to
convince the user that the blinded key (d′0, d

′
1, d
′
2, d
′
3, d
′
4) it returns is well formed:

PK{(r̂1, r̂2, openr̂1 , openr̂2 , t1, t2, t3, t4, x0, x1, x2, openx0 ,

openx1 , openx2 ,−r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4) :

Cr̂1 = hr̂10 h
openr̂1
1 ∧ Cr̂2 = hr̂20 h

openr̂2
1 ∧ v1 = gt1 ∧ v2 = gt2 ∧ v3 = gt3∧

v4 = gt4 ∧ Cx0 = hx0
0 h

openx0
1 ∧ Cx1 = hx1

0 h
openx1
1 ∧ Cx2 = hx2

0 h
openx2
1 ∧

1 = (1/v1)r̂1(1/g)−r̂1t1 ∧ 1 = (1/v2)r̂1(1/g)−r̂1t2 ∧ 1 = (1/v3)r̂2(1/g)−r̂2t3∧
1 = (1/v4)r̂2(1/g)−r̂2t4 ∧ d′0 = hx0 ∧ d′1 = hx1ID ′−r̂1t2 ∧ d′2 = hx2ID ′−r̂1t1∧
d′3 = ID ′−r̂2t4 ∧ d′4 = ID ′−r̂2t3} .

By means of this proof the KGC demonstrates to the user that it uses the correct values
for x0, x1, x2, t1, t2, t3, t4, r̂1, r̂2 when it computes (d′0, d

′
1, d
′
2, d
′
3, d
′
4). The proof in-

volves proving the multiplicative relations −r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4 between t1, t2,
t3, t4, r̂1, r̂2.


