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Abstract. Secure multi-party computation (MPC) protocols enable a
set of n mutually distrusting participants P1, . . . , Pn, each with their own
private input xi, to compute a function Y = F (x1, . . . , xn), such that at
the end of the protocol, all participants learn the correct value of Y ,
while secrecy of the private inputs is maintained. Classical results in the
unconditionally secure MPC indicate that in the presence of an active
adversary, every function can be computed if and only if the number of
corrupted participants, ta, is smaller than n/3. Relaxing the requirement
of perfect secrecy and utilizing broadcast channels, one can improve this
bound to ta < n/2.

All existing MPC protocols assume that uncorrupted participants are
truly honest, i.e., they are not even curious in learning other partici-
pant secret inputs. Based on this assumption, some MPC protocols are
designed in such a way that after elimination of all misbehaving partici-
pants, the remaining ones learn all information in the system. This is not
consistent with maintaining privacy of the participant inputs. Further-
more, an improvement of the classical results given by Fitzi, Hirt, and
Maurer indicates that in addition to ta actively corrupted participants,
the adversary may simultaneously corrupt some participants passively.
This is in contrast to the assumption that participants who are not cor-
rupted by an active adversary are truly honest.

This paper examines the privacy of MPC protocols, and introduces the
notion of an omnipresent adversary, which cannot be eliminated from the
protocol. The omnipresent adversary can be either a passive, an active
or a mixed one. We assume that up to a minority of participants who are
not corrupted by an active adversary can be corrupted passively, with
the restriction that at any time, the number of corrupted participants
does not exceed a predetermined threshold. We will also show that the
existence of a t-resilient protocol for a group of n participants, implies
the existence of a t’-private protocol for a group of n′ participants. That
is, the elimination of misbehaving participants from a t-resilient protocol
leads to the decomposition of the protocol.

Our adversary model stipulates that a MPC protocol never operates with
a set of truly honest participants (which is a more realistic scenario).
Therefore, privacy of all participants who properly follow the protocol



will be maintained. We present a novel disqualification protocol to avoid
a loss of privacy of participants who properly follow the protocol.

Keywords: Multi-Party Computation, Omnipresent Adversary, Proactive Se-
cret Sharing, t-resilient Protocols, t-private Protocols.

1 Introduction

Multi-party computation (MPC) protocols provide a general model for secure
computation of arbitrary function whose arguments (inputs) are held by a group
of participants. The concept of MPC was introduced by Yao [18] for two-party
computations and then generalized by Goldreich, Micali, and Wigderson [12]
for an arbitrary number of participants. A secure MPC protocol enables a set
of n mutually distrusting participants P1, . . . , Pn, each with their own private
input xi, to compute a function Y = F (x1, . . . , xn), such that at the end of the
protocol, all participants learn the correct value of Y , while the confidentiality
of the private inputs xi is maintained. The design of secure MPC protocols has
been the subject of investigations by many researchers, and many solutions have
been published in the literature. From the security point of view, these proto-
cols can be classified into two broad categories: (i) computationally secure MPC
protocols, and (ii) unconditionally secure MPC protocols. For computationally
(conditionally) secure MPC protocols, we assume that the adversary is poly-
nomially bounded. More precisely, breaking the security of the protocol implies
that the adversary is able to solve efficiently (in polynomial time) a problem that
is believed to be intractable. Unconditionally secure MPC protocols are intrinsi-
cally secure, that is, no matter how much time and computing power is available
to the adversary, they cannot break the system better than by guessing private
inputs. In both computationally and unconditionally secure MPC protocols, the
security model includes the adversary, who may corrupt some participants. Two
types of adversaries, namely passive and active have been studied in the litera-
ture.

Passive Adversary – Participants who are corrupted by a passive adversary
properly follow the protocol but try to learn private information of others. That
is, a passive adversary has access to the information of corrupted participants,
but will not control their behaviour. In other words, a passive adversary threatens
the privacy of uncorrupted participants. Note however, that the correctness of the
protocol is preserved. Corrupted participants are also called honest-but-curious.

A commonly used parameter to measure the level of security obtained in a
multi-party protocol with n participants, is the maximum number of participants
that can be corrupted by a passive adversary while the privacy of uncorrupted
participants still holds. This parameter is determined by a threshold t (t < n).
Protocols that can tolerate up to t corrupted participants, are called t-private.

Definition 1. A multi-party protocol is t-private if after completion of the pro-
tocol, any subset of up to t participants cannot learn more information (about



honest participant private inputs) than what they could derive from their private
inputs and the output of the protocol.

Active Adversary – A more serious threat for the security of MPC protocols
are corrupted participants who not only try to learn additional information but
may also wish to disrupt the protocol. This type of participants are called mali-
cious and they are said to be corrupted by an active adversary, who has access
to all information of the corrupted participants, and controls their behaviour.
Participants who are corrupted by an active adversary may behave arbitrarily,
and may deviate from the protocol at any time.

The main challenge in designing secure MPC protocols in the presence of
an active adversary, is to equip the protocol with mechanisms that can detect
misbehaving participants and eliminate them from the protocol without influenc-
ing the correctness of the protocol. Such protocols are called robust. A measure
for expressing the level of robustness is determined by a threshold parameter t
(t < n), that is the maximum number of participants that can be corrupted,
without an impact on the correctness of the protocol. A protocol that can tol-
erate up to t malicious participants is called t-resilient and is defined as follows.

Definition 2. A multi-party protocol is t-resilient if no set of up to t malicious
participants can influence the correctness of the output produced by the protocol.

1.1 Preliminaries

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where Pi holds private input xi. Without loss of generality,
we will assume that all input variables are elements of a finite field E, and the
function F can be computed by a circuit over E using the field operations +, ×,
the inverse operations and constants from E.

The model of computation is a complete synchronous network of n partici-
pants. The broadcast and pairwise communication channels between participants
are secure, that is, they cannot be read or tampered with by other participants.

MPC Protocols with a Passive Adversary

A generic MPC protocol consists of the following three phases [4].

1. Initialization – Each participant Pi (i = 1, . . . , n) utilizes Shamir’s secret
sharing scheme [17], and distributes his private input xi amongst all partici-
pants in a t-private manner. More precisely, Pi chooses a random polynomial
fi(x) = xi + a1x + . . . ,+atx

t, and gives sj,i = fi(j) to participant Pj for
j = 1, . . . , n.

2. Computation – Let si,k and si,` be Pi’s shares, associated with polynomi-
als fk(x) and f`(x) for the secrets xk and x`, respectively. The computation
of every linear function is straightforward. In order to compute xk +x`, each
cooperating participant, Pi, computes sk+`

i = si,k +si,`, which is the share of
Pi determined by polynomial h(x) = fk(x)+f`(x). Since h(x) is a polynomial



of degree (at most) t, a set of at least t+ 1 participants who properly follow
the protocol can reconstruct the polynomial, and thus retrieve the constant
term of the polynomial h(x), which is xk + x`. Similarly, c × xk, where c
is a known scalar, can be computed by t + 1 participants (each participant
Pi calculates c × si,k as its share of c × xk). That is, for n > t, there is a
non-interactive protocol for computing every linear function F (x1, . . . , xn).
Computation of non-linear functions, however, is not so straightforward.
Assume that we want to compute xk×x`. Although Pi can compute sk×`

i =
si,k × si,`, where sk×`

i is Pi’s share of xk × x`, there are two problems. The
first problem is that sk×`

i is the share of Pi determined by the polynomial
h(x) = fk(x) × f`(x) whose degree is (at most) 2t. The second problem is
that h(x) is not a random polynomial.
Assuming that n > 2t, the computation can be carried out if the partici-
pants collectively redistribute the constant term of the h(x) polynomial, in
a t-private manner, amongst themselves. This process, also called degree re-
duction, is necessary, otherwise further multiplications will raise the degree,
and once the degree of polynomial is equal to or larger than the number of
participants in the system, participants will not have a sufficient number of
points to perform the necessary interpolation.
Computation of an additive inverse is straightforward. To compute the ad-
ditive inverse of xi, every participant Pj computes the additive inverse of his
share, sj,i. Computing a multiplicative inverse, however, implies cooperation
of all shareholders. Catalano, Gennaro, and Halevi [6] have shown how to
compute multiplicative inverses.

3. Reconstruction of the function value – The function F (x1, . . . , xn)
can be represented as a polynomial containing sum of products and the
participants can collectively evaluate first products (product gates) and then
sums (sum gates) getting finally the shares of the function value Y . In order
to reconstruct Y , a set of a sufficiently large set of participants can pool
their shares and recover the value Y .

Thus, in the presence of a passive adversary, a set of n participants can compute
every n-variate function, in a t-private manner, as long as n > 2t.

MPC Protocols with an Active Adversary

The main challenge in designing MPC protocols in the presence of an active
adversary is how to deal with malicious participants. In general, robust MPC
protocols first identify misbehaving participants and then disqualify them. Two
different disqualification techniques are being used:

1. Ignoring the information associated with malicious participants – This strat-
egy is used in MPC protocols that can be completed without utilizing the
information coming fom malicious participants.

2. Reconstructing the information associated with malicious participants – This
strategy is used in MPC protocols that cannot be completed without using



the information owned by corrupted participants. So, after detection of mis-
behaving participant Pi, other participants reconstruct the private informa-
tion of Pi, and re-share it amongst themselves.

1.2 Background

In 1987, Goldreich, Micali, and Wigderson [12] gave a solution to the general
MPC problem assuming that one-way functions with trapdoor exist (i.e. their
protocol is computationally secure). They have shown that in the presence of
passive adversaries, every function can be computed by n participants, in such
a way that no subset of less than n participants can learn any additional infor-
mation apart from the function value. They have also shown that if Byzantine
faults are allowed (i.e. an active adversary may corrupt some participants and
control their behaviour), every function can be computed by n collaborating
participants, as long as the majority of participants is honest.

In 1988, Ben-Or, Goldwasser, and Wigderson [4] and Chaum, Crépeau, and
Damg̊ard [7], independently studied unconditionally secure MPC protocols. They
have shown that:

(a) In the presence of a passive adversary, no set of size t < n/2 of participants
learns any additional information, other than the function value.

(b) If Byzantine faults are allowed, no set of size t < n/3 can learn any additional
information or disrupt the protocol.

Relaxing the requirement of perfect security and assuming that broadcast
channels exists, Rabin and Ben-Or [16] have shown that in the presence of Byzan-
tine faults, MPC protocols exist if the majority of participants is honest. The
privacy achieved is unconditional (with error probability ε > 0, which can be
exponentially small), and does not rely on any assumption about computational
intractability. Beaver [2] utilized the verifiable secret sharing (VSS) scheme of
[16] and achieved similar results.

The MPC protocols from [4, 7] are determined for n ≥ 3t + 1 participants,
where up to t of them can be corrupted. The disqualification method used in
these protocols simply ignores the misbehaving participants, since at any time,
there exists at least 2t+ 1 honest participants who properly follow the protocol.

In contast, the protocols from [16, 2] are defined for n ≥ 2t+ 1 participants.
After each multiplication, the polynomial associated with the multiplied shares
is of degree at most 2t. If a malicious participant Pi does not cooperate properly,
the remaining participants must reconstruct all information in the hands of Pi,
otherwise they cannot interpolate the associated 2t-degree polynomial. Recon-
struction of information in the hands of a participant is possible since the share
of each participant is re-shared via the second level of sharing. This procedure,
however, reveals one share associated with the secret input of every participant1.
In these protocols, after detection and elimination of any malicious participant
the degree of threshold parameter is decreased by one. So after elimination of
1 Similar problem in shared generation of digital signatures has been considered in [1].



t malicious participants, the threshold parameter drops to zero (i.e., all private
information is disclosed to the remaining participants). One may argue that this
is not a security problem, since the remaining participants are assumed to be
honest.

Fitzi, Hirt, and Maurer [10] improved the classical results in unconditionally
secure MPC by considering a mixed adversary. They have shown that in addition
to ta < n/3 actively corrupted participants, privacy can be guaranteed against
additionally tp ≤ n/6 passively corrupted participants. They have also intro-
duced the concept of (ta, tp)-secure MPC protocols. In a (ta, tp)-secure MPC
protocol, correctness of the protocol is guaranteed if up to ta participants are
corrupted actively, and privacy of the participants is ensured if (in addition to
ta actively corrupted participants) up to tp participants are corrupted passively.

1.3 Motivation

All existing MPC protocols with active adversaries assume that uncorrupted
participants are truly honest, i.e., they are not even curious in learning private
inputs of others. Based on this assumption, some MPC protocols (e.g. [16] [2],
[3], [11], [14], etc.) are designed in such a way that after elimination of all mis-
behaving participants, the remaining ones learn all private information.

Furthermore, an improvement of the classical results provided by Fitzi, Hirt,
and Maurer indicates that in addition to ta actively corrupted participants, the
adversary may simultaneously corrupt some participants passively. This is in
contrast to the assumption that participants who are not corrupted by an active
adversary are truly honest.

The paper examines the privacy of MPC protocols and argues that the as-
sumption about participants that are not corrupted are truly honest is unrealis-
tic. We will introduce the notion of the omnipresent adversary. An omnipresent
adversary cannot be eliminated from the protocol and can be either passive,
active, or mixed. More precisely, we assume that that up to a minority of partic-
ipants who are not corrupted by an active adversary can be corrupted passively,
with the restriction that at any time, the number of corrupt participants does
not exceed a predetermined threshold. We will also show that the existence of
a t-resilient protocol for a group of n participants, implies the existence of a
t’-private protocol for a group of n′ participants. That is, elimination of misbe-
having participants from a t-resilient protocol leads to the decomposition of the
protocol, and converts it to the t’-private protocol.

Our adversary model stipulates that a MPC protocol never operates with a
set of truly honest participants (which is a more realistic scenario). Therefore, the
privacy of all participants who properly follow the protocol will be maintained.
In order to achieve these goals in the existing MPC protocols, we present a
novel disqualification protocol that avoids exposing the privacy of participants
who properly follow the protocol.

Our results are as follows:

Theorem 1. Given a set of n = 2t + 1 participants in the computationally
secure setting, then there exists a t-resilient and t-private MPC protocol provided



that, at every stage of the protocol, the total number of actively and passively
corrupted participants is not larger than t. That is, only one participant may not
be corrupted by adversary throughout the execution of the protocol.

Theorem 2. Given a set of n = 3t+1 participants in the unconditionally secure
setting with perfect secrecy, then there exists a t-resilient and t-private MPC
protocol. That is, up to 2t participants may be corrupted by the adversary provided
that, at every stage of the protocol, the total number of corrupted participants is
not larger than t.

Theorem 3. Given a set of n = 2t + 1 participants in unconditionally secure
setting with a negligible failure probability, then there exists a t-resilient and
t/2-private MPC protocol. In other words, only t/2 + 1 participants may not
be corrupted, provided that, at every stage of the protocol, the total number of
corrupted participants does not exceed the threshold parameter.

The rest of this paper is organized as follows. In Section 2, we will give an
overview of MPC protocols in the presence of an omnipresent adversary. In Sec-
tion 3, we will present our approach to disqualification of malicious participants
in MPC protocols with an honest majority. In Section 4, we will study the trans-
formation of t-resilient protocols into t’-private protocols. In Sections 5 and 6
we will show how to modify the existing protocols, in order to simultaneously
achieve correctness and privacy. Section 7 gives concluding remarks.

2 An Overview of MPC with Omnipresent Adversary

Designing MPC protocols under an assumption that participants are truly honest
is unrealistic. If we could assume that a single trusted party existed, then the
designing of MPC protocols would be easy. In this case, all participants first
handed their inputs to the trusted party who would compute the function and
announce the result to each participant. This scenario, which is known as an
ideal process, has been studied in order to evaluate the security of real-life MPC
protocols (see, e.g., [5]). Real-life MPC protocols allow n mutually distrusting
participants to evaluate a function for their private inputs assuming that some
participants are corrupted. Note that as passively corrupted participants follow
the protocol, they cannot be eliminated from it. On the other side, malicious
participants deviate from the protocol so they can be identified and eliminated
from the protocol.

An omnipresent adversary can be seen as an entity which attempts to break
either privacy or correctness of MPC protocols by trying to corrupt (passively
or actively) some participants. In the case of passive corruption, the adversary
has access to all the information held by the corrupted participant while the
participant follows the protocol honestly. In the case of active corruption, the
adversary has full control over the behavior of the participant who may deviate
from the protocol in an arbitrary way. Observe that if a corrupted participant
does not follow the protocol, she can be identified and removed from it.



A good example of an omnipresent adversary is a powerful enemy (such as
rogue states, terrorist organizations, intelligence agencies, etc.) who is using its
large resources to break MPC protocols by trying to corrupt the participants.
Clearly, the adversary is not going to be involved in the protocol directly but it
will use the corrupted participants to achieve its goals. From the omnipresent
adversary point of view, it would like to achieve its goals with minimum expenses.
The expenses are proportional to the number of participants that need to be
corrupted. It may also be assumed that a passive corruption may be easier and
cheaper than an active corruption.

Our adversarial model is more general and powerful. In particular, it is dy-
namic so the composition of corrupted participants may change throughout the
protocol execution. The number of participants that can be corrupted is larger
than the threshold parameter, with the restriction that at any time, the num-
ber of corrupted participants does not exceed the threshold parameter. That
is, if some actively corrupted participants are detected and eliminated, the ad-
versary is allowed to corrupt some other participants. Strictly speaking, in the
computationally secure MPC protocols (e.g. [12]), a t-resilient protocol works
if n ≥ 2t + 1. That is, up to t participants can be corrupted actively, and the
remaining t + 1 participants are assumed to be honest. In our model, up to t
participants can be corrupted actively, and up to t participants can be corrupted
passively (only one participant may not be corrupted). In the unconditionally
secure protocols with perfect secrecy (e.g. [4]), a t-resilient protocol works if
n ≥ 3t + 1, where up to 2t + 1 participants are honest. In our model, up to t
participants can be corrupted actively, and up to t participants can be corrupted
passively (i.e., there are at least t+1 honest participants). Similarly, in majority-
honest MPC protocols with small probability of error (e.g., [16, 2]), a t-resilient
protocol works if n ≥ 2t + 1, where up to t + 1 participants are honest. In our
model, up to t participants can be corrupted actively, and up to t/2 participants
can be corrupted passively, (i.e. there are at least t/2 + 1 honest participants).

2.1 Proactive Secret Sharing Scheme

One can see that the number of corrupted participants in the protocol life-time
can be greater than the threshold parameter t. If our protocols are implemented
using a static secret sharing, then the adversary who learns more than t shares
will be able to recover the private information. To prevent this, we employ the
well-known proactive secret sharing technique [13]. A proactive secret sharing
ensures the privacy of a secret by periodically renewing the shares of partici-
pants, without changing the secret, in such a way that information gained by an
adversary in one time period is useless for the adversary in another time period.
In other words, in an ordinary t-private secret sharing, its privacy is assured if,
throughout the entire life-time of the secret, the adversary is not able to compro-
mise more than t shares. In contrast, for a t-private proactive secret sharing, its
privacy is guaranteed if at any time period (between two consecutive renewals),
the adversary does not compromise more than t shares.



The proactive secret sharing of [13] consists of n participants, where each
participant is connected to a common broadcast channel C, where messages
sent on C instantly reach each party connected to it. The time is divided into
time-periods (e.g. a day, a week, etc.). At the beginning of each time-period
the participants update their shares using an interactive share renewal protocol.
The adversary can corrupt participants at any moment. If a participant Pj is
corrupted during an update phase Ti+1, it will be considered as corrupted during
both time-periods Ti and Ti+1. If the adversary leaves a corrupted participant Pj

before the update phase Ti+1, then the adversary will not have any control over
the communications of Pj , and thus has no information about the updated shares
of Pj (i.e. Pj is no longer corrupted). The underlying secret sharing scheme is
the Shamir [17] threshold scheme. The number of participants is n = 2t + 1,
where during each time-period, the adversary can corrupt up to t participants.
Assume that a secret xi is shared amongst the set of n participants, in a t-private
manner. In the update phase, each participant Pj distributes sj,iΠ

n
i=1,i6=j

j
j−i

amongst all participants in a t-private manner. Each participant P` adds all new
shares received during the update phase, and takes it as his share of the secret
xi, and deletes the old share s`,i plus all partial shares. This process is correct,
because xi = Σn

j=1sj,iΠ
n
i=1,i6=j

j
j−i . The verifiable secret sharing (VSS) used in

[13] is computationally secure and based on the Feldman VSS [9]. However,
unconditional security is achievable by utilizing the Pedersen VSS from [15].

There are some differences between the proactivization used in [13], and in
the MPC protocols with omnipresent adversary. They are as follows.

(a) The purpose of the update phase in [13] is to correct the shares of the
participants that have been corrupted by an active adversary or alternatively
by errors caused by other problems such as system crashes, for instance. Note
that for the randomization and degree-reduction, we do not correct the shares
of corrupted participants. Instead, we identify the corrupted participants and
eliminate them from the protocol.

(b) The update phase of [13] is performed at the beginning of each time-period,
while in our MPC protocols, it is done at the randomization and degree
reduction stage.

(c) Similarly to [13], we allow the adversary to leave some corrupted participants
alone until the execution of the randomization and degree reduction proto-
cols. After proactivization, actively corrupted participants are eliminated
from the protocol, while passively corrupted participants who have not been
controlled by the adversary will have new shares that are not known to the
adversary, and therefore they are not considered as corrupted participants
any more. Now, the adversary may wish to corrupt some new participants
(from the set of all remaining participants). That is, in our MPC protocols,
the set of corrupted participants is dynamic.

It is worth mentioning that the proactivization process will not add too much
overhead to our MPC protocols. This is due to the fact that in MPC protocols,
the degree reduction procedure is, indeed, a proactivization of the participant
shares. The only information that needs to be re-shared is the share of each



participant from the other participant secret information. We observe that this
is also done in MPC protocols with an honest majority, since after the threshold
parameter is decreased, all information is re-shared using the new threshold. The
overhead applies only to MPC protocols with fixed threshold parameter.

3 Disqualification in MPC with Honest Majority

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where participants Pi hold their private inputs xi, assuming
that n = 2t + 1, and the initial threshold parameter is t. Disqualification of a
malicious participant Pi requires the reconstruction of the information in the
hand of Pi, otherwise the protocol cannot be completed. The elimination of ma-
licious participants, however, has to reduce the threshold parameter, otherwise
the current number of participants cannot interpolate the polynomial associ-
ated with their shared information. In the existing MPC protocols, elimination
of each malicious participant decreases the threshold parameter by one. After
elimination of t malicious participants, the threshold parameter becomes zero,
i.e., the remaining participants learn all private information.

In this section we will present a new disqualification technique that preserves
the privacy of all participants who properly follow the protocol. Let D denote
the number of eliminated participants from the system (initially, D = 0). After
detecting a malicious participant, say Pi (1 ≤ i ≤ n), increase the value of D by
one and perform the following steps.

1. If D is an odd integer, private information of Pi is reconstructed by the other
participants. If this occurs in the initialization phase, no further action is re-
quired. If this occurs in the computation phase, relevant computations (i.e.
multiplication of relevant shares, randomization, and degree reduction pro-
cedure) associated with Pi will be performed publicly. This process reveals
the private input xi (which is not an issue, since it is a random value), and
one share associated with the private input of each participants who properly
follow the protocol. After the threshold parameter is reduced by one and all
values are re-shared (see the next item), the knowledge of these shares is
redundant.

2. If D is an even integer, only the secret input xi is reconstructed, and the
threshold parameter is decreased by 1. If this occurs in the initialization
phase, the remaining participants repeat the initialization phase using a
threshold parameter t′ = t− 1. If this occurs in the computation phase, the
remaining participants re-share their partial results using a new threshold
parameter t′ = t − 1, and continue the protocol using this new threshold
parameter t′. Implicitly, this is a proactivization of a (t, n)-threshold scheme
to a (t− 1, n− 2)-threshold scheme.

As the result of applying our disqualification technique, after occurrence of
t faults, the number of remaining participants in the system is t + 1, and the



threshold parameter is t′ = t− t/2 = t/2. Therefore, no subset of up to t/2 par-
ticipants learn any additional information about the secret input of participants
who have properly followed the protocol.

4 Decomposition of t-resilient protocols

According to the definition of t-resilient protocols, after elimination of all ma-
licious participants, the remaining participants must be able to complete the
protocol. In other words, in the absence of all eliminated participants (even if
they voluntarily withdrew from the protocol), the remaining participants must
be able to complete the protocol.

Theorem 4. Let a t-resilient MPC protocol π realizes task T for a group of n
participants, then there exists a t’-private MPC protocol π′ that realizes task T
for a group of n′ participants, where n′ ≥ n− t and t/2 ≤ t′ ≤ t.

Proof. If no participant misbehaves, the t-resilient MPC protocol π realizes task
T in a secure manner (they obtain the correct result, where privacy of all inputs
is maintained in a t-private manner). That is, a t-resilient MPC protocol is
necessarily a t-private MPC protocol. Note that the inverse statement is not
true. Having a t-private MPC protocol that realizes a task T , does not imply
that we can design a t-resilient MPC protocol for the task. If all (or some)
of the malicious participants are eliminated from the protocol, the remaining
participants must be able to complete the protocol. Completion of the protocol
means that remaining participants continue to perform the protocol π. If all
malicious participants are eliminated, the number of remaining participants will
be at most n′ = n − t (since at most t participants are eliminated). That is,
protocol π continues with n′ participants, where no fault occurs. In this case, π
is not necessarily a t-private protocol, since the threshold parameter may have
been reduced to t′, where t/2 ≤ t′ ≤ t. This completes the proof, assuming that
protocol π′ is a version of protocol π in which the verification procedures are
omitted.

Indeed, a common practice in designing a t-resilient protocol is to equip a t’-
private protocol with mechanisms that can manage malicious participants. That
is, a t-resilient protocol can be decomposed into two phases, namely, detection
and elimination of malicious participants and then the execution of a t’-private
protocol π′ for a group of n′ participants.

For example, consider computationally secure MPC protocols given by Gol-
dreich et al. in [12]. They proved that there exists a t-resilient MPC protocol for
a group of at least 2t+1 participants, and there exists a t-private MPC protocol
for a group of at least n′ = t + 1 participants. In other words, their t-resilient
protocol can be decomposed into two sub-protocols, namely, detection of mali-
cious participants and running their t-private protocol for the participants that
honestly follow the protocol.



In an unconditionally secure setting, the protocols studied in [4] and [7]
indicate that their t-resilient MPC protocol works for a group of at least 3t+ 1
participants, and their t-private protocol works for a group of at least 2t + 1
participants. That is, their t-resilient protocols can be decomposed in similar way,
first detection and elimination of malicious participants and next the execution
of a t-private protocol.

In MPC protocols with honest majority (alternatively, with faulty minority),
their t-resilient MPC protocol works with a group of at least 2t+ 1 participants.
Although they have not discussed the case of passive adversary, classical results
indicate that a t-private requires at least 2t+ 1 cooperating participants. How-
ever, in their t-resilient MPC protocol with at least 2t + 1 participants, after
elimination of t misbehaving participants, the remaining number of participants
is t + 1. That is, decomposition of their t-resilient protocol gives a t/2-private
protocol.

5 Perfectly Secure MPC with Omnipresent Adversary

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where each participant Pi holds her private input xi. To
construct a perfectly secure MPC with an omnipresent adversary, we employ the
MPC protocol from [4]. In the case of passively corrupted participants, if n ≥ 2t+
1, their t-private MPC protocol provides perfect privacy. In the case of actively
corrupted (malicious) participants, if n ≥ 3t+ 1, their t-resilient MPC protocol
provides perfect privacy, assuming that up to t participants can be malicious and
other participants honestly follow the protocol. In their t-resilient protocol with
3t + 1 participants, after elimination of all misbehaving participants, there will
be 2t+1 remaining participants in the system, which is large enough to construct
a t-private protocol. That is, decomposition of their t-resilient protocol should
lead to a t-private protocol. Since the threshold parameter is fixed, the number
of corrupt participants at any time must not exceed the threshold parameter t.
That is, we modify their disqualification procedure as follows (the rest of the
protocol remains unchanged):

1. After the detection and elimination of a malicious participant Pi (for detail
procedure, see [4]), the remaining participants perform proactivization of
their shares from the other participant secret inputs.

2. After proactivization, the adversary is allowed to corrupt a new participant,
either passively or actively, subject to the condition that the number of ac-
tively corrupted participants in the life-time of the protocol does not exceed
t.

3. The remaining participants continue the protocol as in [4]. After elimination
of at most t malicious participants, the system consists of at least 2t + 1
participants, where up to t participants are corrupted passively. Classical
results indicate that an unconditionally secure t-private MPC protocol exists
for this set of participants. That is, a t-resilient protocol is converted to a
t-private protocol.



Remark 1. In computationally secure MPC, the t-resilient protocol from [12]
starts with 2t + 1 participants. Performing their protocol in the presence of
an omnipresent adversary, and utilizing the above elimination technique, after
elimination of t malicious participants, the system consists of t+ 1 participants,
where t of them are corrupted passively. Results of [12] indicate that a compu-
tationally secure t-private MPC protocol exists for this set of participants. That
is, a t-resilient protocol is converted to a t-private protocol.

5.1 Security Discussion

This modified protocol is as secure as the original MPC protocol from [4]. This
is because the adversary cannot learn any additional information (due to proac-
tivization, information obtained in one time period is useless for another time
period, and at each time period the scheme is t-private). Also, correctness of
the result will not be affected, because up to t additional passively corrupted
participants honestly follow the protocol.

Moreover, if ta and tp denote the number of actively and passively corrupted
participants at any time period, the following conditions always hold:

(a) 3ta + tp < n.
Considering the fact that ta ≤ t and after elimination of any misbehaving
participant, one participant will be corrupted passively, if k (0 ≤ k ≤ t)
participants are eliminated, 3ta + tp ≤ 3(t− k) + k = 3t− 2k ≤ n− k.

(b) 2ta + 2tp < n.
Similarly, 2ta + 2tp ≤ 2(t− k) + 2(k) = 2t < n− k.

That is, at every stage, our protocol satisfies the results of [10].

Theorem 5. Given an MPC protocol defined in [4]. A set of n participants can
compute every function perfectly (ta, tp)-securely if and only if 3ta + tp < n and
2ta + 2tp < n. The computation is polynomial in n and linear in the size of the
circuit. This holds whether a broadcast channel is available or not.

6 Honest Majority MPC with Omnipresent Adversary

In MPC protocols with honest majority, a set of P = {P1, . . . , Pn} participants
wish to compute a function Y = F (x1, . . . , xn), where each participant Pi holds
her private input xi. Although existing MPC with honest majority do not con-
sider the case of a passive adversary, the condition n ≥ 2t+ 1 is the tight bound
for designing a t-private MPC protocol, even if a broadcast channel is avail-
able. In the case of an active adversary, assuming that a public channel exists,
a t-resilient MPC is achievable if n ≥ 2t + 1. The secrecy of these protocols is
unconditional, with error probability ε, which can be exponentially small.

To construct an MPC with honest majority in the presence of an omnipresent
adversary, we employ the protocol from [16]. However, we utilize our disquali-
fication technique (see Section 3), that ensures the privacy of participants who
properly follow the protocol. So, our construction for MPC with honest majority
works as follows:



1. After the detection and elimination of every two misbehaving participants,
the threshold parameter is reduced by one (see our disqualification in Section
3). The process of re-sharing all information with a new threshold parameter
t′ = t − 1, implicitly, is a proactivization of the shares associated with the
function value and the participant inputs.

2. After reducing the threshold, the adversary is allowed to corrupt a new par-
ticipant, either in passive or active mode, provided that the number of ac-
tively corrupted participants in the life-time of the protocol does not exceed
t.

3. The remaining participants continue the protocol as in [16], using the new
threshold t′. After elimination of at most t misbehaving participants, the
system consists of at least t + 1 participants, where up to t/2 participants
are corrupted passively. Classical results indicate that an unconditionally
secure t/2-private MPC protocol exists for this set of participants. That is,
a t-resilient protocol is converted to a t/2-private protocol.

We observe that the “honest majority” (alternatively “faulty minority”) title
is more suitable for our protocol (see above), since at every stage of the protocol,
only the minority/majority of participants in the system are corrupt/honest.
While in [16, 2], after elimination of corrupt players, all remaining participants
are honest.

6.1 Security Discussion

The modified protocol is as secure as the original MPC protocol from [16]. This
is true because the adversary cannot learn any additional information since at
each time period the scheme is t’-private. Also, correctness of the result will
not be affected, because up to t/2 additional passively corrupted participants
honestly follow the protocol.

Moreover, if ta and tp denote the number of actively and passively corrupted
participants at any time period, the condition 2ta + 2tp < n, is satisfied. This is
because 2ta + 2tp ≤ 2(t − k) + 2k/2 ≤ 2t − k < n − k. So, at every stage, our
protocol satisfies the results of [10].

Theorem 6. Given the MPC protocol defined in [16]. Then allowing an neg-
ligible failure probability and given a broadcast channel, a set of n participants
can compute every function (ta, tp)-securely if and only if 2ta + 2tp < n. The
computation is polynomial in n and linear in the size of the circuit.

7 Conclusions

We have investigated the privacy of MPC protocols in the presence of om-
nipresent adversary. The omnipresent adversary can be either passive, active,
or mixed. We have shown that up to a minority of participants who are not cor-
rupted actively, can be corrupted passively, with the restriction that at any time,
the number of corrupt participants does not exceed a predetermined threshold.



Our adversary model stipulates that MPC protocols never run with a set
of truly honest participants (which is a more realistic assumption). Therefore,
privacy of all participants who properly follow the protocol will be maintained.

Table 1. Comparison of existing t-resilient MPC protocols and MPC protocols with
an omnipresent adversary.

Security Model Adversary Number of Actively Passively Uncorrupted
model participants corrupted corrupted participants

Computational Active n = 2t + 1 t 0 t + 1
Omnipresent n = 2t + 1 t t 1

Unconditional without Active n = 3t + 1 t 0 2t + 1
broadcast channel Omnipresent n = 3t + 1 t t t + 1

Unconditional with Active n = 2t + 1 t 0 t + 1
broadcast channel Omnipresent n = 2t + 1 t t/2 t/2 + 1

Remark 2. In this paper we have used the protocols from [4] and [16] (that are
perfectly secure with a negligible failure probability) and showed how the om-
nipresent adversary works for these protocols. For the perfect security case, the
maximum number of corrupted participants at any time is t, and for MPC pro-
tocols with a negligible failure probability, the maximum number of corrupted
participants at any time is t′ (t/2 ≤ t′ ≤ t), see Table 1. Applying the protocol
from [10] improves these bounds, but will not increase the total number of par-
ticipants that can be corrupted in the protocol life-time. This is because, in the
presence of a passive adversary, n > 2t+ 1 is a tight bound regardless of a type
of the protocol.
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