
Chosen-Ciphertext Secure Key-Encapsulation
Based on Gap Hashed Diffie-Hellman

Eike Kiltz

CWI Amsterdam
The Netherlands
kiltz@cwi.nl

http://kiltz.net

Abstract. We propose a practical key encapsulation mechanism with a
simple and intuitive design concept. Security against chosen-ciphertext
attacks can be proved in the standard model under a new assumption, the
Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction
is tight and simple.

Secure key encapsulation, combined with an appropriately secure sym-
metric encryption scheme, yields a hybrid public-key encryption scheme
which is secure against chosen-ciphertext attacks. The implied encryp-
tion scheme is very efficient: compared to the previously most efficient
scheme by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter
ciphertexts, between 25-50% shorter public/secret keys, and it is slightly
more efficient in terms of encryption/decryption speed. Furthermore, our
scheme enjoys (the option of) public verifiability of the ciphertexts and
it inherits all practical advantages of secure hybrid encryption.

1 Introduction

One of the main fields of interest in cryptography is the design and the analysis
of the security of encryption schemes in the public-key setting (PKE schemes).
In this work our goal is to provide schemes for which we can provide theoretical
proofs of security (without relying on heuristics such as the random oracle), but
which are also efficient and practical.

Key Encapsulation. Instead of providing the full functionality of a public-key
encryption scheme, in many applications it is sufficient to let sender and receiver
agree on a common random session key. This can be accomplished with a key
encapsulation mechanism (KEM) as formalized by Cramer and Shoup [11]. In
this protocol a sender (knowing the receivers public key) runs an encapsula-
tion algorithm to produce a random session key together with a corresponding
ciphertext. This ciphertext is sent (over a potentially insecure channel) to the
receiver, who (using his secret key) can uniquely reconstruct the session key us-
ing a decapsulation algorithm. In the end both parties share a common random
session key. A strong notion of security (security against chosen-ciphertext at-
tacks [23]) requires that, roughly, not even an active eavesdropper (interacting

2 E. Kiltz

with a decapsulation oracle that allows him to obtain session keys corresponding
to ciphertexts of his choosing) can learn any information about the random ses-
sion key corresponding to a given ciphertext. After the execution of the protocol
the random session key may now be used for arbitrary symmetric-key operations
such as a symmetric encryption scheme. If both, the KEM and the symmetric
primitive, are secure against chosen-ciphertext attacks then composition theo-
rems are used to obtain the same security guarantees for the hybrid encryption
protocol.

In this work we are interested in designing key encapsulation mechanisms that
are both efficient and provably secure with respect to a reasonable intractabil-
ity assumption. To motivate our approach we start with some history on key
encapsulation.

Diffie-Hellman Key Encapsulation. In the Diffie-Hellman key encapsula-
tion mechanism [12] the receiver’s public key consists of the group element gx

(we assume a commutative cyclic group of prime order and generator g to be
given), the secret key of the random index x. Key encapsulation is done by com-
puting the ciphertext as gy for random y; the corresponding session key is the
group element gxy = (gx)y (and therefore called Diffie-Hellman Key). This key
is recovered from the ciphertext by the possessor of the secret key x by comput-
ing gxy as (gy)x. In practice one mostly requires the session key to be a binary
string rather of fixed length than a group element. This is overcome by feeding
the Diffie-Hellman key gxy to a hash function H with binary image to obtain
a session key H(gxy). This simple key encapsulation scheme can be proved se-
cure against chosen-plaintext attacks under the Hashed Diffie-Hellman (HDH)
assumption, as formalized in [1]. The HDH assumption (relative to a hash func-
tion H) states, roughly, that the two distributions (gx, gy,H(gxy)) and (gx, gy, R)
for random indices x, y and a random bit-string R (of appropriate length) are
computational indistinguishable. Under the HDH assumption, Hashed Diffie-
Hellman can be proven secure against chosen-plaintext attacks (IND-CPA).

For various reasons, the stronger notion of chosen-ciphertext (IND-CCA)
security [23] has emerged as the “right” notion of security for key encapsulation
and encryption. Hashed Diffie-Hellman will be our starting point and the goal
will be to modify the scheme in order to obtain security against chosen-ciphertext
attacks under a reasonable intractability assumption.

Our Construction. We modify the Hashed Diffie-Hellman key encapsulation
in order to obtain a KEM that is provably secure against chosen-ciphertext at-
tacks under the Gap Hashed Diffie-Hellman assumption (to be introduced later).
Our main idea is to add some redundant information to the ciphertext of the
Hashed Diffie-Hellman key encapsulation. This information is used to check if
a given ciphertext was properly generated by the encapsulation algorithm (and
hence is “consistent”); if the ciphertext is consistent then decapsulation returns
the session key, otherwise it simply rejects. Our scheme’s security relies on the
Gap Hashed Diffie-Hellman (GHDH) assumption which states that, roughly, the
two distributions (gx, gy,H(gxy)) and (gx, gy, R) are hard to distinguish even rel-
ative to a “Diffie-Hellman oracle” that efficiently distinguishes (gx, gy, gxy) from

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 3

(gx, gy, gz). Here the term “gap” stems from the fact that there is a gap between
the Decisional and the Computational version of the Diffie-Hellman problem: the
computational problem is hard to solve even though the corresponding decisional
problem is easy.

Main Results. Our main result shows that our key encapsulation mechanism is
secure against chosen-ciphertext attacks assuming the GHDH assumption holds.
The scheme has very short ciphertexts (2 groups elements or approximately 512
bits for 128 bits security) and its security reduction is tight. When our scheme
gets instantiated in gap-groups [20] a given ciphertext can get checked for consis-
tency solely based on the knowledge of the public key. This feature (sometimes
called “public verifiability of the ciphertext”) has proved very useful, e.g. for
building a chosen-ciphertext secure threshold encapsulation scheme [9]. Further-
more, we show that our framework extends to building KEMs based on the Gap
Hashed Multi Diffie-Hellman (GHMDH) assumption, a natural generalization of
GHDH with potentially stronger security properties. The GHMDH assumption
states that given many independent Diffie-Hellman instances (gi, hi, g

ri
i)1≤i≤`,

evaluating the `2 possible (hidden) Diffie-Hellman keys (hi)rj (1 ≤ i, j ≤ `) on a
fixed public predicate H : G`×` → G yields an element that is indistinguishable
from a random one, even relative to a DDH oracle. The GHMDH assumption
in particular includes (a paring-free variant of) the Gap Linear Diffie-Hellman
(GLDH) assumption [6].

Related Work. Cramer and Shoup [10, 11] proposed the first practical public-
key encryption scheme in the standard model. More recently, Kurosawa and
Desmedt came up with a direct hybrid encryption scheme [19] improving the
performance of the original CS scheme both in computational efficiency and in
ciphertext length. In their hybrid construction the symmetric scheme has to be
secure in the sense of authenticated encryption [2] which is a strictly stronger
security requirement than in the standard KEM/DEM hybrid paradigm [11],
and in particular it necessarily adds 128 bits of redundancy to the symmetric
ciphertext. The KD-KEM (i.e. the KEM part of the Kurosawa Desmedt hybrid
encryption scheme) is similar to our KEM construction. In fact, the KD-KEM
can be obtained from our KEM by (roughly) switching the symmetric key with
one element from the ciphertext. Our scheme can be proved chosen-ciphertext
secure whereas there exists a simple chosen-ciphertext attack against the KD-
KEM [14]. We think that this is really a surprising fact since a small difference
in the constellation of the ciphertexts seems to turn the scale when it comes to
security of the two schemes.

An alternative group of schemes (“IBE-based schemes”) is based on recent
results [7, 16] observing that identity-based encryption (IBE) implies chosen-
ciphertext secure encryption. The recent approach taken by Boyen, Mei, and
Waters [9] was to improve efficiency of one particular instantiation [5] (based on
the BDH assumption) obtained by the above IBE transformation. Similar re-
sults were also obtained independently by Kiltz [16]. All the encryption schemes
constructed this way, however, so far remained less efficient than the reference
scheme from Kurosawa-Desmedt. Our KEM constructions based on GHDH and

4 E. Kiltz

GHMDH are related (and generalize) the KEMs obtained in [9, 16] and therefore
fits best into the latter class of IBE-based [7, 16] schemes (even though they are
not derived from any IBE scheme).

Discussion and Comparison. Our porposed hybrid PKE scheme based on
GHDH is more efficient than the “reference scheme” by Kurosawa and Desmedt [19]:
it has “one MAC” shorter ciphertexts (by combining it with redundancy-free
symmetric encryption [21]), between 25-50% shorter public/secret keys, and it is
slightly more efficient in terms of encryption/decryption. However, an arguable
disadvantage of our scheme is that security can only be proven on the new
GHDH assumption, whereas security of the KD scheme provably relies on the
well-established and purely algebraic DDH assumption. An extensive compari-
son with all known KEM/PKE schemes in the standard model is done in Table 1
(Section 5).

Recent Results. Recently, building on this work, Hofheinz and Kiltz [15]
combined a variation of our scheme with symmetric authenticated encryption
(and hence adding 128 bits redundancy to the ciphertexts) to obtain public-key
encryption secure under the DDH assumption. Their technique also extends to
the more general class of (Hashed) Multi Diffie-Hellman assumptions which can
be seen as the “DDH-oracle free” variant of HGMDH.

Full Version. A full version of this extended abstract is available on the
Cryptology ePrint archive [18].

2 Public Key Encapsulation Mechanisms

A public-key encapsulation (KEM) scheme KEM = (Kg,Enc,Dec) with key-
space KeySp(k) consists of three polynomial-time algorithms. Via (pk , sk) $←
Kg(1k) the randomized key-generation algorithm produces keys for security pa-
rameter k ∈ N; via (K,C) $← Enc(1k , pk) a key K ∈ KeySp(k) together with
a ciphertext C is created; via K ← Dec(sk ,C) the possessor of secret key sk
decrypts ciphertext C to get back a key. For consistency, we require that for all
k ∈ N, and all (K,C) $← Enc(1k , pk) we have Pr [Dec(C) = K] = 1, where the
probability is taken over the choice of (pk , sk) $← Kg(1k), and the coins of all the
algorithms in the expression above.

We require the KEM to be secure against chosen-ciphertext attacks. Formally,
we associate to an adversary A the following experiment:

Experiment Expkem-cca
KEM ,A (k)

(pk , sk) $← Kg(1k) ; K∗
0

$← KeySp(k) ; (K∗
1 ,C ∗) $← Enc(pk)

δ
$← {0, 1} ; δ′

$← ADecO(sk ,·)(pk ,K∗
δ ,C ∗)

If δ 6= δ′ then return 0 else return 1

where the oracle DecO(sk , ·) queried on C returns K ← Dec(sk ,C) with the
restriction that A is not allowed to query DecO(sk , ·) on the target ciphertext

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 5

C ∗. We define the advantage of A in the left experiment as

Advkem-cca
KEM ,A (k) =

∣∣∣∣Pr
[
Expkem-cca

KEM ,A (k) = 1
]
− 1

2

∣∣∣∣ .

A key encapsulation mechanism KEM is said to be indistinguishable against
chosen-ciphertext attacks (IND-CCA) if the advantage function Advkem-cca

KEM ,A (k)
is a negligible function in k for all polynomial-time adversaries A.

Note that in contrast to the original definition given by Cramer and Shoup [11]
we consider a simplified (but equivalent) security experiment without a “find-
stage”.

3 Complexity Assumptions

3.1 Standard Diffie-Hellman assumptions

We first start with the following well known standard assumptions which we
review for completeness. The Computational Diffie-Hellman assumption (CDH)
states, that given the input (g, gx, gy) where x, y are drawn at random from Zp

(g is a generator of a group G of prime order p), it should be computationally in-
feasible to compute gxy. However, under the CDH assumption it might be as well
possible to efficiently compute some information about gxy, say a single bit of the
binary representation or even all but super-logarithmically many bits. A stronger
assumption that has been gaining popularity is the Decisional Diffie-Hellman
assumption (DDH). It states, roughly, that the distributions (g, gx, gy, gxy) and
(g, gx, gy, gz) are computationally indistinguishable when x, y, z are drawn at
random from Zp. Another variant of the Diffie-Hellman assumption is the Gap
Diffie-Hellman assumption (GDH). It states that the CDH assumption is still
hard even though an adversary has additional access to an oracle that solves the
DDH problem.

3.2 The Gap Hashed Diffie-Hellman assumption

As indicated above, semantic security requires that we will be able to get some
number of hard-core bits from the Diffie-Hellman key (i.e. bits that cannot be
distinguished from random bits). We will be using a gap-assumption relative to
a DDH oracle, so clearly we are not allowed to take the whole Diffie-Hellman
key. Our assumption is that applying a suitable hash function H (for example,
a cryptographic hash function like SHA-1) to gxy will yield such bits. The as-
sumption we make, called the Gap Hashed Diffie-Hellman assumption (GHDH)
is a “composite one”; it concerns the interaction between a hash function H and
the group G. The GHDH is an extension of the HDH assumption formalized by
Abdalla, Bellare, Rogaway [1].

Our schemes will be parameterized by a parameter generator. This is a
polynomial-time algorithm Gen that on input 1k returns the description of a
multiplicative cyclic group G of prime order p, where 2k < p < 2k+1, and a

6 E. Kiltz

random generator g of G. Gen furthermore outputs the description of a random
hash function H : G→ {0, 1}l(k) that outputs l(k) bits for a fixed polynomial l(·).
Throughout the paper we use HG = (G, g, p,H) as shorthand for the description
of the hash group obtained by running Gen.

The GHDH assumption relative to Gen states that the two distributions
(gx, gy,H(gxy)) and (gx, gy, R) are computationally indistinguishable when x, y
are drawn at random from Zp and R is drawn at random from {0, 1}l(k). This
assumption should hold relative to an oracle that efficiently solves the DDH
problem. More formally, to an adversary B we associate the following experiment.

Experiment Expghdh
Gen,H,B(1k)

HG $← Gen(1k) ; x, y
$← Z∗p ; W0

$← {0, 1}l(k) ; W1 ← H(gxy)
γ

$← {0, 1} ; γ′
$← BDDHsolveG(·,·,·,·)(1k, HG , gx, gy,Wγ)

If γ 6= γ′ then return 0 else return 1

Here the oracle DDHsolveG(g, ga, gb, gc) returns 1 iff ab = c mod p. We define
the advantage of B in the above experiment as

Advghdh
Gen,B(k) =

∣∣∣∣Pr
[
Expghdh

Gen,B(1k) = 1
]
− 1

2

∣∣∣∣ .

We say that the Gap Hashed Diffie-Hellman (GHDH) assumption relative to
group generator Gen holds if Advghdh

Gen,B is a negligible function in k for all
polynomial-time adversaries B.

We remark that in so called gap-groups, i.e. in groups where the Decisional
Diffie-Hellman (DDH) problem is easy on every input while the computational
Diffie-Hellman (CDH) problem CDH problem is hard [20], the GHDH assump-
tion is equivalent to the HDH assumption. A possible implementation of gap-
groups is given by the Weil/Tate bilinear pairing allowing to efficiently compute
a bilinear pairing which can be used to solve DDH [8].

At first glance one may argue that assuming the hashed key H(gxy) to be in-
distinguishable from a random string even though we can efficiently distinguish
gxy from a random group element sounds quite unreasonable and that, in a sense,
hardness falls back on “random-oracle-like” properties of the hash function. How-
ever, this intuition is not true. We can show that in generic groups [24] GHDH
holds (unconditionally) assuming the hash function H is “weakly one-way”. The
latter result basically means that the GHDH assumption depends on the hard-
ness of computing the Diffie-Hellman key plus the fact that given only H(gxy)
it is hard to recover sufficient information on the Diffie-Hellman key gxy. This
should in particular hold for cryptographic hash functions like SHA-1. Also, the
well known and often employed Bilinear Diffie-Hellman (BDH) assumption [8]
can in fact be seen as a special (algebraic) instantiation of the GHDH assump-
tion. More precisely, using the specific algebraic hash function H(X) := êZ(X),
where êZ(X) := ê(X, Z) is a bilinear mapping for fixed Z = gz (but chosen
uniformly at setup), we get H(gxy) = ê(gxy, gz) = ê(g, g)xyz and GHDH actually
gets BDH (here the output of H is a group element, not a binary string). In this

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 7

context, GHDH instantiated with a cryptographic hash function appears not to
be a less reasonable assumption than the “standard” BDH assumption.

More details are given in the full version [18]. There we also propose various
candidates for Gen (i.e., for the prime-order group G and the hash function H)
and provide a detailed security analysis of the GHDH assumption. In practice
however, we recommend using a cryptographic hash function like MD5 or SHA-1.

4 Key Encapsulation based on GHDH

4.1 The Key Encapsulation Mechanism

Let HG = (G, g, p,H) be random parameters obtained by running the parameter
algorithm Gen(1k), where H : G → {0, 1}l(k) is a random instance of a hash
function such that the GHDH assumptions holds relative to Gen. Let INJ : G→
Zp be an efficiently computable injective encoding.1 We build a key encapsulation
mechanism KEM = (Kg,Enc,Dec) as follows.

Kg(1k)
x, y

$← Z∗p
u← gx ; v ← gy

pk ← (u, v)
sk ← (x, y)
Return (pk , sk)

Enc(pk)
r

$← Z∗p ; c← gr

t← INJ(c) ; π ← (utv)r

K ← H(ur) ∈ {0, 1}l(k)

C ← (c, π) ∈ G2

Return (C ,K)

Dec(sk ,C)
Parse C as (c, π)
t ← INJ(c)
If cxt+y 6= π then ⊥
Else K ← H(cx)
Return K

Decapsulation also has to perform one subgroup-membership test, i.e. it checks if
c ∈ G, and returns ⊥ (reject) otherwise. Note that cxt+y = π then automatically
also implies π ∈ G.

Efficiency. The public key contains two group elements, the secret key of two
elements from Zp. A ciphertext C consists of two group elements, the key K is
a binary string of length l(k). Ignoring all “symmetric operations”, encapsula-
tion needs three regular exponentiations, whereas decapsulation can be carried
out in two exponentiation. Using the concept sequential/multi-exponentiations2

(see, e.g., [22, 4]) a considerable (and practical) speed-up can be obtained: en-
capsulation needs two regular exponentiations (to compute c and K) plus one
multi-exponentiation (to compute π = utrvr), whereas decapsulation can be
carried out in one single sequential exponentiation (to compute cxt+y and cx).

1 Actually, an “almost injective” encoding is sufficient for our purpose, see [9]. Most
interesting groups allow for such an encoding [11, 9, 13]. If such an encoding is not
available one can also use a target collission resistant hash function TCR : G → Zp,
see [18] for more details.

2 One multi-exponentiaion computes the group element gahb and one sequential ex-
ponentiation computes the two group elements ga and gb in one single step (for the
same fixed base g). Both concepts are related and (using Pippenger’s algorithm [22])
can be carried out in about (1 + 2/ log log p) log p multiplications over G [4] which
we will count as ≈ 1.2 exponentiations.

8 E. Kiltz

Correctness. Fix a pair of keys (pk , sk). We call a ciphertext C = (c, π) ∈ G2

consistent if cxt+y = π for t = INJ(c). For a correctly generated ciphertext
C = (c, π) = (gr, utrvr) we have cxt+y = (gxt+y)r = (utv)r = π and hence C
is consistent. In that case decapsulation reconstructs the session key as K =
H(cx) = H((gr)x) = H(ur), as the key in encapsulation.

Public Verifiability in Gap-Groups. Let C = (c, π) ∈ G2 be a ciphertext
with c = gr for some value r ∈ Zp. Then (g, utv = gxt+y, c = gr, π) is a Diffie-
Hellman-tuple if and only if g(xt+y)·r = π what is equivalent to cxt+y = π.
Therefore in gap-groups consistency of a ciphertext can be publicly checked
using one call to the Diffie-Hellman oracle, i.e. by verifying if DDHsolveG(g, utv =
gxt+y, c = gr, π) returns true. This property is denoted as public verifiability of
the ciphertext and it give rise to a public-key threshold KEM [9].

4.2 Security

Our main theorem can be stated as follows:

Theorem 1. Under the Gap Hashed Diffie-Hellman assumption relative to gen-
erator Gen, the key encapsulation mechanism from Section 4.1 is secure against
chosen-ciphertext attacks. In particular, for any adversary A against the KEM
running for time TimeA(k), there exist an adversary B with Advghdh

Gen,B(k) ≥
Advkem-cca

KEM ,A (k) and TimeB(k) = TimeA(k) + O(q · TimeG(k)), where q is an
upper bound on the number of decapsulation queries made by adversary A and
TimeG(k) is the time for a standard operation in G.

We want to stress that the key encapsulation mechanism does not make use of the
Decision Diffie-Hellman oracle DDHsolve. Its existence is part of the assumption
and solely needed for the proof of security.

The proof is quite simple. An intuitive way to understand it is as follows:
first consider a modified KEM that is obtained by abandoning the hash function
H from the construction in Section 4.1, i.e. the symmetric key is now com-
puted as K = ur. What we can prove is that this modified KEM is one-way
chosen-ciphertext secure under the gap Diffie-Hellman (GDH) assumption. In
the security reduction the DDH oracle provided by the GDH assumption is used
to reject (as in the original scheme) every invalid ciphertext submitted by the
adversary to the decryption oracle. The key idea of the reduction is based on
an algebraic technique from [5] that was also used in [9, 16] in the context of
KEMs. An attacker B against the GDH problem can setup the public-key for
the adversary attacking the security of the KEM in a way that (i) adversary B
(without knowing the secret key) can decapsulate every ciphertexts except the
challenge ciphertext; (ii) decapsulating the challenge ciphertext is equivalent to
solving GDH. If the adversary against the KEM is successfull (i.e. it decapsu-
lates the challenge ciphertext) so this adversary can be used to break the GDH
problem using the above simulation.

More details. Adversary B inputs a GDH instance (g, u, ga) and it’s goal is to
compute T = ua (recall that we are attacking one-way chosen-ciphertext secu-
rity). He picks a random value d and defines the (thereby correctly distributed)

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 9

public key as pk = (u, v = u−t∗gd), where t∗ = INJ(ga). Note that this way a
consistent ciphertext (c, π) properly created by the encapsulation algorithm has
the form

c = gr, π = (utv)r = (ur)t−t∗cd , (1)

for some t ∈ Zp. Hence, in order to decapsulate the challenge ciphertext C ∗ =
(c∗, π∗) defined as c∗ := ga, π∗ := (ga)d = (ua)t∗−t∗cd (i.e., a ciphertext com-
puted with unknown randomness a from the GDH instance, where t∗ = INJ(c∗)),
adversary A (which is run on pk and C ∗) has to compute the target key K∗ = ua

what is equivalent to breaking GDH. On the other hand, for a decapsulation
query for ciphertext (c, π), B first checks for consistency using the DDH ora-
cle DDHsolve provided by the GDH assumption. If the ciphertext is inconsis-
tent it gets rejected. Otherwise, by injectivity of INJ, we have t = INJ(c) 6=
INJ(c∗) = t∗ and the correct key K = ur can be reconstructed by Eqn. (1) as
K = (π/cd)1/(t−t∗).

The step to full security (i.e., indistinguishability compared to one-wayness)
now can be intuitively understood by the fact that (in terms of the assumption)
we move from GDH to GHDH, i.e. under GHDH the hash function H hides all
information about the Diffie-Hellman key ur. A more formal proof is given in
Appendix A.

4.3 KEM/DEM: from KEM to full encryption

A KEM and a symmetric encryption scheme (aka DEM) can be used to obtain a
hybrid public-key encryption scheme. It is well known that if both the KEM and
the DEM are chosen-ciphertext secure, then the resulting hybrid encryption is
also chosen-ciphertext secure [11, Sec. 7]. The security reduction is tight. A DEM
secure against chosen-ciphertext attacks can be built from relatively weak prim-
itives, i.e. from any one-time symmetric encryption scheme by essentially adding
a MAC. Phan and Pointcheval [21] showed that strong pseudorandomn permuta-
tions directly imply redundancy-free chosen-ciphertext secure DEMs that avoid
the usual overhead due to the MAC. It seems reasonable to believe that known
block-ciphers (auch as AES) are strong PRPs.

In the full version [18] we also sketch how to obtain a direct PKE scheme that
may be usefull to non-interactive chosen-ciphertext secure threshold encryption
scheme [9].

4.4 Relation to other encryption schemes

The KEMs based on “identity-based techniques” [9, 16, 17] are very similar to
our construction. In fact, (a slight variation of) the KEM from [9] (which itself
is based on the first IBE scheme Boneh and Boyen [5]) can be obtained from our
KEM by instantiating the hash function H with a bilinear map, i.e. by defining
H(X) = ê(gz, X) (further simplifications in the decapsulation algorithm must
be applied). As we already sketched in Section 3.2, security of the KEM then
can be proved relative to the BDH assumption (just as in [9]). However, since it

10 E. Kiltz

involves computing bilinear maps, the BWM-KEM is considerably less efficient
than our proposal when H is a cryptographic hash function.

Surprisingly, the KEM part (KD-KEM) of the Kurosawa-Desmedt public-key
encryption scheme [19] looks quite similar to our construction. Indeed, the KD-
KEM encapsulates by computing the ciphertext as (c1, c2) = (gr, ĝr) and the
corresponding symmetric key is defined as K = (utv)r, where g, ĝ, u = gxĝx̂, v =
gy ĝŷ are elements from the public key and t is computed as t = TCR(c1, c2).
In comparison (and ignoring the hash function) our scheme basically swaps the
elements c2 and K, i.e. the ciphertexts of our scheme are given by (gr, (utv)r)
(t now only depends on gr), where the corresponding key is H(ur).

In contrast our KEM is provably secure under a well-defined number-theoretic
assumption whereas the KD-KEM was recently shown to be not even one-way
chosen-ciphertext secure [14]. One could possible remark that the stronger se-
curity properties of our KEM inherently rely on the stronger assumption, i.e.,
the hash function H and the DDH oracle in the GHDH assumption (the gap-
property). However, this is not true as we will explain now; security rather seems
to depend on the particular constellation of the ciphertexts of our KEM. First,
the attack from [14] aganst the KD-KEM is still valid if the two elements in
the KD-KEM ciphertext get checked for consistency before decapsulating the
key, i.e. the attack does not rely on “inconsistent ciphertext queries”. In other
words it is not the “gap”-property of the GHDH assumptions that makes the
difference in the (in-)security of the two KEMs. Second, chosen-ciphertext secu-
rity of our KEM does also not depend on the hash function H since without H
our KEM is still one-way chosen-ciphertext secure under the gap computational
Diffie-Hellman assumption. As pointed out earlier the hash function H is only
responsible to provide indistinguishability (rather than one-wayness).

4.5 Key-encapsulation based on GHMDH

In this section we sketch a usefull generalization of our KEM construction to
build schemes based on the general class of GHMDH assumptions which we now
introduce.

For an integer ` ≥ 1 let D ∈ G`×` be a matrix with entries Di,j ∈ G
(1 ≤ i, j ≤ `). Let H : G`×` → K be a hash-function that maps `2 group el-
ements into a key-space K. Informally, the Gap Hashed Multi Diffie-Hellman
(GHMDH) assumption (realtive to hash function H and group G) states that,
given g1, . . . , g`, h1, . . . , h`, g

r1
1 , . . . , gr`

` and access to a DDH oracle, it is com-
putationally infeasible to distinguish H(D) from a random element in K, where
the (hidden) entries of matrix D contain all `2 possible combinations of Diffie-
Hellman keys, i.e. Di,j = h

rj

i . Intuitively, the hash function H can be viewed as
a hard predicate of the `2 different Diffie-Hellman keys. Clearly, for ` = 1 and
K = {0, 1}l(k) this simplifies to the GHDH assumption but in this section we
focus mostly on algebraic candidates of the form H : G`×` → G, for ` ≥ 2.

As one illustrating example of the much general class of GHMDH assump-
tions, the Gap Decision Linear Diffie-Hellman (GLDH) assumption [6] is ob-
tained by setting ` = 2 and defining H : G2×2 → G as H(D) = D1,1 ·D1,2. More

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 11

precisely, the GLDH assumption states that, given g1, g2, g
r1
1 , gr2

2 , h1,W , destin-
guishing W = hr1+r2

1 from a uniform W ∈ G is computational infeasible, even
relative to a DDH oracle. Originally, the GLDH assumption was defined over
bilinear maps [6] (called Decision Linear Diffie-Hellman assumption), whereas
here we only require the assumption to hold relative to a DDH oracle. This,
in particilar, makes it possible to define (and apply) it relative to any cyclic
group [16].

More generally, for any polynomial ` = `(k) ≥ 2, one can also define the
class of `-GLDH assumptions for arbitrary ` = `(k) = poly(k) by defining H :
G`×` → G as H(D) =

∏`
i=1 D1,i. (Note that the 1-GLDH assumption states that

DDH is hard relative to a DDH oracle which is clearly insecure without applying
any further hash function to the Diffie-Hellman key.) The `-GLDH assumptions
form a strict hierarchy of security assumptions with 2-GLDH = GLDH and, the
larger the `, the weaker the `-GLDH assumption. More precisely, for any ` ≥ 2
we have that `-GLDH implies `+1-GLDH. On the other hand (extending [6])
we can show that in the generic group model [24], the `+1-GLDH assumption
holds, even relative to an `-GLDH oracle.

We now (extending Section 4.1) build a key encapsulation mechanism KEM =
(Kg,Enc,Dec) based on the HGMDH assumption. We define SH as the subset
of indices (i, j) ∈ {1, . . . , `}2 such that the hash function H(D) depends on
entry Di,j . (For example, for `-GLDH we have SH = {(1, 1), . . . , (1, `)}.) Let
TCR : G` → Zp be a target collision-resistant hash function.

Key generation Kg(1k) generates random group elements g1, . . . , g`, h1, . . . , h`

and indices xi,j ((i, j) ∈ SH) such that hi = g
xi,j

j . Furthermore it defines
ui,j = g

yi,j

j , for random yi,j ((i, j) ∈ SH). The public key contains the elements
(gi)1≤i≤`, (hi)1≤i≤`, and (ui,j)(i,j)∈SH

, and the secret key contains all correspond-
ing indices.

Enc(pk)
For j ∈ {1, . . . , `}: rj

$← Z∗p ; cj ← g
rj

j

t← TCR(c1, . . . , c`)
For (i, j) ∈ SH:

πi,j ← (ht
iui,j)rj ; Ki,j ← h

rj

i

K ← H(K) ; C ← (c1, . . . , c`, (πi,j)(i,j)∈SH
)

Return (C ,K)

Dec(sk ,C)
t← TCR(c1, . . . , c`)
For each (i, j) ∈ SH:

if c
xi,jt+yi,j

j 6= πi,j ⊥
Ki,j ← c

xi,j

j

Return K ← H(K)

The ciphertexts of this KEM contain `+ |SH| group elements, public/secret keys
2`+ |SH| elements. The above scheme instantiated with the 2-GLDH assumption
reproduces the KEM from [16] which, for any polynomial ` ≥ 2, generalizes to the
class of `-GLDH schemes. Using simiar techniques as for the proof of Theorem 1,
the above scheme can be proved secure under the GHMDH assumption, see [18]
for details.

12 E. Kiltz

5 Comparison

The usual efficiency comparison with all previously known chosen-ciphertext se-
cure KEMs/encryption schemes in the standard model is assembled in Table 1.
Here KD is the hybrid encryption scheme from Kurosawa and Desmedt [19] and

Scheme Security Cipher Enc Dec Keysize Publ Any
Assmptn Overhead #pair+#[mult,reg]-exp (pk/sk) Vfy? group?

KD DDH 2|p| 640 0 + [1, 2] 0 + [1, 0] 4/4 —
√

CS DDH 3|p| 768 0 + [1, 3] 0 + [1, 1] 5/5 —
√

BMW BDH 2|p| 512 0 + [1, 2] 1 + [0, 1] 4/3
√

—
Ours §4.1 GHDH 2|p| 512 0 + [1, 2] 0 + [1, 0] 3/2

√∗ √

Ours §4.5 `-GLDH 2`|p| 512` 0 + [`, 2`] 0 + [`, 0] 2` + 1/2`
√∗ √

∗in gap and pairing groups only

Table 1. Efficiency comparison for chosen-ciphertext secure hybrid encryption
schemes. Some figures are borrowed from [9, 16]. For efficiency we count the number
of pairings + [multi exponentiations, regular exponentiations] used for encryption and
decryption. All “symmetric” operations are ignored. Ciphertext overhead represents
the difference (in bits) between ciphertext and plaintext length. For concreteness the
expected ciphertext overhead for an 128-bit implementation is also given. The keysize
is measured in two parameters: the size of the system parameters (which are fixed for
every public-key) plus the size of the public key pk , and the size of the secret key sk .
Here we only take into account the number of group elements for params plus pk , and
the number of elements in Z∗p for sk . A “

√
” in the “Publ. Vfy” column means that

the scheme supports public verifiability. A “
√

” in the “Any group?” column means
that the scheme can be implemented in any prime-order group, whereas a “—” means
that the scheme has to be implemented in pairing groups. For comparison we mention
that relative timings for the various operations are as follows: bilinear pairing ≈ 3− 5,
multi(=sequential)-exponentiation ≈ 1.2 [4], and regular exponentiation = 1.

CS refers to the Cramer-Shoup encryption scheme [10] which we compare in its
hybrid variant from [11]. BMW is the KEM from Boyen, Mei, and Waters [9].
Our first scheme is the GHDH-based KEM from Section 4.1 instantiated with
an efficient cryptographic hash function H : G → {0, 1}l(k). Our second scheme
refers to the `-GLDH-based scheme from Section 4.5 which, for the case ` = 2,
simplifies to the GLDH-based KEM from [16]. All KEMs are assumed to be in-
statiated using a redundancy-free chosen-ciphertext secure symmetric scheme to
obtain a full hybrid PKE scheme. The KD encryption scheme can only be proved
secure in combination with an authenticated symmetric encryption scheme [2]
which inherently adds “one MAC” overhead to the ciphertext size.

Even though our scheme shares the same number of exponentiations for en-
cryption/decryption with the KD scheme, it has some practical advantages which
makes a more efficient implementation possible. First, it is possible to use a bi-
jective encoding INJ : G→Zp and does not have to rely on expensive number-

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 13

theoretic constructions of provably secure TCR functions. Second, one only needs
one subgroup membership test for decryption, whereas the KD-scheme needs
two. Depending on the underlying group such subgroup membership tests may
be as expensive as one exponentiation. Third, the class of symmetric encryption
schemes our KEM can be securely instantiated with is larger since we do not
require authenticated encryption. This in particular makes it possible to rely on
free redundancy-free “one-pass” symmetric techniques (which process the mes-
sage to be encrypted only once). For authenticated encryption there are only
less efficient two-pass schemes freely available since all one-pass techniques are
covered by patents [3].

Acknowledgments. We thank Michel Abdalla, Mihir Bellare, Yevgeniy Dodis,
Martijn Stam, and Moti Yung for comments and suggestions. This research was
partially supported by the research program Sentinels (http://www.sentinels.
nl). Sentinels is being financed by Technology Foundation STW, the Nether-
lands Organization for Scientific Research (NWO), and the Dutch Ministry of
Economic Affairs. Parts of this paper were written while the author was a visitor
at University of California San Diego supported by a DAAD postdoc fellowship.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 143–158. Springer-Verlag, Berlin, Germany, Apr. 2001.

2. M. Bellare, T. Kohno, and V. Shoup. Stateful public-key cryptosystems: How to
encrypt with one 160-bit exponentiation. In A. Juels, R. N. Wright, and S. Vimer-
cati, editors, ACM CCS 06, pages 380–389. ACM Press, Oct. / Nov. 2006.

3. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. K.
Roy and W. Meier, editors, FSE 2004, volume 3017 of LNCS, pages 389–407.
Springer-Verlag, Berlin, Germany, Feb. 2004.

4. D. J. Bernstein. Pippenger’s exponentiation algorithm. Available from http:

//cr.yp.to/papers.html, 2001.
5. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryp-

tion without random oracles. In C. Cachin and J. Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer-Verlag, Berlin, Ger-
many, May 2004.

6. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, Berlin,
Germany, Aug. 2004.

7. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing, 5(36):915–942, 2006.

8. D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

9. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-
based techniques. In V. Atluri, C. Meadows, and A. Juels, editors, ACM CCS 05,
pages 320–329. ACM Press, Nov. 2005.

10. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 13–25. Springer-Verlag, Berlin, Germany, Aug. 1998.

14 E. Kiltz

11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

12. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

13. R. R. Farashahi, B. Schoenmakers, and A. Sidorenko. Efficient pseudorandom
generators based on the DDH assumption. In PKC 2007, volume ???? of LNCS,
pages ???–??? Springer-Verlag, 2007.

14. D. Hofheinz, J. Herranz, and E. Kiltz. The Kurosawa-Desmedt key encapsulation is
not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207, 2006.
http://eprint.iacr.org/.

15. D. Hofheinz and E. Kiltz. Concise Hybrid Encryption. Manuscript, 2006.

16. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer-
Verlag, Berlin, Germany, Mar. 2006.

17. E. Kiltz. On the limitations of the spread of an IBE-to-PKE transformation. In
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958
of LNCS, pages 274–289. Springer-Verlag, Berlin, Germany, Apr. 2006.

18. E. Kiltz. Chosen-ciphertext secure key-encapsulation based on Gap Hashed Diffie-
Hellman (full version). Cryptology ePrint Archive, 2007. http://eprint.iacr.

org/.

19. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442.
Springer-Verlag, Berlin, Germany, Aug. 2004.

20. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In K. Kim, editor, PKC 2001, volume 1992
of LNCS, pages 104–118. Springer-Verlag, Berlin, Germany, Feb. 2001.

21. D. H. Phan and D. Pointcheval. About the security of ciphers (semantic security
and pseudo-random permutations). In H. Handschuh and A. Hasan, editors, SAC
2004, volume 3357 of LNCS, pages 182–197. Springer-Verlag, Berlin, Germany,
Aug. 2004.

22. N. Pippenger. On the evaluation of powers and related problems. In Proceedings
of FOCS 1976, pages 258–263, 1976.

23. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 433–444. Springer-Verlag, Berlin, Germany, Aug. 1992.

24. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer-Verlag,
Berlin, Germany, May 1997.

A Proof of Theorem 1

Suppose there exists a polynomial time adversary A that breaks the chosen-
ciphertext security of the encapsulation scheme with (non-negligible) advantage
Advkem-cca

KEM ,A (k) and makes at most q decapsulation queries.
We show that there exists an adversary B that runs in time TimeB(k) =

TimeA(k) + O(q ·TimeG(k)), (where TimeG(k) is the time to perform a basic

CCA Secure Key-Encapsulation based on Gap Hashed Diffie-Hellman 15

operation in G) and runs adversary A as a subroutine to solve a random instance
of the GHDH problem with advantage

Advghdh
Gen,B(k) ≥ Advkem-cca

KEM ,A (k) . (2)

Now Eqn. (2) proves the Theorem.
We now give the description of adversary B. Adversary B inputs an instance

of the GHDH problem, i.e. B inputs the values (1k, HG ,H, g, u = ga, gb,W). B’s
goal is to determine whether W = H(ub) or W ∈ {0, 1}l is a random bit string.
Adversary B runs adversaryA simulating its view as in the original KEM security
experiment as follows:

Key Generation & Challenge. Initially adversary B picks a random value
d ∈ Z∗p and defines the target ciphertext

C ∗ = (c∗, π∗)← (gb, (gb)d) . (3)

and the challenge key as K∗ = W . We denote t∗ = INJ(c∗) as the target
tag (associated with the target ciphertext). The value v from the public key
pk = (u, v) is defined as

v ← u−t∗ · gd . (4)

Note that the public key is identically distributed as in the original KEM.
With each ciphertext C = (c, π) we associate a tag t = INJ(c). Recall that
we call a ciphertext consistent if π = (utv)r, where r = logg c. Note that the
way the keys are setup for a consistent ciphertext we have

π = (utv)r = (utu−t∗gd)r = (ur)t−t∗ · cd . (5)

Given a consistent ciphertext C = (c, π) with associated tag t 6= t∗ the
session key K = H(cx) can alternatively be computed by Eqn. (5) as

K = H((π/cd)(t−t∗)−1
) . (6)

By Eqn. (5) and since t∗ = INJ(c∗) the challenge ciphertext C ∗ = (c∗, π∗) =
(gb, (gb)d) = (c∗, (c∗)d) is a correctly generated ciphertext for randomness b.
If W = H(ub) then it follows by Eqn. (4) that C ∗ = (gb, (gb)d) is a correct
ciphertext of key K∗ = W = H(ub), distributed as in the original experiment.
On the other hand, when W is uniform and independent in {0, 1}l then C ∗

is independent of K∗ = W in the adversary’s view.
Adversary B runs A on input (pk ,K∗,C ∗) answering to its queries as follows:

Decryption queries. The KEM decapsulation queries are simulated by B as
follows: Let C = (c, π) be an arbitrary ciphertext submitted to the de-
capsulation oracle DecO(sk , ·). First B performs a consistency check of the
ciphertext, i.e. it checks (using the Diffie-Hellman oracle DDHsolveG(·, ·, ·, ·))
if (g, utv, c, π) is a valid Diffie-Hellman tuple.3

3 At this point the existence of a weak DDH oracle DDHsolveg,u(·, ·) for fixed
u is sufficient. This is since (g, utv, c, π) is a valid Diffie-Hellman tuple iff

(g, u, c, (π/cd)(t−t∗)−1)) is a valid Diffie-Hellman tuple. So to verify consistency of

the KEM ciphertext, B equivalently queries DDHsolveg,u(c, (π/cd)(t−t∗)−1
).

16 E. Kiltz

We remark that this is the only case where the simulation depends on the
existence of the DDH oracle DDHsolve. If C is not consistent then B returns
⊥. Otherwise, if the ciphertext is consistent B computes t = INJ(c) and
distinguishes the following three cases:
Case 1: t = t∗ and c = c∗: adversary B rejects the query. In this case

consistency (Eqn. (5)) implies π = cd = (c∗)d = π∗ and hence C = C ∗

and the query made by A is illegal. Therefore it may be rejected by B.
Case 2: t = t∗ and c 6= c∗: this is not possible since INJ : G → Zp is an

injection. (If more generally we use a TCR function then at this point
adversary B found a collision c 6= c∗ in TCR with TCR(c) = TCR(c∗).)

Case 3: t 6= t∗: adversary B computes the correct session key by Eqn. (6)
as K ← H((π/cd)(t−t∗)−1

).
This completes the description of the decapsulation oracle.
We have shown that the simulation of the decapsulation oracle is always
perfect, i.e. the output of the simulated decapsulation oracle is identically
distributed as the output of Dec(sk ,C).

Guess. Eventually, A outputs a guess δ′ ∈ {0, 1} where δ′ = 1 means that K∗ is
the correct key. Algorithm B concludes its own game by outputting γ′ := δ′

where γ′ = 1 means that W = H(gab) (i.e. γ = 1) and γ′ = 0 means that W
is random (γ = 0).

This completes the description of adversary B.

Analysis. Define ”F” to be the event that B wins its GHDH game, i.e. it outputs
δ′ = 1 if W = H(gab) and δ′ = 0 if W is random. On the one hand, if W is uniform
and independent in {0, 1}l then the challenge ciphertext C ∗ is independent of
K∗ = W in the adversary’s view. In that case we have Pr [F] = Pr [δ′ = 0] = 1

2 .
On the other hand, when W = H(gab) then C ∗ is a correct ciphertext of the chal-
lenge key K∗, distributed as in the original experiment. Then, by our assumption,
A must make a correct guess δ′ = 1 with advantage at least Advkem-cca

KEM ,A (k) and
we have |Pr [F]− 1

2 | = |Pr [δ′ = 1]− 1
2 | ≥ Advkem-cca

KEM ,A (k).
Therefore, adversary B’s advantage in the GHDH game is Advghdh

Gen,B(k) ≥
Advkem-cca

KEM ,A (k) which proves Eqn. (2) and completes the proof of the theorem.

