Distributed Public-Key Cryptography
from Weak Secrets

Michel Abdalla !, Xavier Boyen 2, Céline Chevalier !, and David
Pointcheval !

1 Ecole Normale Supérieure, CNRS-INRIA, Paris, France
2 Stanford University, Stanford, California

Abstract. We introduce the notion of distributed password-based public-
key cryptography, where a virtual high-entropy private key is implicitly
defined as a concatenation of low-entropy passwords held in separate lo-
cations. The users can jointly perform private-key operations by exchang-
ing messages over an arbitrary channel, based on their respective pass-
words, without ever sharing their passwords or reconstituting the key.
Focusing on the case of ElGamal encryption as an example, we start by
formally defining ideal functionalities for distributed public-key gener-
ation and virtual private-key computation in the UC model. We then
construct efficient protocols that securely realize them in either the RO
model (for efficiency) or the CRS model (for elegance).

We conclude by showing that our distributed protocols generalize to a
broad class of “discrete-log”-based public-key cryptosystems, which no-
tably includes identity-based encryption. This opens the door to a pow-
erful extension of IBE with a virtual PKG made of a group of people,
each one memorizing a small portion of the master key.

1 Introduction

Traditional wisdom says that it is impossible to do public-key cryptography
from short passwords. This is because any low-entropy private key will quickly
succumb to an off-line dictionary attack, made possible by the very publication
of the public key, which can thus be used as a non-interactive test function.
Since off-line attacks are very effective against weak secrets, it is imperative that
the private keys in public-key systems be highly random and complex, but that
makes them hopelessly impossible to be remembered by humans.

But, what if, instead of being held as an indivisible entity, the private key
were chopped into many little pieces, each one of them independently memorized
by a different person in a group of friends or colleagues? The components of the
key would be safe in the respective memories of the individual group members,
at least as long as it is not used. The only complication is the need to reassemble
the full private key from the various components, so that private-key operations
can be performed. Naturally, the secret holders should not actually reassemble
the key, but instead perform a distributed computation of whichever private-key
operation they need, without ever having to meet or even reconstitute the key.

Unusual Requirements. Even if one can perform private-key computations
without reassembling the key, there are other, more subtle vulnerabilities.

For starters, we cannot simply assume that the (virtual) private key is simply
made of some number of random components (one per user) generated indepen-
dently and uniformly at random. On the contrary, we must assume that the
various components are arbitrary and possibly correlated, and some of them po-
tentially very weak and easily guessable. This is because of our requirement of
human-memorability: for the components to be truly memorable, it is imperative
that their respective owners choose them in whichever way they please.

A consequence of the above is that it also opens the possibility of password
reuse by the various users: although this is a bad security practice that should be
discouraged, it is also one that is very common and that we should acknowledge
and handle the best way we can, rather than pretend that it will not happen.

Additionally, since the various secret holders do not necessarily trust each
other, it is necessary that they be able to choose their individual secrets in
complete privacy. In fact, any solution to our question must deal with user
corruptions and collusions, and remain as secure as the “sum total” of the key
components of the remaining honest users.

Finally, we must have a notion of “group leader”, which is the person who
will actually “own” the distributed virtual private key. By “own”, we mean that
only the group leader will be able to use that key, i.e., obtain the results of any
private computation based on it, with the help of the other group members. We
stress that neither the leader nor anyone else should actually learn the key itself.

An important difference between our requirements and essentially all existing
distributed protocols that deal with weak secrets (such as Group Password-based
Key Agreement), is that here the secrets are chosen arbitrarily and privately by
each user. We neither assume that all the secrets are the same (as in Group
PAKE), or that they are all independent (as in Threshold Cryptography). The
whole system should thus: (1) not fall apart if some of the passwords become ex-
posed, as long as the combined entropy of the uncompromised passwords remains
high; (2) preserve the privacy of all uncompromised passwords at all stages of
the process (during the initial computation of the public key and any subsequent
utilization of the virtual private key).

The notion of group leader is something necessary for our application. Most
password-based protocols seek to achieve a symmetric outcome. Here, by con-
trast, the impetus to create a public/private key pair must originate in a par-
ticular user, who will become the leader, and who seeks the help of other, semi-
trusted individuals to help him or her remember the key. (The leader can return
the favor later or share the result of any private computation, outside of the core
protocol.) Remark also that whereas it is easy for the leader to share the result
of a private computation with the other members, it would be almost impossible
to restrict such result to the leader if the computation gave the result to all.

General Approach. The aim of this paper is thus primarily to show how to
do asymmetric cryptography from a distributed set of human-memorable secrets.
Since public-key cryptography from single passwords is irremediably insecure,

the best we can hope for is to base it on moderately-sized distributed collections
of them: Given a regular system (such as signature, encryption, or IBE), we
devise a pair of protocols that take independent user passwords as inputs, and,
in a distributed manner: 1) generate a publishable public key that corresponds
to the set of passwords; 2) do private computations on the virtual private key.

To create a key pair, a group of players led by a designated “group leader”
engages in the distributed key generation protocol. The protocol runs over unau-
thenticated channels, and if all goes well, results in an explicit public key for
anyone to see and use. The private key is not explicitly computed and remains
implicitly defined by the set of passwords. To use the private key, the same group
of players engages in another protocol, using the same passwords as in the key
generation protocol. The protocol again runs over unauthenticated channels. If
all goes well, the leader, and only the leader, obtains the results of the com-
putation. Again, the private key is not explicitly computed, and the passwords
remain private to their respective owners.

Unlike regular public-key cryptosystems, the private key is never stored or
used all at once; it remains virtual and delocalized, and the private-key operation
is done using an interactive protocol. But unlike threshold cryptography, where
the shares are uniformly randomized and typically as long as the shared secret
itself, here the passwords are arbitrary and user-selected. Unlike password-based
encryption, off-line attacks are thwarted by virtue of the high joint entropy
from many distinct user passwords, which must be guessed all at once. On-line
attacks against single passwords cannot be prevented, but are very slow as they
require an on-line commitment for each guess. Unlike password-authenticated key
exchange protocols, here the user passwords are not the same or even related to
each other: the passwords are truly personal.

Our Results. First, we formalize this class of protocols and their security
requirements; for convenience we do so in the UC model [12], which lends it-
self nicely to the analysis of password-based protocols. Second, we propose a
reasonably efficient construction for the ElGamal cryptosystem as a working ex-
ample [18], which we prove secure both in the RO and CRS models. Third, we
conclude by showing that our construction generalizes easily to a broad class
of “discrete-log™-type public-key schemes, and, quite notably, the whole set of
schemes derived from the BF and BB identity-based cryptosystems [9, 7].

Even though for simplicity we focus on public-key systems with a special
form (those that operate by raising elements of an algebraic group to the power
of the private key and/or ephemeral exponents), this structure is general enough
to capture many examples of exponentiation-based cryptosystems, and even IBE
systems that require a pairing, as we just mentioned.

Remarkably, and of independent interest, this gives us an interesting twist
on the notion of IBE, where the “central” key generation authority is replaced by
a distributed set of users, each one of them holding a small piece of the master
secret in the form of a self-selected easily memorable short password.

Related Work. Although there is no prior work on distributed cryptography
from weak secrets proper, this notion is of course related to a fairly large body

of literature that includes Password-Authenticated Key Exchange (PAKE) and
Multi-Party Computation (MPC).

MurTI-PARTY COMPUTATION. The first and most famous MPC protocol is due
to Yao [30]. Depending on the setup, such protocols allow two participants with
secret inputs to compute a public function of their joint inputs, without leaking
anything other than the output of the function [24,23,6,15]. MPC protocols
typically assume all communications between the players to be authentic: that
is, an external mechanism precludes modifications or fake message insertions.
The flip side is that such protocols tend to become insecure when the number of
dishonest players reaches a certain threshold that allows them to take over the
computation and from there recover the other players’ inputs 28, 2, 25].

Several works have dealt with the case of MPC over unauthenticated channels
[13,19, 1], by prefacing the multi-party computation proper with some flavor of
authentication based on non-malleable commitments or signatures [17]. The work
of Barak et al. [1] in particular gives general conditions of what can and cannot
be achieved in unauthenticated multi-party computations: they show that an
adversary is always able to partition the set of players into disjoint “islands”
that end up performing independent computations, but nothing else besides
dropping messages and/or relaying them faithfully. They show how to transform
any (realization of an) UC functionality into a multi-party version of the same
that merely lets the adversary split the players into disjoint islands. They also
show how to build password-based group key agreement (GPAKE) from this
notion, first by creating a random session key for the group by running an MPC
protocol without authentication, and then by verifying that all players have
the same key using a “string equality” functionality. (By comparison, here, we
force the users to commit to their passwords first, and then perform the actual
computation based on those commitments.)

Although it is clear that, like so many other things in cryptography, our work
can be viewed as a special case of unauthenticated MPC, our contribution lies
not in this obvious conceptual step, but in the specification of suitable func-
tionalities for the non-trivial problem of password-based threshold cryptography
(and their efficient implementation). In particular, much grief arises from our
requirement that each user has its own password (which may even be reused in
other contexts), instead of a single common password for the whole group as in
the applications considered in [1] and elsewhere.

ON-LINE PAsSSWORDS. The first insight that weak passwords could be used
on-line (in a key exchange protocol) with relative impunity was made in [5].
It captured the idea that the success of an adversary in breaking the protocol
should be proportional to the number of times this adversary interacts with the
server, and only negligibly in its off-line computing capabilities.

In the password-only scenario (without public-key infrastructure), the first
protocols with a proof of security appeared contemporaneously in [11] and [3],
both in the random-oracle model. A (somewhat inefficient) protocol without any
setup assumption was first proposed in [22]. A fairly efficient one in the common
random string model was first given in [26] and generalized in [21].

To cope with concurrent sessions, the work of [14] was the first to propose
an ideal functionality for PAKE in the UC model, as well as a protocol that
securely realizes it. Unlike previous models, one of the major advantages of the
UC one is that it makes no assumption on the distribution of the passwords; it
also considers, for instance, some realistic scenarios such as participants running
the protocol with different but possibly related passwords.

2 Security Model

The UC Framework. Throughout this paper, we assume basic familiarity
with the universal composability (UC) framework [12].

Split Functionalities. Without any strong authentication mechanisms, the
adversary A can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each one, playing the role of the other
players. Such an attack is unavoidable since players cannot distinguish the case
in which they interact with each other from the case where they interact with A.
The authors of [1] addressed this issue by proposing a new model based on split
functionalities which guarantees that this attack is the only one available to A.

The split functionality is a generic construction based upon an ideal function-
ality: Its description can be found in the full version. In the initialization stage,
the adversary A adaptively chooses disjoint subsets of the honest parties (with
a unique session identifier that is fixed for the duration of the protocol). During
the computation, each subset H activates a separate instance of the functional-
ity F. All these functionality instances are independent: The executions of the
protocol for each subset H can only be related in the way A chooses the inputs of
the players it controls. The parties P; € H provide their own inputs and receive
their own outputs, whereas A plays the role of all the parties P; ¢ H.

In the sequel, as we describe our two general functionalities FpwbistPublickeyGen
and FpwbistPrivateComp, On€ has to keep in mind that an attacker controlling the
communication channels can always choose to view them as the split functional-
ities 8 FpwbistPublickeyGen a1d S FpwDistPrivateComp implicitly consisting of multiple
instances of FpwbistPublickeyGen @81d FpwDistPrivateComp fOr non-overlapping subsets
of the original players. Furthermore, one cannot prevent A from keeping some
flows, which will never arrive. This is modelled in our functionalities (Figures 1
and 2) by a bit b, which specifies whether the flow is really sent or not.

The Ideal Functionalities. In the sequel we denote by n the number of
users involved in a given execution of the protocol. One of the users plays a
particular role and is denoted as the group leader, the others are simply denoted
as players. Groups can be formed arbitrarily. Each group is defined by its leader
(who “owns” the group by being the one to receive the result of any private
computation) and an arbitrary number of other players in a specific order (who
“assist” and “authorize” the leader in his or her use of the group’s virtual key).
We stress that the composition and ordering of a group is what defines it
and cannot be changed: this ensures that any third-party who uses the group’s
public key knows exactly how the corresponding private key will be accessed.

If another player wants to be the leader, he or she will have to form a new
group. (Even though such new group may contain the same set of members with
possibly unchanged passwords, the two groups will be distinct and have different
incompatible key pairs because of the different ordering).

As in [14], the functionality is not in charge of providing the passwords to the
participants. The passwords are chosen by the environment which then hands
them to the parties as inputs. This guarantees security even in the case where a
honest user executes the protocol with an incorrect password: This models, for
instance, the case where a user mistypes its password. It also implies that the
security is preserved for all password distributions (not necessarily the uniform
one) and in all situations where related passwords are used in different protocols.

Since the functionalities are intended to capture distributed password proto-
cols for (the key generation and private-key operation of) an arbitrary public-key
primitive, we will represent all the primitive’s algorithms as black box parame-
ters in our definitions. In general, we shall require: a function SecretKeyGen to
combine a vector of passwords into a single secret key; a function PublicKeyGen to
compute from a password vector a matching public key; a predicate PublicKeyVer
to verify such public key against any password vector: this is important for the
correctness of the ideal functionalities, but it also simplifies the use of the joint-
state UC Theorem since it abstracts away the passwords that then do not need
to be considered as part of the joint data; a function PrivateComp to perform the
operation of interest using the private key: this could be the decryption function
Dec of a public-key encryption scheme, the signing function Sign in a signature
scheme, or the identity-based key extraction function Extract in an IBE system.

Both functionalities start with an initialization step, which basically waits
for all the users to notify their interest in computing a public key or performing
a private computation, as the case may be. Such notification is provided via
newSession queries (containing the session identifier sid of the instance of the
protocol, the user’s identity P;, the identity of the group Pid, the user’s password
pw;, and when computing the private function, a public key pk and input in)
sent by the players or by the simulator S in case of corruptions during the first
flow (corresponding to the split functionality). Once all the users (sharing the
same sid and Pid) have sent their notification message, the functionality informs
the adversary that it is ready to proceed.

In principle, after the initialization stage is over, the eligible users are ready
to receive the result. However the functionality waits for S to send a compute
message before proceeding. This allows S to decide the exact moment when
the key should be sent to the users and, in particular, it allows S to choose
the exact moment when corruptions should occur (for instance S may decide to
corrupt some party P; before the key is sent but after P; decided to participate
to a given session of the protocol; see [27]). Also, although in the key generation
functionality all users are normally eligible to receive the public key, in the private
computation functionality it is important that only the group leader receives the
output (though he may choose to reveal it afterwards to others, outside of the
protocol, depending on the application).

FowDistPublickeyGen 15 parametrized by a security parameter k£ and an efficiently com-
putable function PublicKeyGen : (pwy, pw,,...,pw,,) — pk that derives a public key
pk from a set of passwords. Denote by role either player or leader. The functionality
interacts with an adversary S and a set of parties Pi,...,P, via the following queries:
Initialization. Upon receiving a query (newSession, sid, Pid, P;,pw;,,role) from
user P; for the first time, where Pid is a set of at least two distinct identities con-
taining P;, ignore it if role = leader and if there is already a record of the form
(sid, Pid, %, %, leader). Record (sid, Pid, P;,pw;,,role) and send (sid, Pid, P;,role)
to S. Ignore any subsequent query (newSession, sid, Pid’, *, *, x) where Pid # Pid.
If there are already | Pid|—1 recorded tuples (sid, Pid, Pj, pw,) for P; € Pid\{P;}, and
exactly one of them such that role = leader, then while recording the | Pid|-th tuple,
also record (sid, Pid, ready) and send this to S. Otherwise, record (sid, Pid, error) and
send (sid, Pid, error) to S.

Key Computation. Upon receiving a message (compute, sid, Pid) from the ad-
versary S where there is a recorded tuple (sid, Pid,ready), then compute pk =
PublicKeyGen(pwy, ..., pw,,) and record (sid, Pid, pk).

Leader Key Delivery. Upon receiving a message (leaderDeliver, sid, Pid,b) from
the adversary S for the first time, where there is a recorded tuple (sid, Pid, pk) and
a record (sid, Pid, P;, pw;,leader), send (sid, Pid,pk) to P; and to S if b = 1, or
(sid, Pid, error) otherwise. Record (sid, Pid, sent) and send this to S.

Player Key Delivery. Upon receiving (playerDeliver, sid, Pid, b, P;) from the adver-
sary S where there are recorded tuples (sid, Pid, pk), (sid, Pid, P;, pw;, player) and
(sid, Pid, sent), send (sid, Pid, pk) to P; if b =1, or (sid, Pid, error) otherwise.

User Corruption. If & corrupts P; € Pid where there is a recorded tuple
(sid, Pid, P;, pw;), then reveal pw; to S. If there also is a recorded tuple (sid, Pid, pk)
and if (sid, Pid, pk) has not yet been sent to P;, send (sid, Pid, pk) to S.

Fig. 1. The Distributed Key Generation Functionality FpwpistPublickeyGen

The Distributed Key Generation Functionality (Figure 1). The aim of
this functionality is to provide a public key to the users, computed according to
their passwords with respect to the previously mentioned function PublicKeyGen
given in parameter, and it ensures that the group leader never receives an incor-
rect key in the end, whatever does the adversary. The protocol starts with an
initialization phase as already described, followed by a key computation phase
triggered by an explicit key computation query (so that S can control its timing.)

After the key is computed, the adversary can choose whether the group leader
indeed receives this key. If delivery is denied, then nobody gets the key, and it is as
if it was never computed. If delivery is allowed, then the group leader and S both
receive the public key. This behavior captures the fact that the generated public
key is intended to be available to all, starting with the opponent. (More to the
point, this requirement will also weed out some bogus protocols that could only
be secure if the public key remained unavailable to S.) Once they have received
the public key, the other players may be allowed to receive it too, according to
a schedule chosen by S, and modeled by means of key delivery queries from S.
Once S asks to deliver the key to a player, the key is sent immediately.

Note that given the public key, if the adversary knows sufficiently many pass-
words that the combined entropy of the remaining passwords is low enough, he
will be able to recover these remaining passwords by brute force attack. This is
unavoidable and explains the absence of any testPwd query in this functionality.
(This has nothing to do with the fact that our system is distributed: off-line at-
tacks are always possible in principle in public-key systems, and become feasible
as soon as a sufficient portion of the private key becomes known.)

The Distributed Private Computation Functionality (Figure 2). The
aim here is to perform a private computation for the sole benefit of the group
leader. The leader is responsible for the correctness of the computation; in ad-
dition, it is the only user to receive the end result.

This functionality will thus compute a function of some supplied input in,
depending on a set of passwords that must define a secret key corresponding to a
given public key. More precisely, the functionality will be able to check the com-
patibility of the passwords with the public key thanks to the verification function
PublicKeyVer, and if it is correct it will then compute the secret key sk with the
help of the function SecretKeyGen, and from there evaluate PrivateComp(sk, in)
and give the result to the leader. Note that SecretKeyGen and PublicKeyVer are
naturally related to the function PublicKeyGen called by the former functionality.
In all generality, unless SecretKeyGen and PublicKeyGen are both assumed to be
deterministic, we need the predicate PublicKeyVer in order to verify that a public
key is “correct” without necessarily being “equal” (to some canonical public key).
Also note that the function SecretKeyGen is not assumed to be injective, lest it
unduly restrict the number of users and the total size of their passwords.

PHASES AND QUERIES. During the initialization phase, each user is given
as input a password pw, as outlined earlier, but also an input in, and a public
key pk. We stress that the security is guaranteed even if the users do not share
the same values for in and pk, because then the functionality fails directly at
the end of the initialization phase. At the end of this step, the adversary is also
given knowledge of the common in and pk (as these are supposedly public).

After this initialization step is over, but before the actual computation, the
adversary S is given the opportunity to make one or more simultaneous password
guesses, by issuing a single Password Test query, to model a “man-in-the-middle”
impersonation attack against a subset of users. The query must indicate the sub-
set of user(s) targeted in the attack, and what password(s) S wishes to test for
those user(s). If all passwords are compatible with pk, the affected users are
marked as compromised, otherwise they are all marked as interrupted. Unaffected
users remain marked as fresh. Observe that it is in the opponent’s best interest
to target only a single user in the Password Test query to optimize compromising
probability.

Once the functionality receives a message of the form (compute, sid, Pid)
from S, it proceeds to the computation phase. This is done as follows. If (1) all
records are fresh or compromised, and (2) the passwords are compatible with the
common public key pk, then the functionality computes the private key sk and
then the output out. In all other cases, no message is computed.

FowDistPrivateComp 1S parametrized by a security parameter k and three functions.
PublicKeyVer is a boolean function PublicKeyVer : (pwy,pw,,...,pw,,pk) — b,
where b = 1 if the passwords and the public key are compatible, b = 0 otherwise.
SecretKeyGen is a function SecretKeyGen : (pwy, pws, ..., pw,) — sk, where sk is the
secret key obtained from the passwords. Finally, PrivateComp is a private-key func-
tion PrivateComp : (sk,c) — m, where sk is the secret key, ¢ is the function input
(e.g., a ciphertext) and m the private result of the computation (e.g., the decrypted
message). Denote by role either player or leader. The functionality interacts with an
adversary S and a set of parties Pi,...,P, via the following queries:

Initialization. Upon receiving a query (newSession, sid, Pid, P;, pk, ¢, pw;, role) from
user P; for the first time, where Pid is a set of at least two distinct identi-
ties containing P;, ignore it if role = leader and if there is already a record
of the form (sid, Pid,x, x,*, *,leader). Record (sid, Pid, P;, pk,c, pw;,role), mark
it fresh, and send (sid, Pid, P;,pk,c,role) to S. Ignore any subsequent query
(newSession, sid, Pid’, *, %, *, *, *) where Pid' # Pid.

If there are already | Pid|—1 recorded tuples (sid, Pid, P;, pk, ¢, pw;, role), and exactly
one of them such that role = leader, then after recording the |Pid|-th tuple, verify
that the values of ¢ and pk are the same for all the users. If the tuples do not
fulfill all of these conditions, report (sid, Pid,error) to S and stop. Otherwise, record
(sid, Pid, pk, c, ready) and send it to S. The group leader is P;.

Password Test. Upon receiving a first query (testPwd,sid, Pid,{F;,,...,P;},
{pw;,, ..., pw;, }) from S, if there exist I records (sid, Pid, P;,, pk, c, *, *), necessarily
still marked fresh, and a record (sid, Pid, pk, ¢, ready), then denote by PWj, 5 P,
the passwords of the other users of the group. If PublicKeyVer(pwy, ..., pw,,, pk) = 1,
edit the records of P;,,...,P; to be marked compromised and reply to S with
“correct guess”. Otherwise, mark the records of the users P;,...,P; as inter-
rupted and reply to S with “wrong guess”. Ignore all subsequent queries of the
form (testPwd, sid, Pid, x, *).

Private Computation. Upon receiving a message (compute, sid, Pid) from S
where there is a recorded tuple (sid, Pid,pk,c,ready), then, if all records are
fresh or compromised and PublicKeyVer(pwy,...,pw,,pk) = 1, then compute sk =
SecretKeyGen(pwy, ..., pw,) and m = PrivateComp(sk,c), and store (sid, Pid, m);
Next, for all P; € Pid mark the record (sid, Pid, P;,pk,c, pw,,role) as complete.
In any other case, store (sid, Pid, error). When the computation result is set, report
the outcome (either error or complete) to S.

Leader Computation Delivery. Upon receiving (leaderDeliver, sid, Pid, b) from S,
where there is a recorded tuple (sid, Pid, m) such that m € {well-formed messages} U
{error}, and there exists a record (sid, Pid, P;, pk, ¢, pw,, leader), send (sid, Pid, m)
to P; if b is equal to 1, or send (sid, Pid, error) if b is equal to 0. If the group leader
P; is corrupted or compromised, then send (sid, Pid, m) to S as well (note that S gets
m automatically if P; is corrupted).

User Corruption. If S corrupts P; € Pid where there is a recorded tuple
(sid, Pid, P;, pk, ¢, pw,, role), then reveal pw; to S. If role = leader, if there also
is a recorded tuple (sid, Pid,m), and if (sid, Pid,m) has not yet been sent to P;,
then also send (sid, Pid,m) to S.

Fig. 2. The Distributed Private Computation Functionality FpwpistPrivateComp

In any case, after the key generation, the functionality informs the adversary
of the result, meaning that S is told whether a message was actually computed
or not. In particular, this means that the adversary also learns whether the users’
passwords are compatible with pk or not. At first glance this may seem like a
critical information to provide to the adversary. We argue, however, that this is
not the case in our setting. Firstly, learning the status of the protocol (that is,
whether it succeeded) without having any knowledge of the passwords that went
into it is completely pointless, and the only knowledge that the adversary may
have about those passwords are the ones it used in the testPwd impersonation
query. Hence, as one should expect, from the status of the protocol the only useful
thing that the adversary can learn is whether the password guesses it made were
all good or not (as a single yes/no answer), but nothing else. Secondly, even if the
adversary could somehow derive more utility from the protocol status, modeling
that status as secret is not sensible because in most real-world scenarios it will
be easy to infer from the users’ behavior.

At the end, and similarly to the first functionality, the final result can either
be released to the group leader, or withheld from it. However, this time, since the
final result is a private output, there is no provision to distribute it to the other
players. Also, S only gets the message if the leader either has been previously
corrupted or if it is in the compromised state (either the leader has fallen under
S’s control, or S has successfully taken its place in the protocol).

DiscussioN. We emphasize that in this model only the leader and no other
player receives the final result. Although this has the advantage of making the
construction simpler, it is also the most useful and the only sensible choice. For
starters, this makes our protocol much more resilient to password breaks in on-
line impersonation attacks. To see why, suppose that the final output were indeed
sent to all users. Then cracking the password of a single user would be all it took
to break the system: adding more users would actually decrease the overall on-
line security, because with a larger group comes a greater chance that some
user will choose a weak password. By contrast, in the actual model, breaking
the password of an ordinary user has no dire consequence: the protocol security
will simply continue to rest on the passwords that remain. Since compromising
ordinary users brings no other direct reward than to expose their passwords,
it is just as if broken passwords were removed from the key in future protocol
executions, or never contributed to it in the first place.

Of course, cracking the password of the leader will compromise the group and
grant access to private computations (with the help of the other players, still),
but that is only natural since the leader “owns” the group. There is an important
distinction between exposure of an ordinary player’s password and the leader’s
password: the leader represents the group with respect to third parties, i.e., when
third parties use the group’s public key their intention is to communicate with
the leader. By contrast, ordinary players are not meant to be trusted and their
inclusion to the group is a choice by the leader to help him or her increase the
security of the private key — or leave it unchanged if that player turns out to
be compromised — but never decrease it.

REVOCATION. In case of compromise of the leader password, it is possible
for the leader to “revoke” the group by instructing the other players to stop
participating in that group (e.g., by using the group’s resources one last time
to sign a revocation certificate using the group’s private key). This will prevent
any further use of the group’s resources, unless of course the adversary manages
to crack all of the players’ passwords jointly. Such revocation mechanism falls
outside of the protocol, so we do not model it in the functionalities.

User Corruptions. Our definition of the FywpistPrivatecomp functionality deals
with user corruptions in a way that is quite different to that of other password-
based group protocols. E.g., in the group key exchange functionality of [27], if the
adversary has obtained the passwords of some participants (via password guesses
or user corruptions), it may freely set the resulting session key to any value. Here,
our functionalities are much more demanding in two important ways: first, S is
much constrained in the way it can make and test online password guesses;
second, S can never alter the computation in any way once it has started.

PAasswoORD TEsTS. The first difference is that the testPwd query can only be
asked once, early in the protocol, and it does not actually test the password of
the users, but rather the compatibility between (1) the guessed passwords of any
specified subset of users, (2) the real passwords of the rest of the group (known
by the functionality thanks to the newSession queries), and (3) the public key
(which at this stage is already guaranteed to be the same in all the users’ views).
This unusual shape for the testPwd query provides a very high level of security,
because (A) at most a single set of password guesses can be tested against any
player in any protocol instance, and (B) if S chooses to test a set of more than
one password at once, then to cause a positive response all the guesses must be
correct simultaneously (and since this becomes exponentially unlikely, the astute
adversary should be content to test sets of one password at a time). After the
private computation, all the records, initially fresh, compromised, or interrupted,
become either complete or error. No more testPwd query is accepted at this stage,
because once the users have completed their task it is too late for S to imperson-
ate them (though corruption queries can still be made to read their state). Note
that one testPwd query is allowed for each instance of FpwpistPrivateComp, Several
of which may be invoked by the split functionality sFpwbistPrivateComp-

ROBUSTNESS. The second difference with the model in [27] is that we do not
grant the adversary the right to alter the computation result when corrupting
some users or learning some passwords. This in particular means that either
the group leader receives something coherent, or he receives an error; he can-
not receive something wrong, which makes the protocol robust. Robustness is
actually automatic if we make the assumption that the computation function
PrivateComp is deterministic; for simplicity, this is the setting of the generic pro-
tocol described in detail in this paper. At the end, however, we shall mention
some applications that require randomness in the computation. Without going
into details, we can keep the protocol robust by having all the parties commit to
their random coins in the first round, in the same way as they will also commit
to their passwords (see below): this allows us to treat such coins as any regular

private input in the model, and hence forbid the adversary from modifying them
once the computation has started.

We remark that, although the adversary cannot spoof the computation, the
environment does become aware of the completion of the protocol, and hence
could distinguish between the ideal and the real worlds if the adversary won
more often in one than the other. Such environmental awareness of the final
state is of course to be expected in reality, and so it is natural that our model
should capture it. (Our implementation will thus have to ensure that the success
conditions are the same in both worlds.)

ImpLICIT CORRUPTIONS. Because we have a set of initially unauthenticated
players communicating over adversarially controlled channels, it is always pos-
sible for the adversary to partition the actual players into isolated islands [1],
and act on behalf of the complement of players with respect to each island. We
call this an implicit corruption, meaning that the adversary usurps the identity
of a regular player (or players) from the very start, before the key generation
is even initiated. The adversary then sends the newSession query on behalf of
such implicitly corrupted players, who never really became corrupted but al-
ways were the adversary. As mentioned previously, this situation is modeled
in the ideal world by the respective split functionalities sFpwpistPublickeyGen and
8F pwDistPrivateComp SPawning one or more instances of the normal functionalities
fwaistPuincKeyGen and fwaistPrivateComp over diSjOiIlt sets of (aCtual) Playefs-

3 Protocol Description

The following protocol deals with a particular case of unauthenticated dis-
tributed private computation [1], as captured by our functionalities. Informally,
assuming s to be a secret key, the aim of the protocol is to compute a value ¢*
given an element c of the group. This computation can be used to perform dis-
tributed BLS signatures [10], ElGamal decryptions [18], linear decryptions [§],
and BF or BB1 identity-based key extraction [9, 7].

Here we focus on ElGamal decryptions, relying on the DDH assumption. We
emphasize that the protocol as given relies exclusively on DDH, not requiring
any additional assumption; and that it can be easily modified to rely on the
Decision Linear assumption for compatibility with bilinear groups [§].

Building Blocks. Let G be a group of prime order p, and g a generator of
this group. We furthermore assume to be given an element h in G as a CRS. We
use the following building blocks:

PASSWORD SELECTION. Each user P; owns a privately selected password pw;,,
to act as the i-th share of the secret key sk (see below). For convenience, we write
pW; = pwW; 1 ... pw, , € {0,.. ., 21t 1}, i.e., we further divide each password pw;
into £ blocks pw; ; € {0,...,2% — 1} of L bits each, where p < 2°*. The seg-
mentation into blocks is a technicality to get efficient extractable commitments
for long passwords: in the concrete scheme, for example, we shall use single-bit

blocks in order to achieve the most efficient extraction (i.e, L = 1 and ¢ = 160

for a 160-bit prime p). Notice that although we allow full-size passwords of up to
L¢ bits (the size of p), users are of course permitted to choose shorter passwords.

PAsSWORD COMBINATION. The private key sk is defined as the (virtual)
combination of all the passwords pw,. It does not matter how precisely such
combination is done, as long as it is reproducible and preserves the joint entropy
of the set of passwords (up to log, p bits, since that is the length of sk). For
example, if there are n users, all with short passwords pw} € {0,..., A—1} with
A™ < p, defining pw; = A’pw; and taking sk = >, pw; will ensure that there
are no “aliasing effects”, or mutual cancellation of two or more passwords.

In general, it is preferable that each user independently transforms his or
her true password pw; into an effective password pw; by applying a suitable
extractor pw; = H(i, pw}, Z;) where Z; is any relevant public information such as
a description of the group and its purpose. We can then safely take sk = >, pw;
and be assured that the entropy of sk will closely match the joint entropy of
the vector (pwj,...,pw}) taken together. Such password pre-processing using
hashing is very standard but falls outside of the functionalities proper.

PuBLIiCc AND PRIVATE KEYS. We use the (effective) passwords pw; to define a

key pair (sk, pk = g%¢) for a password-based ElGamal key encapsulation mecha-

nism (KEM). Based on the above, we define sk = SecretKeyGen(pwy, ..., pw,,) &f

> pw; and pk = PublicKeyGen(pwy,...,pw,) def g=P¥i. The public-key
verification function is then PublicKeyVer(pwy, ..., pw,,, pk) %ef (pk < g p""i).

The ElGamal KEM public-key operation is the encapsulation Enc : (pk,r) —
(¢ = g",m = pk"), which outputs a random session key m and a ciphertext c.
The private-key operation is the decapsulation Dec : (sk,c) — m = ¢k, which
here is deterministic. Observe that whereas Dec instantiates PrivateComp in the
functionalities, Enc is intended for public third-party usage and never appears
in the private protocols.

ENTROPY PRESERVATION. In order for the low password entropies to com-
bine nicely in the secret key sk = >, pw;, the effective pw; must be properly
“decoupled” to avoid mutual cancellations, as just discussed.

We note that, even with the kind of shuffling previously considered, it is quite

possible that the actual entropy of sk will be smaller than its maximum value of
log, p bits, e.g., if there are not enough non-corrupted users or if their passwords
are too small. Nevertheless, there is no known effective attack against discrete
logarithm and related problems that can take advantage of any reduced entropy
of sk, barring an exhaustive search over the space of possible values. Specifically,
regardless of how the passwords are actually combined, one could easily prove
that no generic attack [29] can solve the discrete logarithm or the DDH problem
in less than /2" operations, where h is the min-entropy of the private key sk
conditionally on all known passwords.
COMPUTATIONAL ASSUMPTION. Qur concrete protocols rely on the Decisional
Diffie-Hellman (DDH) assumption, stated here for completeness: Let G = (g) be
a multiplicative abelian cyclic group of prime order p. For random z,y, z € Zj, it
is computationally intractable to distinguish (g, g, g¥, g*¥) from (g, ¢*, ¥, 9°).

EXTRACTABLE HOMOMORPHIC COMMITMENTS. The first step of our dis-
tributed decryption protocol is for each user to commit to his password (the
details are given in the following section). The commitment needs to be ex-
tractable, homomorphic, and compatible with the shape of the public key. Gen-
erally speaking, one needs a commitment Commit(pw, r) that is additively homo-
morphic on pw and with certain properties on r. In order to simplify the following
description of the protocols, we chose to use ElGamal’s scheme [18], which is ad-
ditive on the random value r, and given by: Commit, (pw,r) = (vPYh",g"). The
semantic security relies on the above DDH assumption. Extractability is possible
granted the decryption key x, such that A = ¢* in the common reference string.

SIMULATION-SOUND NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS. Infor-
mally speaking, a zero-knowledge proof system is said to be simulation-sound
if it has the property that an adversary cannot give a convincing proof for a
false statement, even if it has oracle access to the zero-knowledge simulator.
We also require non-malleability, which is to say that a proof of some theo-
rem cannot be turned into a proof of another theorem. De Santis et al. proved
in [16] the existence of such a scheme, with the additional property of being non-
interactive, if we assume the existence of one-way trapdoor permutations. Note
that their scheme allows for multiple simulations with a unique common random
string (CRS), which is crucial for the multi-session case. If we instantiate all the
SSNIZK proofs with those, then our protocols are UC-secure in the CRS model.

However, for sake of efficiency, we can instead instantiate them using Schnorr-
like proofs of equality of discrete logarithms [20], which rely on the random-oracle
model [4], but are significantly more practical. These SSNIZK are well-known
(see details in the full version and their proofs in [20]), but along these lines, we
use the notation SSNIZK(L(w)) for a proof that w lies in the language £. More
precisely, CDH(g, G, h, H) will state that (g, G, h, H) lies in the CDH language:
there exists a common exponent = such that G = g* and H = h*.

Intuition. We first describe the distributed decryption algorithm. All the
users are provided with a password pw;, a public key pk, and a ciphertext ¢. One
of them is the leader of the group, denoted by P;, and the others are P, ..., P,.
For this given ciphertext ¢ € G, the leader wants to obtain m = ¢*k. But before
computing this value, everybody wants to be sure that all the users are honest, or
at least that the combination of the passwords is compatible with the public key.

The protocol starts by verifying that they will be able to decrypt the cipher-
text, and thus that they indeed know a representation of the decryption key into
shares. Fach user sends a commitment C; of his password. As we see in the proof
(see full version), this commitment needs to be extractable so that the simulator
is able to recover the passwords used by the adversary: this is a requirement
of the UC model, as in [14]. Indeed, the simulator needs to be able to simulate
everything without knowing any passwords, he thus recovers the passwords by
extracting them from the commitments C; made by the adversary in this first
round, enabling him to adjust his own values before the subsequent commit-
ments, so that all the passwords are compatible with the public key (if they
should be in the situation at hand). If we think in terms of ElGamal encryption,

(la) rij < Zy Cij = Commity(pw, ;,7i,) = (g7"9 h"i g7
11°; = SSNIZK(CDH(g, C?, b, C{")) v CDH(g, C\ h, C(l)/g))

i, 2,37
Ci = {Cu}s, {115} =
(1) H=H(C1,...,Cpn) s &7
C} = Commit (pw;,, s;) = (¢°"ih%, g°, H) o
11} = SSNIZK™ (CDH(g, Ci ™/ T1, €1 b, €1V T, €1) —=
(10) 3" =L, 10 = g=ePwip=is 4 =p

given, for j =1,...,i—1 ('YJ(I) (_2) HQ)

2 (
chck 113 £ SSNIZK(COH(Yy o,)
R *
i & L% 7<1> (D)2 @ (4P e
m? = SSNIZK(CDH(%(I)D71(1)7’71(2)17%(2)))
(1d) given AV = goXipwipa s A2 — pe
check H’% = SSNQK(CDH(’YS)M7%1),77(12)1:7%2))

mfl),wf),ﬂf

I3
hi = (72 3 _ SSNIZK(CDH(g, C1 2, hy)) Lol
(1le) given, for j =1,... ,n (hj, IT3)
? /
check IT} = SSNIZK(CDH(g, @ 42 hy))
Crt1 = 7%)/Hj hy = g*>i P
given, for j=n,...,i+1 (¢, 117)
check IT} z SSNIZK(CDH(D4 ,Chcm)) ot
iaHi
G = (Goon) ™ ITE = SSNIZK(CDH(, 4D, ¢ i) s

(1f) given, for j =i —1,...,1 (¢, IT7)
check IT} = SSNIZK(CDH(7{",, 4", ¢, ¢j41)
pk= (1

Fig. 3. Individual steps of the distributed key generation protocol

the extraction is proportional in the square root of the size of the alphabet, which
would be practical for 20-bit passwords but not 160-bit ones (and even if pass-
words are usually small, we do not want to restrict the size of the passwords).
This is the reason why we segmented all the passwords into small blocks: to
commit to them block by block. In our concrete description, blocks are of size 1,
which will help to make the proof of validity: ElGamal encryption of one bit.

Once this first step is done, the users commit again to their passwords. The
new commitments C! will be the ones used in the rest of the protocol. They
need not be segmented (since we will not extract anything from them), but we
ask the users to prove that they are compatible with the former ones. Note that
they use the three values H = H(C,...,C,) (where H is a collision-resistant
hash function), pk, and ¢, as “labels” of these commitments (see below), to avoid
malleability and replay from the previous sessions, granted the SSNIZK proofs
that include and thus check these labels.

Next, the users make yet another commitment A; to their passwords, but
this time they do an ElGamal encryption of pw, in base c¢ instead of in base ¢

(in the above C/ commitment). That is, each user computes 4; = (cPVih'i, g').
The commitment C; will be used to check the possibility of the decryption (that
it is consistent with pk = g%), whereas A; will be used to actually compute the
decryption ¢, hence the two different bases g and ¢ in C! and A;, respectively.
All the users send these last two commitments to everybody, along with a
SSNIZK proof that the same password was used each time. These proofs are
“labeled” by H, pk, and ¢, and the verification by the other users will succeed
only if their “labels” are identical. This enables all the players to check that ev-
erybody shares the same public key pk and the same ciphertext c. It thus avoids
situations in which a group leader with an incorrect key obtains a correct de-
cryption message, contrary to the ideal functionality. The protocol will thus fail
if H, pk, or ¢ is not the same to everyone, which is the result required by the
ideal functionality. Note that the protocol will also fail if the adversary drops
or modifies a flow received by a user, even if everything was correct (compati-
ble passwords, same public key, same ciphertext). This situation is modeled in
the functionality by the bit b of the key/decryption delivery queries, for when
everything goes well but the group leader does not obtain the result.

After these rounds of commitments, a verification step allows for the group
leader, but also all the players, to check whether the public key and the passwords
are compatible. Note that at this point, everything has become publicly verifiable
so that the group leader will not be able to cheat and make the other players
believe that everything is correct when it is not. Verification starts from the
commitments C! = (C o o (2)), and involves two “blinding rings” to raise the
two values [], C{(l) and [, C’{(2) to some distributed random exponent o =
>, @;. The ratio of the blinded values is taken to cancel the h2i % leaving g®K.
A final “unblinding ring” is applied to remove the exponent o and expose g°<.
This ends with a decision by the group leader on whether to abort the protocol
(when the passwords are incompatible with the public key) or go on to the
computation step. We stress that every user is able to check the validity of
the group leader’s decision: A dishonest execution cannot continue without an
honest user becoming aware of it (and aborting it). Note however that an honest
execution can also be stopped by a user if the adversary modifies a flow destined
to it, as reflected by the bit b in the ideal functionality.

If the group leader decides to go on, the players assist in the computation
of ¢, again with the help of two blinding and one unblinding rings, starting from
the commitments A;. Note that if at some point a user fails to send its value
to everyone (for instance due to a denial of service attack) or if the adversary
modifies a flow (in a man-in-the-middle attack), the protocol will fail. In the
ideal world this means that the simulator makes a decryption delivery with a bit
b set to zero. Because of the SSNIZK proofs, in these decryption rounds exactly
the same sequence of passwords as in the first rounds has to be used by the
players. This necessarily implies compatibility with the public key, but may be
a stronger condition.

As a side note, observe that all the blinding rings in the verification and
the computation steps could be made concurrent instead of sequential, in order

0
(20) = (1a) LGuaMidi,
(2b) = (1b) except
Ci = Commity"P<(pw,, 1) = (g™ h*', g*, H, pk, c)
A; = Commit.(pw,, t;) = (cPYihti, g')
1T} = SSNIZK™ P (COH(g, 1%/ T, €3 b, CIVTL)
[T} = SSNIZK(C} % Ay) ChAum Y

A0 2

(26) = (16) 3
(2d) = (1d) o
(2e) = (1e)] i 11
@2f)=@1f) pk=0G

(3a) 8 = [[, AW = cZimmipZeti 50D = p
given, for j=1,...,i—1 (55'1)75](2),1735)
check IT3 = 55N|ZK(CDH(5§.1}1,551),5§3>1,5§2))
g fzy o =) 6 = (6"
17 = SSNIZK(CDH(8";, 61", 62, ,62)))

(3b) given 6O = ATipwipBYiti g _ ps

1 2
R

Wy = (82) IS = SSNIZK(CDH(g, A;®, 652 1)) i
(3c) given, for j =1,...,n (hf, II9)
check I1¢ = SSNIZK(CDH(g, A;®, 652 h’))
w1 = 0TI, g = %5 P
Ifi # 1, given, for j =n,...,i+1 (CJ',H;)
check IT] = SSNIZK(CDH(6\",,65", ¢}, ¢}11)) .
¢ = (Cl)/% 1] = SSNIZK(CDH(6L,, 60, ¢/, 1)) B

(3d) Py gets ¢f = (C5)M/P1 = ¢ZPwi = ¢

Fig. 4. Individual steps of the distributed decryption protocol

to simplify the protocol. Notice however that the final unblinding ring of ¢* in
the computation step should only be carried out after the public key and the
committed passwords are known to be compatible, and the passwords to be the
same in both sequences of commitments, i.e. after the verification step succeeded.

We show in the full version that we can efficiently simulate these computa-
tions without the knowledge of the pw;’s, so that they do not reveal anything
more about the pw;’s than pk already does. More precisely, we show that such
computations are indistinguishable to .4 under the DDH assumption.

The key generation protocol (computation of pk = ¢*) is a special case
of the decryption protocol outlined above (computation of g%, test that gk =
pk, computation of m = ¢*¢), only simpler. Indeed, we only need one set of
commitments for the last rounds of blinding/unblinding, as we omit all the prior
verifications (since there is nothing to verify when the key is first set up).

We refer to the full version for the precise details of the protocols (see Fig-
ures 3 and 4), in particular the exact definition of the languages for the SSNIZK
proofs, and the proofs of the following security theorems. Our protocol is proven
secure against static adversaries only, that are allowed to corrupt players prior
to the beginning of the protocol execution.

Theorem 1 Let ﬁwaistPublicKeyGen be the concurrent multi-session extension of
FowDistPublickeyGen- The distributed key genmeration protocol in Figure 3 securely

realizes FpwDistPublickeyGen for ElGamal key generation, in the CRS model, in
the presence of static adversaries, provided that DDH is infeasible in G, H is
collision-resistant, and SSNIZK proofs for the CDH language exist.

Theorem 2 Let j_:waistPrivateComp be the concurrent multi-session extension of
FowDistPrivateComp- 1 he distributed decryption protocol in Figure 4 securely realizes

~

FowDistPrivateComp for ElGamal decryption, in the CRS model, in the presence of
static adversaries, provided that DDH is infeasible in G, H is collision-resistant,
and SSNIZK proofs for the CDH language exist.

4 Discussion and Conclusion

In this work, we have brought together ideas from secret sharing, threshold
cryptography, password-based protocols, and multi-party computation, to devise
a practical approach to (distributed) password-based public-key cryptography.
For a given cryptosystem, the objective was to define, from a set of user-selected
weak passwords held in different locations, a virtual private key that is as strong
and resistant to attacks as any regular key, and that can be used in a distributed
manner without ever requiring its actual reconstitution.

We proposed general definitions of such functionalities in the UC model, care-
fully justifying all our design choices along the way. In particular, we saw that
it is mandatory to require the presence of a “group leader” who directs the pri-
vate computation process and solely obtains its end result. We then constructed
explicit protocols for the simple but instructive case of ElGamal encryption.
Specifically, relying on the DDH assumption, we constructed and proved the se-
curity of two ElGamal key generation and decryption protocols, whose private
key is virtual and implied by a distributed collection of arbitrary passwords.

To conclude, we now argue that the approach outlined in this paper is in fact
quite general and has broad applications. It can of course be viewed as a restric-
tion of the Unauthenticated MPC framework of [1]; but this would be missing
the point, since as often in the UC model, much (or most) of the work has been
done once the functionality definitions have been laid down. The functionalities
that we have carefully crafted here should apply essentially without change to
most kinds of public-key primitives.

The protocols also generalize easily beyond ElGamal decryption. The same
method that let us compute ¢ from a distributed sk = (pwy, ..., pw,,), can also
compute pairs of vectors (c* cg) for a random ephemeral r contributed by all

7)

the players — or, precisely, for r = . r; where each r; is initially committed to

by each player, in a similar way as they initially commit to their passwords. By
the hiding and binding properties of the commitments this guarantees that r is
uniform and unpredictable if at least one player draws r; at random.
Remarkably, this is enough to let us do “password-based distributed IBE”,
where the private-key generator is decentralized over a set of users, each of them
holding only a short private password of their own choosing. PrivateComp is
now a key extraction function that maps user identities id to user decryption
keys d;q. To get: “Password-based” Boneh-Franklin (BF) IBE [9], we need
to compute d;q = H(id)** where H (id) is a public hash of a user’s identity. This
is analogous to ¢, and thus our protocol works virtually unchanged. To get:
“Password-based” Boneh-Boyen (BB;) IBE [7], here d;4 is randomized and
of the form (g&(gi%g2)", g%). This fits the general form of what we can compute
by adding ephemerals to our protocol as just discussed.
Note that in some bilinear groups the DDH problem is easy: in those groups, we
must replace DDH-based commitments with ones based on a weaker assumption,
such as D-Linear [8]; such changes are straightforward.

Acknowledgments

This work was supported in part by the French ANR-07-SESU-008-01 PAMPA
Project. The second author thanks ECRYPT and the hospitality of ENS.

References

1. B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation
without authentication. In CRYPTO 2005, LNCS 3621, pages 361-377. Springer,
Aug. 2005.

2. D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In
30th FOCS, pages 468-473. IEEE Computer Society Press, Oct. / Nov. 1989.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, LNCS 1807, pages 139-155.
Springer, May 2000.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62-73. ACM Press, Nov. 1993.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, pages 72-84. IEEE Computer Society Press, May 1992.

6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In 20th ACM STOC, pages
1-10. ACM Press, May 1988.

7. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In FUROCRYPT 2004, LNCS 3027, pages 223-238.
Springer, May 2004.

8. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
LNCS 3152, pages 41-55. Springer, Aug. 2004.

9. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
In CRYPTO 2001, LNCS 2139, pages 213-229. Springer, Aug. 2001.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
ASIACRYPT 2001, LNCS 2248, pages 514-532. Springer, Dec. 2001.

V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In FUROCRYPT 2000, LNCS 1807, pages
156-171. Springer, May 2000.

R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136-145. IEEE Computer Society Press, Oct.
2001.

R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication
in the presence of break-ins. Journal of Cryptology, 13(1):61-105, 2000.

R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally
composable password-based key exchange. In EUROCRYPT 2005, LNCS 3494,
pages 404-421. Springer, May 2005.

D. Chaum, C. Crépeau, and I. Damgéard. Multiparty unconditionally secure pro-
tocols. In 20th ACM STOC, pages 11-19. ACM Press, May 1988.

A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In CRYPTO 2001, LNCS 2139, pages 566—598.
Springer, Aug. 2001.

D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391-437, 2000.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO’8}, LNCS 196, pages 10-18. Springer, Aug. 1985.

M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable byzan-
tine agreement secure against faulty majorities. In 21st ACM PODC, pages 118-
126. ACM Press, July 2002.

P.-A. Fouque and D. Pointcheval. Threshold cryptosystems secure against chosen-
ciphertext attacks. In ASTACRYPT 2001, LNCS 2248, pages 351-368. Springer,
Dec. 2001.

R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In EUROCRYPT 2003, LNCS 2656, pages 524-543. Springer, May 2003.
O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
In CRYPTO 2001, LNCS 2139, pages 408-432. Springer, Aug. 2001.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In 19th ACM STOC,
pages 218-229. ACM Press, May 1987.

O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In CRYPTO’86,
LNCS 263, pages 171-185. Springer, Aug. 1987.

D. Holtby, B. M. Kapron, and V. King. Lower bound for scalable Byzantine
agreement. In 25th ACM PODC, pages 285-291. ACM Press, July 2006.

J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001, LNCS 2045,
pages 475-494. Springer, May 2001.

J. Katz and J. S. Shin. Modeling insider attacks on group key-exchange protocols.
In ACM CCS 05, pages 180-189. ACM Press, Nov. 2005.

T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In 21st ACM STOC, pages 73—-85. ACM Press, May 1989.

V. Shoup. Lower bounds for discrete logarithms and related problems. In FURO-
CRYPT’97, LNCS 1233, pages 256—266. Springer, May 1997.

A. C. Yao. Protocols for secure computations. In 23rd FOCS, pages 160-164. IEEE
Computer Society Press, Nov. 1982.

