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Abstract. We propose an efficient batch verification of multiple signa-
tures generated by different signers as well as a single signer. We first
introduce a method to generate width-w Non-Adjacent Forms (w-NAFs)
uniformly. We then propose a batch verification algorithm of exponentia-
tions using w-NAF exponents, and apply this to batch verification for the
modified DSA and ECDSA signatures. The performance analysis shows
that our proposed method is asymptotically seven and four times as fast
as individual verification in case of a single signer and multiple signers,
respectively. Further, the proposed algorithm can be generalized into τ -
adic w-NAFs over Koblitz curves and requires asymptotically only six
elliptic curve additions per each signature for batch verification of the
modified ECDSA signatures by a single singer. Our result is the first
one to efficiently verify multiple signatures by multiple signers that can
introduce much wider applications.
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1 Introduction

Batch verification was introduced by Naccache et al. to verify multiple signatures
more efficiently [NMVR94]. Their method is to use a set of small exponents to
verify multiple exponentiations simultaneously: Let G be an abelian group with
a generator g. Given a batch instance of n pairs {(x1, y1), (x2, y2), . . . , (xn, yn)}
with xi ∈ Z and yi ∈ G, the algorithm checks if g

Pn
i=1 xisi =

∏n
i=1 ysi

i for ran-
domly chosen si ∈ S, where the exponent set S is taken to be the set of e-bit
prime integers for small e. This test was improved by adopting small exponent
set {0, 1}` by Yen and Laih [YL95] and Bellare et al. [BGR98]. Another improve-
ment [CL06] was obtained by taking longer integers of small weights, so called
sparse exponents, as elements of S rather than small integers.

In this paper, we improve the previous results by employing generalized
sparse exponents, so called width-w non-adjacent forms (w-NAFs for short).
A w-NAF of weight t is a radix 2 representation satisfying: (1) each nonzero
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digit is an odd integer less than 2w, (2) at most one of any w consecutive dig-
its is nonzero, and (3) the number of nonzero digits is t. We first introduce a
method to generate w-NAFs uniformly and then propose a batch verification al-
gorithm of exponentiations using w-NAF exponents. The performance analysis
shows that N exponentiations can be verified with 16N + 241 multiplications
over a finite field. In the previous method, it was 40N +241 and 19N +241 using
small exponent test [BGR98] and sparse exponent test [CL06], respectively. Our
verification cost becomes 14N + 235 elliptic curve additions over elliptic curves
in which a subtraction is as efficient as an addition.

To apply batch verification technique to DSA [DSA], one needs to slightly
modify the signature scheme as in [NMVR94]. We apply the proposed algorithm
for batch verification of the modified DSA and ECDSA signatures. The verifica-
tion can be asymptotically 7.1 and 8.3 times as fast as individual verifications in
a finite field and an elliptic curve with 160 bit security, respectively. Furthermore,
for digital signatures by the multiple signers with the same system parameters
the proposed verification performs asymptotically 4.3 and 4.8 times faster than
the individual verifications in a finite field and an elliptic curve, respectively.
Our result is the first one about the batch verification of signatures by different
signers.

We further generalize our method to τ -adic w-NAFs over Koblitz curves.
In [CL06], the authors proposed a batch verification algorithm for the modified
ECDSA signatures by one signer, in which only 9 elliptic curve additions are
required for one additional signature. Using τ -adic w-NAFs, we reduce it to 6
elliptic curve additions. It is very surprising that only 6 elliptic curve additions
are required asymptotically to verify one signature.

Applications Batch verification will be useful in any settings where multi-
ple signatures need to be verified at once. We have a variety of applications in
which our proposed method can be employed. In some cases, we may need to
adjust our techniques. For example, in e-cash applications, merchants and/or
consumers need to verify the validity of lots of electronic coins signed by the
bank. E-voting systems need to verify huge number of signed ballots as fast as
possible. In the outsourced database applications [MNT04], numbers of clients’
query request messages need to be authenticated by servers. Another example
is authenticated routing based on public key cryptography, in which network
packets are signed and verified in each node and each router has to verify many
signatures. We also are able to apply to Mixnet [Abe99] for making systems or
protocols privacy-preserving, and VSS (Verifiable Secret Sharing) [Fel87] scheme
which is a fundamental technique for fault-tolerant and secure distributed com-
putations such as reliable broadcast, peer group membership management, and
Byzantine agreement.

Organization The rest of paper is organized as follows: we first define batch
verification and introduce fast exponentiation methods in Section 2. An efficient
batch verification algorithm is proposed in Section 3, and its applications to
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signature schemes are described in Section 4. We then present more efficient
algorithm over Koblitz curves in Section 5 and conclude in Section 6.

2 Preliminary

2.1 Batch Verification

Let G be a cyclic group of prime order p with a generator g. Given a subset S
of Zp, we define a batch verifier VS following [BGR98,CL06]:

1. Input a batch instance {(xi, yi) ∈ Zp ×G|i = 1, 2, . . . , N}
2. VS takes N elements c1, c2, . . . , cN uniformly from the exponent set S
3. VS computes x =

∑N
i=1 cixi and y =

∏N
i=1 yci

i

4. If gx = y output 1 and otherwise output 0

We say a batch instance {(xi, yi) ∈ Zp ×G|i = 1, 2, . . . , N} is correct if gxi = yi

for all i and incorrect otherwise. Note that the verifier VS outputs 1 for a correct
instance regardless of S. We define the Fail(VS) to be the maximum probability
that an incorrect batch instance passes the test. That is,

Fail(VS) = max
A batch instance X

{Prob[VS(X) = 0]}, (1)

where probability is over the random choice of c1, . . . , cN uniformly from S.
Then, if c1, c2, . . . , cN are uniformly chosen from S, we have

Fail(VS) = max
α∈ZN

p \{(0,...,0)}

|{(c1, . . . , cn)|c1, . . . , cn ∈ S, gc1α1+···+cnαn = 1}|
|{(c1, . . . , cn)|c1, . . . , cn ∈ S}|

.

(2)
Theorem 1 in [CL06] shows that it is upper-bounded by 1/|S|; that is, we

have gxi = yi for all i with probability at least 1− 1/|S|.

2.2 Fast Exponentiations

To evaluate the performance of the proposed algorithm, we apply the most up-
to-date fast exponentiation methods to our batch verification and individual
ones. Following [HHM00], Lim-Lee method (fixed based comb) and the window
method appeared to be most efficient methods for a fixed base and a non-fixed
base, respectively. We consider an exponentiation on a group of m-bit prime
order. Lim-Lee method with window size w requires at average (m/w − 1) dou-
blings and (m/w − 1)(1− 2−w) additions. Window method with window size w
requires at average (m/(w+1)+2w−1−s) multiplications and (m+1) squarings
over a finite field, and (m/(w + 1) + 2w−1 − s) additions and (m + 1) doublings
over an elliptic curve. Refer to [LL94,HHM00] for more details.

In this paper, we will consider a finite field of 160 bit order, an elliptic curve
of 160 bit order and Koblitz curve K163 as a base group G. K163 is given by
E : y2 +xy = x3 +x2 +1 over F2163 and has 162 bit order (cofactor=2). Notation
used in the rest of paper is summarized in Table 1. We present the number of
group operations for fast exponentiations in Table 2.



4

Table 1. Notation

w window size
m bit length of exponents
t Hamming weight
Mem number of finite field elements or elliptic curve points to be stored
Ef finite field exponentiation
Mf finite field multiplication
Sf finite field squaring
Me scalar multiplication in elliptic curves
Ae elliptic curve addition
De elliptic curve doubling

Table 2. Performance of Fast Exponentiation Algorithms

Group Method w MemMf or Ae Sf or De

Finite Window NAF 4 7 39 161
Field Lim-Lee 4 14 38 40

Elliptic w-NAF 4 3 36 161
Curve Lim-Lee 4 14 38 40

Koblitz τ -adic w-NAF 5 7 34 0
Curve Fixed-based τ -adic w-NAF 6 15 23 0

3 Batch Verification of Exponentiations on Abelian
Groups

Let w ≥ 2 be an integer. A radix 2 representation is called a width-w nonadjacent
Form (w-NAF, for short) if it satisfies: (1) each nonzero digit is an odd integer
with absolute value less than 2w−1, and (2) for any w consecutive digits, at most
one is nonzero [MS06].

Although w-NAF gives an efficient exponentiation on a group admitting fast
inversion, it is not useful for a group such as a multiplicative subgroup of a
finite field in which an inversion is much slower than a multiplication. We here
introduce a generalized version of w-NAF with a digit set D.

Definition 1. Let w be an integer ≥ 2 and D = {α1, α2, . . . , α2w−1} where αi’s
are nonzero odd integers and distinct modulo 2w. A w-NAF with the digit set D
is a sequence of digits satisfying the following conditions:

1. Each digit is zero or an element in D.
2. Among any w consecutive digits, at most one is nonzero.

A w-NAF with the digit set D is denoted by a = (am−1 · · · a1a0)2 or a =∑m−1
i=0 ai2i where ai ∈ D ∪ {0}.

Definition 2. Let a = (am−1am−2 . . . a0)2 be a w-NAF with the digit set D.
Then the length of a, denoted by len(a), is defined to be the smallest i such that
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ai−1 6= 0. By notation, we let len(0) = 0. The number of nonzero digits in its
representation is called the weight of a and denoted by wt(a).

The uniqueness of the representation can be easily shown as follows. The
argument is a simple generalization of Proposition 2.1 in [MS06].

Theorem 1. Let q be a positive integer. All w-NAFs of length ≤ m with the
digit set D are distinct modulo q if m ≤ log2(q/C) where C = max{|x − y| :
x, y ∈ D ∪ {0}}.

Proof. Suppose there are two different w-NAFs which represent the same integer.
Let (a`−1a`−2 · · · a0)2 and (b`′−1b`′−2 · · · b0)2 are different representation such
that

a =
`−1∑
i=0

ai2i =
`′−1∑
i=0

bi2i. (3)

Assume ` is the smallest integer satisfying the above property.
If a0 = b0, we have two different and shorter w-NAFs which stand for the

same integer. Thus it should be a0 6= b0. If a is even, both of a0 and b0 should
be zero and a0 = b0. It therefore should be odd and both of a0 and b0 should
be nonzero. Since the representations are w-NAFs, a0 6= 0 and b0 6= 0 implies
a1 = · · · = aw = 0 and b1 = · · · = bw = 0. From the equation (3), we have
a0 ≡ b0 mod 2w. Since all elements in D are distinct modulo 2w, we must have
a0 = b0, which contradicts with the minimality of `. Thus each integer has only
one w-NAF with the digit set D.

Moreover, let C1 and C2 be the maximal and minimal element in D ∪ {0}.
Then C = C1 − C2. The largest w-NAF of length ≤ m is less than C12m. The
smallest w-NAF of length ≤ m is greater than C22m. Thus the difference of any
two w-NAFs is less than (C1 − C2)2m = C2m ≤ q for m ≤ log(q/C). Therefore
any two w-NAF of length ≤ m must be distinct modulo q or identical.

Theorem 2. The number of w-NAFs of length ≤ m and weight t with the digit
set D is (

m− (w − 1)(t− 1)
t

)
2(w−1)t.

Proof. Consider an algorithm to choose t positions out of m − (w − 1)(t − 1)
positions and fill each of them by w−1 consecutive zeros followed by an element
in D. This algorithm gives a w-NAF of length m+(w−1). Then its first (w−1)
positions should be always zero since each nonzero digit is preceded by (w − 1)
consecutive nonzeros. By discarding the first (w − 1) zeros, we get a w-NAF
of length ≤ m. Since the algorithm covers all w-NAFs of length ≤ m and the
algorithm outputs one of

(
m−(w−1)(t−1)

t

)
2(w−1)t strings, we have the theorem.

From the proof of Theorem 2, we introduce Algorithm 1 to produce a random
secret exponent in a finite field of 2n elements.

Using the set of w-NAFs, we can perform efficient batch verification of ex-
ponentiations on a group as in Algorithm 2. Here we use simultaneous multipli-
cation methods and online precomputation method.
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Algorithm 1 (Generation of w-NAF exponents of weight t)

Input: m, w, t and the digit set D
Output: w-NAF of length ≤ m

1: Choose t positions out of n− (w − 1)(t− 1) positions.
2: Fill each position by (w − 1) consecutive zeros followed by an element in D.
3: Discard the first (w − 1) positions of the string.
4: Print the string which is a w-NAF of length ≤ m

Algorithm 2 (Batch Verification of Exponentiations using w-NAF Ex-
ponent)

Input: m, w, t, D, and N exponentiation pairs (xi, yi) ∈ Zq ×G for an abelian group
G of order q with a generator g

Output: True or false

1: Take N random exponents c1, c2, . . . , cN from the set of w-NAFs of length ≤ m
and weight t, where ci =

Pm
j=0 cij2

j and cij ∈ D ∪ {0}.
2: for α ∈ D do
3: yi,α ← yα

i /* precomputation */
4: end for
5: y ← 1
6: for j = m− 1 downto 0 do
7: y ← y2

8: for i = 1 upto N do
9: if cij = α ∈ D then

10: y ← y · yi,α

11: end if
12: end for
13: end for
14: Compute gx for x =

PN
i=1 cixi mod q.

15: if y = gx then
16: Accept all of N instances
17: else
18: Reject
19: end if
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We need to take an appropriate digit set for each of specific groups. For a
multiplicative subgroup of a finite field in which an inversion is much slower than
a multiplication, we take D = {1, 3, . . . , 2w − 1}. It then requires the precompu-
tation that takes one squaring and 2w−1 multiplications. Steps 6-13 take m− 1
squarings and tN − 1 multiplications since each exponent has t nonzero digit.
Hence the total complexity is m squarings and N(t+2w−1) multiplications plus
one exponentiation using memory for 2w−1 − 1 group elements.

For an elliptic curve group in which a subtraction is as efficient as an addition,
we take D = {±1,±3, . . . ,±(2w−2 − 1)}. In this case, the precomputation cost
reduces to one elliptic doubling and 2w−2 elliptic additions. Hence the total
complexity is m elliptic doublings and N(t + 2w−2) elliptic additions plus one
scalar multiplication using memory for 2w−2 − 1 elliptic curve points.

Table 3. Number of Multiplications for Batch Verification on Abelian Groups

Common Finite Field Elliptic Curve

w m t Security Mem Complexity Mem Complexity

1 159 19 280.6 0 19NMf+159Sf+1Ef 0 19NAe+159De+1Me

2 158 15 281.2 1 17NMf+158Sf+1Ef 0 15NAe+158De+1Me

3 157 12 279.4 3 16NMf+157Sf+1Ef 1 14NAe+157De+1Me

4 156 11 283.9 7 19NMf+156Sf+1Ef 3 15NAe+156De+1Me

5 155 9 279.6 15 25NMf+155Sf+1Ef 7 17NAe+155De+1Me

Table 4. Comparison of Batch Verification of Exponentiations

Method Finite Field Elliptic Curve

Individual N(39Mf+161Sf ) N(36Ae+161De)

[YL95,BGR98] N(40Mf )+80Mf+161Sf N(40Ae)+74Ae+161De

[CL06] N(19Mf )+80Mf+161Sf N(15Ae)+74Ae+161De

Proposed N(16Mf )+80Mf+161Sf N(14Ae)+74Ae+161De

Table 3 presents the performance of batch verification over a finite field and
an elliptic curve and shows appropriate weight t on a group of 160-bit prime
order q for various w. We take m = 160 − w to guarantee the uniqueness of
exponents by Theorem 1. For example, we can use 3-NAF for a finite field,
which requires only 16N multiplications, 157 squarings and one exponentiation.
For an elliptic curve, we can use 2-NAF requiring only 15N multiplications,
158 squarings and one exponentiation. Note that security in Table 3 implies the
security of the batch verification with the given parameters, which is computed
as

(
m−(w−1)(t−1)

t

)
2(w−1)t by Theorem 2.
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4 Batch Verification of Multiple Signatures

To apply the batch verification of exponentiations to verification of signatures,
one need to modify signature schemes. Naccache et al. presented a modified DSA
for batch verification [NMVR94]. Our batch verification is also applicable to this
modified DSA. But, considering the attack by Boyd and Pavlovski [BP00], we
made a little change to the verification procedure. The performance of the batch
verification algorithm is evaluated based on the screening parameter ` = 80.

4.1 Modified DSA

Let p be a 1024 bit prime and q a 160 bit prime dividing p− 1. We assume that
(p− 1)/(2q) has no divisor less than q to resist the attack in [BP00]. Let g be a
generator of a subgroup G of order q in Fp. Take a random x ∈ Zp. The private
key is x and the corresponding public key is y = gx. A signature for a message
m ∈ Zp is given by

(r = gk mod p, σ = k−1(m + xr) mod q)

for a random k ∈ Zp. It is verified by checking if r = ±gayb mod p for a =
mσ−1 mod q and b = rσ−1 mod q. Note that r = ((gk mod p) mod q) is used in
the original DSA. The verification admits only r = gayb mod q, but here we
relax the verification to admit r = ±gayb mod q due to Boyd and Pavlovski
attack, in which the security loss is only one bit.

Signatures by Multiple Signers Given N signatures (mi, ri, σi), each of
which is signed by a signer with the public key yi, we apply the batch verifi-
cation by 3-NAFs with the digit set D = {1, 3, 5, 7}, which gives best perfor-
mance as in Table 3. First, take random w-NAFs c1, . . . , cN . Next, compute
a = −

∑N
i=1 aici mod q and bi = −riσ

−1
i ci mod q for each i. Finally compute

ga
N∏

i=1

y
b′i
i

N∏
i=1

rci
i mod p, (4)

and if it is 1 or p− 1, accept all N signatures.
We now evaluate the verification cost. For simplicity, we only count Fp op-

erations. Since g is fixed, we apply Lim-Lee method of window size w = 4 to
compute ga, and each of gb or g

b′i
i is computed by 4-NAF. Thus an individ-

ual signature verification consists of one Lim-Lee, one 4-NAF method and one
multiplication. On the other hand, the batch verification consists of one Lim-
Lee, N 4-NAF, 16N multiplications and N multiplications. Table 5 shows the
achieved gains as ratio of the proposed method and individual one. Note that
the measurement is conducted only in case of Sf=Mfand Sf=0.8Mf . Following
[BHLM01], it is between 0.8 and 0.86.
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Signatures by A Single Signer We consider N signatures (mi, ri, σi) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {1, 3, 5, 7}. First, take random w-NAFs c1, . . . , cN . Next, compute a =
−

∑N
i=1 aici mod q and b = −

∑N
i=1 riσ

−1
i ci mod q. Finally compute

ga
N∏

i=1

yb
N∏

i=1

rci
i mod p, (5)

and if it is 1 or p− 1, accept all n signatures.
Now we evaluate the verification cost. Since both of g and y are fixed, we

may apply Lim-Lee method to compute ga and yb. The individual verification
consists of two Lim-Lee and one multiplication. On the other hand, the batch
verification consists of two Lim-Lee and 14N additions. The performance is given
in Table 5.

Table 5. Performance of Batch Verifications of Signatures over a Finite Field

Signers Individual Proposed Ratio(Sf=Mf ) Ratio(Sf=0.8Mf )

Multi. N(78Mf+161Sf ) N(55Mf )+40Mf+161Sf 0.23 + 0.84/N 0.27 + 0.82/N

Single N(76Mf+40Sf ) N(16Mf )+76Mf+40Sf 0.14 + 2.04/N 0.15 + 1.90/N

4.2 Modified ECDSA

ECDSA is an elliptic curve analogue of DSA [ECDSA]. Our batch verification al-
gorithm is applied to the modified ECDSA [ABGLSV05] as in DSA case. The se-
curity of the modified ECDSA is equivalent to the standard ECDSA [ABGLSV05].

Let E be an elliptic curve. Assume that the order q of E is prime and G ∈ E
a generator (If E has a cofactor 6= 1, the signature scheme should be modified
due to [BP00]). The private key is x and the corresponding public key is Q = xG.
A signature for given message m ∈ Zp is

(R = kG, σ = k−1(m + xr) mod q)

where R = (x1, y1) and r = x1 mod q for a random k ∈ Zp. The verification is
done by checking if R = aG + bQ for a = mσ−1 mod q and b = rσ−1 mod q.

Given N signatures (mi, Ri, σi), we compute ti = σ−1
i mod q first, and then

ai = miti mod q and bi = riti mod q for each i. Next, take random si ∈ S and
compute a = −

∑n
i=1 aisi mod q and b = −

∑n
i=1 bisi mod q. Finally compute

aG + bQ +
n∑

i=1

siRi,

and if it is a point at infinity O, accept all n signatures.
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Signatures by Multiple Signers Given N signatures (mi, Ri, σi), each of
which is signed by a signer with the public key Qi, we apply the batch verifica-
tion by 3-NAFs with the digit set D = {±1,±3}. First, take random w-NAFs
c1, . . . , cN . Next, compute a = −

∑N
i=1 aici mod q and b′i = −riσ

−1
i ci mod q for

each i. Finally compute

aG +
N∑

i=1

b′iQi +
N∑

i=1

ciRi, (6)

and if it is the point at infinity O, accept all N signatures. Remark that if we
take an elliptic curve whose order is prime as above, the Boyd and Pavlovski
attack [BP00] can not be applied.

Signatures by A Single Signer We consider N signatures (mi, Ri, σi) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {±1,±3}. First, take random w-NAFs c1, . . . , cN . Next, compute a =
−

∑N
i=1 aici mod q and b = −

∑N
i=1 riσ

−1
i ci mod q for each i. Finally compute

aG + bQ +
N∑

i=1

ciRi, (7)

and if it is the point at infinity O, accept all N signatures.

Performance comparison of individual and batch verifications of ECDSA is
given in Table 6. The performance of individual verifications is evaluated based
on the standard verification equation. Note that the cost can be reduced by 40
% using some special method in [ABGLSV05].

Table 6. Performance of Batch Verification of Signatures over an Elliptic Curve

Signers Individual Proposed Ratio (De=Ae) Ratio (De=0.5Ae)

Multiple N(74Ae+164De) N(50Ae)+38Ae+164De 0.21 + 0.84/N 0.33 + 0.79/N

Single N(76Ae+40De) N(14Ae)+74Ae+164De 0.12 + 1.72/N 0.16 + 1.37/N

5 Batch Verification on Koblitz Elliptic Curves

Consider an ordinary elliptic curve E defined over Fq with #E(Fq) = q + 1− t
and gcd(q, t) = 1. The Frobenius map τ is defined as follows:

τ : E(Fq) → E(Fq); (x, y) 7→ (xq, yq),
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where Fq is the algebraic closure of Fq. The Frobenius map τ is a root of the
characteristic equation χE(T ) = T 2 − tT + q in the ring of endomorphisms
End(E). We denote E(Fqn) by the subgroup of E(Fq) consisting of Fqn-rational
points. Let G be the subgroup of E(Fqn) generated by P with a prime order `
satisfying `2 - #E(Fqn) and ` - #E(Fq).

We now introduce a generalization of τ -adic NAF into τ -adic w-NAF, which
was introduced in [Sol00] on Koblitz curves.

Definition 3. Let w be an integer ≥ 2. A τ -adic w-NAF is a sequence of digits
satisfying the following two conditions:

1. Each non-zero digit is an integer which is not divisible by q and whose ab-
solute value is less than qw/2.

2. Among any w consecutive digits, at most one is non-zero.

A τ -adic w-NAF is denoted by a = (am−1 · · · a1a0)τ or a =
∑m−1

i=0 aiτ
i.

The length and the weight of a τ -adic w-NAF are defined similarly to w-
NAFs. Note that given a τ -adic w-NAF a = (am−1 · · · a1a0)τ and a point Q ∈ E,
aQ is computed as aQ =

∑m−1
i=0 aiτ

i(Q).

Theorem 3. Let a = (am−1, . . . , a0)τ and b = (bm′−1, . . . , b0)τ be two τ -adic
w-NAFs. Then aQ = bQ for some nonzero Q ∈ G implies that m = m′ and
ai = bi for all i if

max{m,m′} ≤ Mq,`,w = logq

(
`

(qw/2 + 1)2

)
− (w − 1). (8)

Proof. Assume there is a nonzero point Q ∈ G such that aQ = bQ for two
distinct τ -adic w-NAFs a = (am−1, . . . , a0)τ and b = (bm′−1, . . . , b0)τ . By adding
zero digits to the front of the strings, we may assume m = m′. Then we have
O = aQ− bQ =

∑m−1
i=0 diτ

i(Q) for di = ai − bi.
Let F (T ) =

∑m−1
i=0 diT

i. Since End(E) is an order of the imaginary quadratic
field, F (τ) can be considered as an element of Z[i] divisible by `. Since χE(τ) = 0,
F (T ) and χE(T ) must have a common root in the algebraic closure of F`. Thus
the resultant R = Res(T 2 − tT + q, F (T )) satisfies R ≡ 0 mod `.

Let τ1 and τ2 be the roots of χE . Then R = F (τ1)F (τ2) and |τ1| = |τ2| =
√

q.
For each τ ∈ {τ1, τ2}, we have

|F (τ)| ≤
m−1∑
i=0

|di||τ |i ≤
m−1∑
i=0

|ai||τ |i +
m−1∑
i=0

|bi||τ |i

≤ 2
(⌈

qw

2

⌉
− 1

)
(
√

q
m−1 +

√
q

m−1−w + · · ·+√
q

m−1 mod w)

= 2
(⌈

qw

2

⌉
− 1

)
(q(m+w−1)/2 − 1)

qw/2 − 1
< q(m+w−1)/2(qw/2 + 1).

Thus, |R| < qm+w−1(qw/2 + 1)2 ≤ `. Hence R = 0. Because χE is irreducible
over Z, this implies χE |F (T ) over Z.
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Assume that di0 is the lowest nonzero coefficient of F . Then we can write

T−i0F (T ) = (g0 + g1T + · · ·+ gm−3−i0T
m−3−i0)χE(T )

for some gi ∈ Z. By equating the coefficients, we know di0 = qg0 and di0+j =
qgj − tgj−1 + gj−2 for 1 ≤ j ≤ w−1, where we set g−1 := 0 by convention. Since
each of ai0 and bi0 is not divisible by q, both ai0+1 and bi0+1 is nonzero. Hence
di0+1 = · · · = di0+w−1 = 0. That is,

Eqn(j) = qgj − tgj−1 + gj−2 = 0 for 1 ≤ j ≤ w − 1. (9)

From di0+1 = 0 and g−1 = 0, we have q|g0 since gcd(q, t) = 1. By repeating this
procedure, we have g0, g1, . . . , gw−2 are divisible by q.

After replacing gi by gi/q in the Eqn(1), . . . , Eqn(c−1), we repeat the above
procedure to obtain q2|g0, g1, . . . , gw−3. At the end, we have qc|g0. Therefore, we
have qw|di0 . However, this is impossible since |di0 | < qw.

The above theorem tells us that distinct τ -adic w-NAFs of length m < Mq,`,w

play an role of distinct group homomorphisms of G. Moreover, if a = b in End(E),
we have R = Res(T 2 − tT + q,

∑m−1
i=0 (ai − bi)T i) satisfies R = 0. By the same

argument with Theorem 3, we have ai = bi for all i regardless of k, which implies
that every endomorphism of E has at most one τ -adic w-NAF.

Theorem 4. The number of τ -adic w-NAFs of length ≤ m and weight t is(
m− (w − 1)(t− 1)

t

)
2t

(⌊
qw

2

⌋
−

⌊
qw−1

2

⌋)t

.

Proof. As in Theorem 2, we consider an algorithm to choose t positions out of
m + (w − 1) − wt positions and fill each of them by w − 1 consecutive zeros
followed by an integer not divisible by q whose absolute value is less than qw/2.
By discarding the first (w − 1) zeros, we get a τ -adic w-NAF of length ≤ m
with weight t. Conversely, any string with the property can be produced by the
algorithm.

Now we count the number of cases. First we have
(
m−(w−1)(t−1)

t

)
choices for t

positions. Next, each position is filled by an integer x such that x is not divisible
by q and |x| < qw/2. The number of such integers is

2t

(⌊
qw

2

⌋
−

⌊
qw−1

2

⌋)t

,

which completes the proof.

We introduce an algorithm to output a random secret exponent in a sub-
group G of order ` in an elliptic curve E(Fqn). Algorithm 3 produces uniformly
distributed w-NAFs of length ≤ m with weight t if m ≤ Mq,`,w

Algorithm 4 describes batch verification using τ -adic NAF on Koblitz Curves,
given (xi, Qi) for 1 ≤ i ≤ N . For ease of notation, we describe the algorithm
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Algorithm 3 (τ-adic w-NAF Exponent of weight t)

Input: q, m, w, and t
Output: τ -adic w-NAF of length ≤ m

1: Choose t positions out of m− (w − 1)(t− 1) positions
2: Fill each position by (w− 1) consecutive zeros followed by an integer not divisible

by q whose absolute value is less than qw/2
3: Discard the first (w − 1) positions of the string
4: Print the string which is a τ -adic w-NAF of length ≤ m

Algorithm 4 (Batch Verification using τ-adic NAF on Koblitz Curves)

Input: (xi, Qi) for 1 ≤ i ≤ N
Output: True or false

1: Choose N random elements ci =
Pe

j=0 cijτ
j (1 ≤ i ≤ N) from the set of τ -adic

w-NAF of length ≤ m and weight t, where cij is an integer not divisible by q whose
absolute value is less than qw/2 and εij = cij/|cij | for nonzero cij for each i, j.

2: for 1 ≤ k ≤ 2w−2 do
3: R[2k − 1]← O
4: end for
5: for j = 0 to e do
6: for i = 1 to N do
7: if cij 6= 0 then
8: R[|cij |]← R[|cij |] + εijτ

j(Qi)
9: end if

10: end for
11: end for
12: Q← R[2w−1 − 1]
13: T ← R[2w−1 − 1]
14: for k = 2w−2 − 1 to 2 do
15: T ← T + R[2k − 1]
16: Q← Q + T
17: end for
18: Q← 2Q + T + R[1]
19: if Q = cP then
20: Accept all of N instances
21: else
22: Reject
23: end if
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in case of q = 2, but it can be easily extended into the general case. For more
details, Steps 2-11 compute

Rk =
N∑

i=1

m−1∑
j=0,cj=k

sign(cj)τ j(Qi)

for each odd integer 1 ≤ k ≤ 2w−1 − 1. Steps 12-18 compute

Q =
2z−1∑

k=1,2-k

kQk = (R2z−1+ · · ·+R1)+2((z−1)R2z−1+(z−2)R2z−3+2R5+R3)

for z = 2w−2 where the last term is computed using BGMW method [BGMW93].
From complexity point of view, Step 1 requires tN − 2w−2 additions at average
and Steps 5-11 require at most 3 + 2(z − 1) = 2z + 1 = 2w−1 + 1 additions.
Hence the total complexity is at average tN + 2w−2 + 1 additions with 2w−2− 1
memory.

Table 7 presents an appropriate weight t and the corresponding attack com-
plexity for each w over Koblitz curve. The length m is taken to be the largest
integer to preserve the uniqueness as in Theorem 3. Additions is the number of
additions to be required for batch verification, where #AMe

is the number of
additions for one scalar multiplication. For example, #AMe

can be 34 using τ -
adic 5-NAF. Note that when enumerating the number of elliptic curve additions,
we ignore the τ operations since their cost is negligible; they are implemented
merely by a circular shift and very efficient even in polynomial basis.

Table 7. Number of Additions for Batch Verification over a Koblitz Curve

w m t Mem Additions Complexity

2 159 15 0 15N + 2 + #AMe 281.4

3 156 13 1 13N + 3 + #AMe 284.5

4 154 11 3 11N + 5 + #AMe 283.6

5 152 10 7 10N + 9 + #AMe 286.2

6 150 9 15 9N + 17 + #AMe 287.1

7 148 8 31 8N + 33 + #AMe 286.1

8 146 7 63 7N + 65 + #AMe 283.3

9 144 6 127 6N + 129 + #AMe 278.5

10 142 6 255 6N + 257 + #AMe 283.9

Table 8 gives a comparison with other methods. We apply the fixed-based
τ -adic w-NAF method for fixed base computation with the precomputation. In
a single signer case, the proposed method is asymptotically 9 times faster than
the individual one.
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Table 8. Comparison of Batch Verifications over Koblitz Curve

Method Exponentiation Single Signer Multiple Signers

Individual 23N 57N 57N

[CL06] 9N + 84 9N + 118 -

Proposed 6N + 163 6N + 186 30N + 152

Proposed/Ind 0.26 + 7.09/N 0.11 + 3.26/N 0.53 + 2.67/N

6 Conclusion

We propose an efficient batch verification method of exponentiation. By apply-
ing the proposed algorithm, we can improve the efficiency of batch verification
of digital signatures. To the best of our knowledge, we firstly propose a batch
verification of signatures by multiple signers so that we can speed up verification
of digital signatures about four times faster than individual verification thereof.
In particular, our method can be applied to any servers or devices that need to
verify multiple signatures at once. It would be an interesting problem to apply
our algorithm to various applications involving many exponentiations including
Mix-Net [Abe99], proof of knowledge, anonymous authentications, and authen-
ticated routing.
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