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Abstract. We address the problem of polynomial time factoring RSA
moduli N1 = p1q1 with the help of an oracle. As opposed to other ap-
proaches that require an oracle that explicitly outputs bits of p1, we use
an oracle that gives only implicit information about p1. Namely, our or-
acle outputs a different N2 = p2q2 such that p1 and p2 share the t least
significant bits. Surprisingly, this implicit information is already suffi-
cient to efficiently factor N1, N2 provided that t is large enough. We
then generalize this approach to more than one oracle query.
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1 Introduction

Factoring large integers is one of the most fundamental problems in algorith-
mic number theory and lies at the heart of RSA’s security. Consequently, since
the invention of RSA in 1977 [18] there have been enormous efforts for finding
efficient factorization algorithms. The Quadratic Sieve [16], the Elliptic Curve
Method [9] and eventually the Number Field Sieve [10] have led to a steady
progress in improving the factorization complexity. However, since 1993 there is
little progress from the complexity theoretic point of view when using classical
Turing machines as the model of computation.

Shor’s algorithm from 1994 [19] demonstrates that the factorization problem
is polynomial time solvable on quantum Turing machines. Nowadays, it seems
to be highly unclear whether these machines can ever be realized in practice.

The so-called oracle complexity of the factorization problem was first studied
at Eurocrypt 1985 by Rivest and Shamir [17], who showed that N = pq can be
factored given an oracle that provides an attacker with bits of one of the prime

∗ The research leading to these results was supported by the German Research Foun-
dation (DFG) as part of the project MA 2536/3-1 and has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement number ICT-2007-216646 - European Network of Excellence in
Cryptology II (ECRYPT II)



2 Alexander May, Maike Ritzenhofen

factors. The task is to factor in polynomial time by asking as few as possible
queries to the oracle. Rivest and Shamir showed that 3

5 log p queries suffice in
order to factor efficiently.

At Eurocrypt 1992, Maurer [12] allowed for an oracle that is able to answer
any type of questions by YES/NO answers. Using this powerful oracle, he showed
that ε log p oracle queries are sufficient for any ε > 0 in order to factor efficiently.
At Eurocrypt 1996, Coppersmith [2] in turn improved the Rivest-Shamir oracle
complexity for most significant bits to 1

2 log p queries. Coppersmith used this
result to break the Vanstone-Zuccherato ID-based cryptosytem [21] that leaks
half of the most significant bits.

In this work, we highly restrict the power of the oracle. Namely, we allow for
an oracle that on input an RSA modulus N1 = p1q1 outputs another different
RSA modulus N2 = p2q2 such that p1, p2 share their t least significant bits.
Moreover, we assume for notational simplicity that the bit-sizes of p2, q2 are
equal to the bit-sizes of p1, q1, respectively.

Thus, as opposed to an oracle that explicitly outputs bits of the prime factor
p1, we only have an oracle that implicitly gives information about the bits of p1.
Intuitively, since N2 is a hard to factor RSA modulus, it should not be possible
to extract this implicit information. We show that this intuition is false. Namely,
we show that the link of the factorization problems N1 and N2 gives rise to an
efficient factorization algorithm provided that t is large enough.

More precisely, let q1 and q2 be α-bit numbers. Then our lattice-based al-
gorithm provably factors N1, N2 with N1 6= N2 in quadratic time whenever
t > 2(α + 1). In order to give a numerical example: Let N1, N2 have 750-bit
p1, p2 and 250-bit q1, q2. Then the factorization of N1, N2 can be efficiently
found provided that p1, p2 share more than 502 least significant bits. The bound
t > 2(α+1) implies that our first result works only for imbalanced RSA moduli.
Namely, the prime factors pi have to have bit-sizes larger than twice the bit-sizes
of the qi.

Using more than one oracle query, we can further improve upon the bound
on t. In the case of k−1 queries, we obtain N2, . . . , Nk different RSA moduli such
that all pi share the least t significant bits. This gives rise to a lattice attack with
a k-dimensional lattice L having a short vector q = (q1, . . . , qk) that immediately
yields the factorization of all N1, . . . , Nk. For constant k, our algorithm runs in
time polynomial in the bit-size of the RSA moduli. As opposed to our first result,
in the general case we are not able to prove that our target vector q is a shortest
vector in the lattice L. Thus, we leave this as a heuristic assumption. This
heuristic is supported by a counting argument and by experimental results that
demonstrate that we are almost always able to efficiently find the factorization.

Moreover, when asking k − 1 queries for RSA moduli with α-bit qi that
share t least significant bits of the pi, we improve our bound to t ≥ k

k−1α.
Hence for a larger number k of queries our bound converges to t ≥ α, which
means that the pi should at least coincide on α bits, where α is the bit-size of
the qi. In the case of RSA primes of the same bit-size, this result tells us that
N1 = p1q1, . . . , Nk = p1qk with the same p1 can efficiently be factored, which is
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trivially true by greatest common divisor computations. On the other hand, our
result is highly non-trivial whenever the bit-sizes are not balanced.

If we do not restrict ourselves to polynomial running time, then we can easily
adapt our method to also factor balanced RSA moduli. All that we have to do
is to determine a small quantity of the bits of qi by brute force search. Using
these bits we can apply the previous method in order to determine at least half
of the bits of all qi. The complete factorization of all RSA moduli Ni is then
retrieved by the aforementioned lattice-based algorithm of Coppersmith [3].

Currently, we are not aware of an RSA key generation that uses primes
sharing least significant bits. The Steinfeld-Zheng system [20] uses moduli N =
pq such that p, q itself share least significant bits, for which our algorithm does
not apply. Naturally, one application of our result is malicious key generation of
RSA moduli, i.e. the construction of backdoored RSA moduli [5, 22].

Another application is a novel kind of attack on a public key generator.
Suppose an attacker succeeds to manipulate those t registers of an RSA public
key generator that hold the least significant bits of one prime factor such that
these registers are stuck to some unknown value. E.g., take an attacker that
simply destroys the registers with the help of a laser beam such that he has
no control on the register’s values. If the RSA key parameters are within our
bounds, the attacker can easily collect sufficiently many RSA moduli that allow
him to factor all of them. Thus, he uses the RSA key generator as an oracle.
Notice that the RSA generator will usually not even notice such an attack since
the RSA moduli look innocent.

Moreover, we feel that our algorithm will be useful for constructive crypto-
graphic applications as well. Consider the task that our oracle has to solve, which
we call the one more RSA modulus problem, i.e one has to produce on input an
RSA modulus N = pq other moduli Ni = piqi whose factors pi share their least
significant bits.

Our construction shows that this problem is for many parameter settings
equivalent to the factorization problem. So the one more RSA modulus problem
might serve as a basis for various cryptographic primitives, whose security is
then in turn directly based on factoring (imbalanced) integers.

In addition to potential applications, we feel that our result is of strong the-
oretical interest, since we show for the first time that quite surprisingly implicit
information is sufficient in order to factor efficiently. In turn, this implies that
already a really weak form of an oracle suffices for achieving a polynomial time
factorization process. In the oracle-based line of research, reducing the number
of queries and diminishing the power of the oracles is the path that leads to a
better understanding of the complexity of the underlying factorization problem.

We organize our paper as follows. In Section 2, we give the necessary facts
about lattices. In Section 3, we introduce our rigorous construction with one ora-
cle query, i.e. with two RSA moduli. In Section 4, we generalize our construction
to an arbitrary fixed number of queries. This makes our construction heuristic.
In Section 5, we adapt our heuristic construction to the case of balanced RSA
moduli. In Section 6, we experimentally confirm the validity of our heuristics.
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2 Preliminaries

An integer lattice L is a discrete additive subgroup of Zn. An alternative equiv-
alent definition of an integer lattice can be given via a basis.

Let d, n ∈ N, d ≤ n. Let b1, . . . ,bd ∈ Zn be linearly independent vectors.
Then the set of all integer linear combinations of the bi spans an integer lattice
L, i.e.

L =

{
d∑

i=1

aibi | ai ∈ Z

}
.

We call B =

b1

...
bd

 a basis of the lattice, the value d denotes the dimension

or rank of the basis. The lattice is said to have full rank if d = n. The determi-
nant det(L) of a lattice is the volume of the parallelepiped spanned by the basis
vectors. The determinant det(L) is invariant under unimodular basis transfor-
mations of B. In case of a full rank lattice det(L) is equal to the absolute value
of the Gramian determinant of the basis B.

Let us denote by ||v|| the Euclidean `2-norm of a vector v. Hadamard’s
inequality [13] relates the length of the basis vectors to the determinant.

Lemma 1 (Hadamard). Let B =

b1

...
bn

 ∈ Zn×n, n ∈ N, be an arbitrary

non-singular matrix. Then

det(B) ≤
n∏

i=1

||bi|| .

The successive minima λi(L) of the lattice L are defined as the minimal
radius of a ball containing i linearly independent lattice vectors of L. In a two-
dimensional lattice L, basis vectors v1,v2 with lengths ||v1|| = λ1(L) and ||v2|| =
λ2(L) are efficiently computable via Gaussian reduction.

Theorem 1. Let b1,b2 ∈ Zn be basis vectors of a two-dimensional lattice L.
Then the Gauss-reduced lattice basis vectors v1,v2 can be determined in time
O(log2(max{||v1|| , ||v2||}). Furthermore,

||v1|| = λ1(L) and ||v2|| = λ2(L).

Information on Gaussian reduction and its running time can be found in [13].
A shortest vector of a lattice satisfies the Minkowski bound, which relates

the length of a shortest vector to the determinant and dimension of the lattice.

Theorem 2 (Minkowski [14]). Let L ⊆ Zn×n be an integer lattice. Then L
contains a non-zero vector v with

||v|| = λ1(L) ≤
√

n det(L)
1
n .



Implicit Factoring 5

Vectors with short norm can be computed by the LLL algorithm of Lenstra,
Lenstra, and Lovász [11].

Theorem 3 (LLL). Let L be a d-dimensional lattice with basis b1, . . . ,bd ∈
Zn. Then the LLL algorithm outputs a reduced basis v1, . . . ,vd with the following
property:

||v1|| ≤ 2
d−1
4 det(L)

1
d .

The running time of this algorithm is O(d4n(d+log bmax) log bmax), where bmax ∈
N denotes the largest entry in the basis matrix.

For a proof of the upper bound of a shortest LLL vector compare [11]. The
running time is the running time of the so-called L2-algorithm, an efficient LLL
version due to Nguyen and Stehlé [15].

The LLL algorithm can be used for factoring integers with partly known
factors as Coppersmith showed in [3].

Theorem 4 ([3] Theorem 5). Let N be an n-bit composite number. Then we
can find the factorization of N = pq in polynomial time if we know the low order
n
4 bits of p.

3 Implicit Factoring of Two RSA Moduli

Assume that we are given two different RSA moduli N1 = p1q1, N2 = p2q2, where
p1, p2 coincide on the t least significant bits. I.e., p1 = p+2tp̃1 and p2 = p+2tp̃2

for some common p that is unknown to us. Can we use the information that the
prime factors of N1 and N2 share their t least significant bits without knowing
these bits explicitly? I.e., can we factor N1, N2 given only implicit information
about one of the factors?

In this section, we will answer this question in the affirmative. Namely, we
will show that there is an algorithm that recovers the factorization of N1 and
N2 in quadratic time provided that t is sufficiently large.
We start with

(p + 2tp̃1)q1 = N1

(p + 2tp̃2)q2 = N2.

These two equations contain five unknowns p, p1, p2, q1 and q2. By reducing both
equations modulo 2t, we can eliminate the two unknowns p̃1, p̃2 and get

pq1 ≡ N1 mod 2t

pq2 ≡ N2 mod 2t.

Since q1, q2 are odd, we can solve both equations for p. This leaves us with
N1
q1
≡ N2

q2
mod 2t, which we write in form of the linear equation

(N−1
1 N2)q1 − q2 ≡ 0 mod 2t. (1)
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The set of solutions

L = {(x1, x2) ∈ Z2 | (N−1
1 N2)x1 − x2 ≡ 0 mod 2t}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. L is spanned by the row vectors of the basis matrix

BL =
(

1 N−1
1 N2

0 2t

)
.

Let us briefly check that the integer span of BL, denoted by span(BL), is indeed
equal to L. First, b1 = (1, N−1

1 N2) and b2 = (0, 2t) are solutions of (N−1
1 N2)x1−

x2 = 0 mod 2t. Thus, every integer linear combination of b1 and b2 is a solution
which implies that span(BL) ⊆ L.

Conversely, let (x1, x2) ∈ L, i.e. (N−1
1 N2)x1 − x2 = k · 2t for some k ∈ Z.

Then (x1,−k)BL = (x1, x2) ∈ span(BL) and thus L ⊆ span(BL).

Notice that by Eq. (1), we have (q1, q2) ∈ L. If we were able to find this vector
in L then we could factor N1, N2 easily. Let us first provide some intuition under
which condition the vector q = (q1, q2) is a short vector in L. We know that
the length of the shortest vector is upper bounded by the Minkowski bound√

2 det(L)
1
2 =

√
2 · 2 t

2 .
Since we assumed that q1, q2 are α-bit primes, we have q1, q2 ≤ 2α. If α is

sufficiently small, then ||q|| is smaller than the Minkowski bound and, therefore,
we can expect that q is among the shortest vectors in L. This happens if

||q|| ≤
√

2 · 2α ≤
√

2 · 2 t
2 .

So if t ≥ 2α we expect that q is a short vector in L. We can find a shortest
vector in L using Gaussian reduction on the lattice basis B in time O(log2(2t)) =
O(log2(min{N1, N2})). Hence, under the heuristic assumption that q = (q1, q2)
is a shortest vector in L we can factor N1, N2 in quadratic time. Under a slightly
more restrictive condition, we can completely remove the heuristic assumption.

Theorem 5. Let N1 = p1q1, N2 = p2q2 be two different RSA moduli with α-
bit qi. Suppose that p1, p2 share at least t > 2(α + 1) bits. Then N1, N2 can be
factored in quadratic time.

Let

BL =
(

1 N−1
1 N2

0 2t

)
be the lattice basis defined as before.

BL spans a lattice L with shortest vector v that satisfies

||v|| ≤
√

2 det(L)
1
2 = 2

t+1
2 .
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Performing Gaussian reduction on BL, we get an equivalent basis B =
(

b1

b2

)
such that

||b1|| = λ1(L) and ||b2|| = λ2(L).

Our goal is to show that b1 = ±q = ±(q1, q2) which is sufficient for factoring
N1 and N2.

As L is of full rank, by Hadamard’s inequality we have

||b1|| ||b2|| ≥ det(L).

This implies

||b2|| ≥
det(L)
||b1||

=
det(L)
λ1(L)

.

Substituting det(L) = 2t and using λ1(L) ≤ 2
t+1
2 leads to

||b2|| ≥
2t

2
t+1
2

= 2
t−1
2 .

This implies for any lattice vector v = a1b1 + a2b2 with ||v|| < 2
t−1
2 that

a2 = 0, as otherwise λ2(L) ≤ ||v|| < ||b2|| which contradicts the optimality of
b2 from Theorem 1. Thus, every v with ||v|| < 2

t−1
2 is a multiple of b1. Notice

that q = (q1, q2) ∈ L fulfills ||q|| =
√

2 · 2α = 2
2α+1

2 . Consequently, we have
||q|| < ||b2|| if

2
2α+1

2 < 2
t−1
2 ⇔ 2(α + 1) < t

Therefore, we get q = ab1 for some a ∈ Z − {0}. Let b1 = (b11, b12), then
gcd(q1, q2) = gcd(ab11, ab12) ≥ a. But q1, q2 are primes and wlog q1 6= q2, since
otherwise we can factor N1, N2 by computing gcd(N1, N2). Therefore, |a| = 1
and we obtain q = ±b1, which completes the factorization.

The running time of the factorization is determined by the running time of the
Gaussian reduction, which can be performed in O(t2) = O(log2(min{N1, N2}))
steps. �

4 Implicit Factoring of k RSA Moduli

The approach from the previous section can be generalized to an arbitrary fixed
number k − 1 of oracle queries. This gives us k different RSA moduli

N1 = (p + 2tp̃1)q1 (2)
...

Nk = (p + 2tp̃k)qk

with α-bit qi.
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We transform the system of equations into a system of k equations modulo
2t

pq1 −N1 ≡ 0 (mod 2t)
...

pqk −Nk ≡ 0 (mod 2t)

in k + 1 variables.
Analogous to the two equation case, we solve each equation for p. This can be

done because all the qi are odd. Thus, we get N1
q1

= Ni

qi
(mod 2t) for i = 2, . . . , k.

Writing this as k − 1 linear equations gives us:

N−1
1 N2q1 − q2 ≡ 0 (mod 2t)

...
N−1

1 Nkq1 − qk ≡ 0 (mod 2t).

With the same arguments as in the preceding section the set

L = {(x1, . . . , xk) ∈ Zk | N−1
1 Nix1 − xi ≡ 0 (mod 2t) for all i = 2, . . . , k}

forms a lattice. This lattice L is spanned by the row vectors of the following
basis matrix

BL =


1 N−1

1 N2 · · · N−1
1 Nk

0 2t 0 · · · 0

0 0
. . . . . .

...
...

. . . . . . 0
0 0 · · · 0 2t

 .

Note that q = (q1, . . . , qk) ∈ L has norm ||q|| ≤
√

k2α. We would like to
have ||q|| = λ1(L) as in Section 3. The length λ1(L) of a shortest vector in L is
bounded by

λ1(L) ≤
√

k(det(L))
1
k =

√
k(2t(k−1))

1
k .

Thus, if q is indeed a shortest vector then

||q|| =
√

k2α ≤
√

k · 2t k−1
k . (3)

This implies the condition t ≥ k
k−1α. We make the following heuristic assump-

tion.

Assumption 6 Let N1, . . . , Nk be as defined in Eq. (2) with t ≥ k
k−1α. Further,

let b1 be a shortest vector in L. Then b1 = ±(q1, . . . , qk).
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Theorem 7. Let N1, . . . , Nk be as defined in Eq. (2) with t ≥ k
k−1α. Under

Assumption 6, we can find the factorization of all N1, . . . , Nk in time polynomial
in (k

k
2 ,maxi{log Ni}).

We show the validity of Assumption 6 experimentally in Section 6.
The running time is determined by the time to compute a shortest vec-

tor in L [8, 7]. This implies that for any lattice L of rank k such that k
k
2 =

poly(maxi{log Ni}), i.e. especially for lattices with fixed rank k, we can com-
pute the factorization of all Ni in time polynomial in their bit-size.

For large k, our bound converges to t ≥ α. This means that the amount t of
common least significant bits has to be at least as large as the bit-size of the qi.
In turn, this implies that our result only applies to RSA moduli with different
bit-sizes of pi and qi. On the other hand, this is the best result that we could
hope for in our algorithm. Notice that we construct the values of the qi by solv-
ing equations modulo 2t. Thus, we can fully recover the qi only if their bit-size
α is smaller than t. In the subsequent section, we will overcome this problem
by avoiding the full recovery of all qi, which in turn leads to an algorithm for
balanced RSA moduli.

Remark: All of our results still hold if 2t is replaced by an arbitrary modulus
M ≥ 2t. We used a power of two only to illustrate our results in terms of bits.

5 Implicit Factoring of Balanced RSA Moduli

We slightly adapt the method from Section 4 in order to factor balanced n-bit
integers, i. e. Ni = piqi such that pi and qi have bitsize n

2 each. The modification
mainly incorporates a small brute force search on the most significant bits.

Assume that we are given k RSA moduli as in (2). From these moduli we
derive k − 1 linear equations in k variables:

N−1
1 N2q1 − q2 ≡ 0 (mod 2t)

...
N−1

1 Nkq1 − qk ≡ 0 (mod 2t)

The bitsize of the qi is now fixed to α = n
2 which is equal to the bitsize of the

pi, i. e. now the number t of bits on which the pi coincide has to satisfy t ≤ α. In
the trivial case of t = α = n

2 we can directly factor the Ni via greatest common
divisor computations as then pi = p for i = 1, . . . , k.

Thus, we only consider t < n
2 . With a slight modification of the method

in Section 4, we compute all qi (mod 2t). Since t < n
2 , this does not give us

the qi directly, but only their t least significant bits. But if t ≥ n
4 , we can use

Theorem 4 for finding the full factorization of each Ni in polynomial time. In
order to minimize the time complexity, we assume t = n

4 throughout this section.
To apply Theorem 7 of Section 4 the bit-size of the qi has to be smaller

than k−1
k t. Thus, we have to guess roughly 1

k · t = n
4k bits for each qi. Since we
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consider k moduli, we have to guess a total number of n
4 bits. Notice that this is

the same amount of bits as for guessing one half of the bits of one qj , which in
turn allows to efficiently find this qj using Theorem 4. With a total amount of
n
4 bits however, our algorithm will allow us to efficiently find all qi, i = 1, . . . , k.

Let us describe our modification more precisely. We split qi (mod 2
n
4 ) into

2β q̃i + xi (mod 2
n
4 ). The number β depends on the number of oracle calls k− 1

such that the condition β < (k−1)
k · n

4 holds. We therefore choose β to be the
largest integer smaller than (k−1)n

4k . This implies that the xi ≤ 2β are small
enough to be determined analogous to Section 4, provided that the q̃i are known.
As discussed before, in practice we can guess an amount of n

4k bits for determining
each q̃i, or we can find these bits by other means, e.g. by side-channel attacks.

Suppose now that the q̃i are given for each i. We obtain the following set of
equations

N−1
1 N2x1 − x2 ≡ 2β(q̃2 −N−1

1 N2q̃1) (mod 2
n
4 )

... (4)
N−1

1 Nkx1 − xk ≡ 2β(q̃k −N−1
1 Nk q̃1) (mod 2

n
4 ).

Let ci = 2β(q̃i−N−1
1 Niq̃1), i = 2, . . . , k, denote the known right-hand terms.

In contrast to Section 4, the equations (4) that we have to solve are inhomoge-
nous. Let us first consider the lattice L that consists of the homogenous solutions

L = {(x1, . . . , xk) ∈ Zk | N−1
1 Nix1 − xi ≡ 0 (mod 2

n
4 ), i = 2, . . . , k}.

L is spanned by the rows of the following basis matrix

BL =


1 N−1

1 N2 · · · N−1
1 Nk

0 2
n
4 0 · · · 0

0 0
. . . . . .

...
...

. . . . . . 0
0 0 · · · 0 2

n
4

 .

Let li ∈ Z such that N1N
−1
i x1 + li2t = xi + ci. Then we let

q′ := (x1, l2, . . . , lk)BL = (x1, x2 + c2, . . . , xk + ck) ∈ L.

Moreover, if we define the target vector c := (0, c2, . . . , ck), then the distance
between q′ and c is

||q′ − c|| = ||(x1, . . . , xk)|| ≤
√

k2β ≤
√

k · 2
(k−1)n

4k .

This is the same bound that we achieved in Section 4 for the length of a shortest
vector in Eq. (3) when t = n

4 . So instead of solving a shortest vector problem, we
have to solve a closest vector problem in L with target vector c. Closest vectors
can be found in polynomial time for fixed lattice dimension k (see Blömer [1]).
We make the heuristic assumption that q′ is indeed a closest vector to c in L.
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Assumption 8 Let N1, . . . , Nk be as defined in Eq. (4) with β < (k−1)n
4k . Fur-

ther, let b1 be a closest vector to c in L. Then b1 = ±q′1.

Theorem 9. Let N1, . . . , Nk be as defined in Eq. (4) with β < (k−1)n
4k . Un-

der Assumption 8, we can find the factorization of all N1, . . . , Nk in time 2
n
4 ·

poly(k!,maxi{log Ni}).

The running time is determined by the time for guessing each q̃i and the time
for finding a closest vector in L.

6 About our Heuristic Assumptions

In this section we have a closer look at the two heuristics from the previous
sections, Assumption 6 and Assumption 8. We first give a counting argument
that supports our heuristics and then demonstrate experimentally that our con-
structions work very well in practice.

6.1 A Counting Argument that Supports our Assumptions

Recall that in Section 4, the lattice L consists of all solutions q = (q1, . . . , qk) of
the system of equations

N−1
1 N2q1 ≡ q2 (mod 2t) (5)

...
N−1

1 Nkq1 ≡ qk (mod 2t)

As gcd(N−1
1 Ni, 2t) = 1 for any i, the mapping fi : x 7→ N−1

1 Nix (mod 2t)
is bijective. Therefore, the value of q1 uniquely determines the values of qi,
i = 2, . . . , k.

In total the system of equations has as many solutions as there are values to
choose q1 from, which is 2t. Now suppose q1 ≤ 2

(k−1)t
k . How many vectors q do

we have such that qi ≤ 2
(k−1)t

k for all i = 1, . . . , k and thus ||q|| ≤
√

k2
(k−1)t

k ?
Assume for each i = 2, ..., k that the value qi is uniformly distributed in

{0, . . . , 2t − 1} and that the distributions of qi and qj are independent if i 6= j.
Then the probability that qi ≤ 2

(k−1)t
k is

Pr
(
qi ≤ 2

(k−1)t
k

)
=

2
(k−1)t

k

2t
= 2−

t
k .

Furthermore, the probability that qi ≤ 2
(k−1)t

k for all i = 2, . . . , k is

Pr
(
q2 ≤ 2

(k−1)t
k , . . . , qk ≤ 2

(k−1)t
k

)
=

(
2−

t
k

)k−1

= 2−
(k−1)t

k

Consequently, for a given value of q1 ≤ 2
(k−1)t

k the expected number of vectors
q such that qi ≤ 2

(k−1)t
k for all i = 1, . . . , k is 2

(k−1)t
k · 2−

(k−1)t
k = 1. Therefore,
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we expect that only one lattice vector, namely q, is short enough to satisfy the
Minkowski bound. Hence, we expect that ±q is a unique shortest vector in L if
its length is significantly below the bound

√
k2

(k−1)t
k . This counting argument

strongly supports our Assumption 6.

Remark: In order to analyze Assumption 8 we can argue in a completely analo-
gous manner. The inhomogenous character of the equations does not influence
the fact that the qi are uniquely determined by q1.

6.2 Experiments

We verified our assumptions in practice by running experiments on a Core2 Duo
1.66GHz notebook. The attacks were implemented using Magma1 Version 2.11.
Instead of taking a lattice reduction algorithm which provably returns a basis
with a shortest vector as first basis vector we have used the LLL algorithm [11],
more precisely its L2 version of Nguyen and Stehlé [15] which is implemented
in Magma. Although by LLL reduction the first basis vector only approximates
a shortest vector in a lattice, for our lattice bases with dimensions up to 100
LLL-reduction was sufficient. In nearly all cases the first basis vector was equal
to the vector ±q = ±(q1, . . . , qk), when we chose suitable attack parameters.

First, we considered the cased of imbalanced RSA moduli from Theorem 7.
We chose Ni = (p + 2tp̃i)qi, i = 1, . . . , k, of bit-size n = 1000 with varying
bitsizes of qi. For fixed bitsize α of qi and fixed number k of moduli, we slightly
played with the parameter t of common bits close to the bound t ≥ k

k−1α in
order to determine the minimal t for which our heuristic is valid.

bitsize α no. of bound number of success
of the qi moduli k k

k−1
α shared bits t rate

250 3 375 377 0%
250 3 375 378 97%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 100%
440 50 449 452 16%
440 50 449 453 97%
480 100 485 491 38%
480 100 485 492 98%

Table 1. Attack for imbalanced RSA moduli

The running time of all experiments was below 10 seconds.

1 http://magma.maths.usyd.edu.au/magma/
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In Table 1, we called an experiment successful if the first basis vector b1 in
our LLL reduced basis was of the form b1 = ±q = ±(q1, . . . , qk), i.e. it satisfied
Assumption 6. There were some cases, where other basis vectors were of the form
±q, but we did not consider these cases.

As one can see by the experimental results, Assumption 6 only works smoothly
when our instances were a few extra bits beyond the bound of Theorem 7. This
is not surprising since the counting argument from Section 6.1 tells us that we
loose uniqueness of the shortest vector as we approach the theoretical bound.
In practice, one could either slightly increase the number t of shared bits or the
number k of oracle calls for making the attack work.

Analogously, we made experiments with balanced RSA moduli to verify As-
sumption 8. Instead of computing closest vectors directly, we used the well-known
standard embedding of a d-dimensional closest vector problem into an (d + 1)-
dimensional shortest vector problem ([6], Chapter 4.1), where the shortest vector
is of the form b1 = (q′ − c, c′), c′ constant. Since c and c′ are known, this di-
rectly yields q′ and therefore the factorization of all RSA moduli. For solving
the shortest vector problem, we again used the LLL algorithm.

As before we called an experiment successful, if b1 was of the desired form,
i.e. if Assumption 8 held. In our experiments we used 1000 bit Ni with a common
share p of t = 250 bits.

no. of bound bits known success
moduli k d n

4k
e from qi rate

3 84 85 74%
3 84 86 99%
10 25 26 20%
10 25 27 100%
50 5 8 46%
50 5 9 100%

Table 2. Attack for balanced 1000-bit Ni with 250 bits shared

All of our experiments ran in less than 10 seconds. Here, we assumed that
we know the required bits of each qi, i.e. the running time does not include the
factor for a brute-force search.

Similar to the experimental results for the imbalanced RSA case, our heuristic
Assumption 8 works well in the balanced case, provided that we spend a few extra
bits to the theoretical bound in order to enforce uniqueness of the closest vector.
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