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Abstract. In the CT-track of the 2006 RSA conference, a new multi-
variate public key cryptosystem, which is called the Medium Field Equa-
tion (MFE) multivariate public key cryptosystem, is proposed by Wang,
Yang, Hu and Lai. We use the second order linearization equation attack
method by Patarin to break MFE. Given a ciphertext, we can derive the
plaintext within 223 F216 -multiplications, after performing once for any
given public key a computation of complexity less than 252. We also pro-
pose a high order linearization equation (HOLE) attack on multivariate
public key cryptosystems, which is a further generalization of the (first
and second order) linearization equation (LE). This method can be used
to attack extensions of the current MFE.
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1 Introduction

For the last three decades, public key cryptosystems, as a revolutionary break-
through in cryptography, have developed into an indispensable element of our
modern communication system. For RSA and other number theory based cryp-
tosystems, their security depends on the assumption about the difficulty of cer-
tain number theory problems, such as the Integer Prime Factorization Problem
or the Discrete Logarithm Problem. However, due to the quantum computer at-
tack by Shor [Sho99] and the demand for more efficient cryptosystems for small
devices, there is a great challenge to build new public key cryptosystems, in
particular ones that could survive future attacks utilizing quantum computers
[PQ].
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One such research direction utilizes a set of multivariate polynomials over a
finite field, in particular, quadratic polynomials, as the public key of the cipher,
which are called multivariate public key cryptosystems (MPKC). This method
is based on the proven theorem that solving a set of multivariate quadratic poly-
nomial equations over a finite field generally is an NP-complete problem. Note,
however, this does not guarantee that these new cryptosystems are secure. In the
last decade, there has been tremendous amount of work devoted to this area. In
2004, one such cryptosystem, Sflash [ACDG03] [PCG01a], was accepted as one
of the final selections in the New European Schemes for Signatures, Integrity,
and Encryption: IST-1999-12324. A more efficient family of Rainbow signature
schemes was also proposed in the last years [DS05] [YC05] [WHLCY05].

In the development of MPKC, one particular interesting and important new
area is the development of the so-called algebraic attack. This new attack method
started from the linearization equation (LE) attack by Patarin [Pat95], which
is used to break Matsumoto-Imai cryptosystems. A linearization equation is an
equation in the form:

∑
aijuivj +

∑
biui +

∑
cjvj + d = 0, where the ui are

components of the plaintext and the vj are components of the ciphertext.
Later, Patarin, Courtois, Shamir, and Kipnis generalized this method by

multiplying high order terms uα1
1 · · ·uαn

n of the plaintext variables but using
only linear terms of ciphertext variables (vj), which is called the XL method
[CKPS00]. The method is closely related to the new Gröbner basis method by
Faugere [Fau99] [AFIKS04]. Furthermore, this new algebraic method was used
to attack symmetric ciphers like AES and others [CPi02]. One can see that
algebraic attacks are becoming increasingly important in cryptography.

Another generalization of LE also by Patarin [Pat96,PCG01a,C00], which is
not as well-known, is the type of equations in the form:∑

aijkuivjvk +
∑

bijuivj +
∑

ciui +
∑

djkvjvk +
∑

ejvj + f = 0.

As a further extension, we propose to call the equations that use high order
terms of the ciphertext variables (vj) while using only linear terms of plaintext
variables (ui), high order linearization equations (HOLE). The total degree of the
highest order of the ciphertext variables (vj) is called the order of the HOLE and
the equation above is thus called a second order linearization equation (SOLE).
For any MPKC, if we can derive such equations, then for any given ciphertext,
we can insert it into the HOLEs, producing linear equations satisfied by the
plaintext and these equations can be used to attack the system.

It turns out that the SOLEs can be used efficiently to break the Medium
Field Equation (MFE) multivariate public key cryptosystem proposed by Wang,
Yang, Hu and Lai in the CT-track of the 2006 RSA conference [WYH06].

MFE is an encryption scheme. Many encryption schemes of MPKC have
been proposed, and many of them have been broken, for example, the TTM
cryptosystem family [Moh99] [GC00] [CM01] [DS03a] [DS03b] [MCY04]. A very
different direction goes along the idea started by Matsumoto and Imai [MI88],
which can be generally called the ”Big Field” idea.
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Given a multivariate public key cryptosystem, the public key is defined as a
map over the vector space Kn, where K is a small finite field with q elements.
However from the theory of finite fields, Kn can also be identified with a ”big”
finite field E, which is a degree n extension of K. That is, there is a standard
K-linear vector space isomorphism that identifies E with Kn. The idea of the
”Big Field” is that we can find a map, say φ2, that is easy to invert on E. Under
the isomorphism we can build a map φ̃2: Kn → Kn as:

φ̃2(u1, ..., un) 7→ (g1(u1, ..., un), · · · , gn(u1, ..., xn)).

Then we use φ1 and φ3, two randomly chosen invertible affine linear maps over
Kn which are the key part of the private key to ”hide” φ2. The public key is
given by

φ̄2(u1, ..., un) = φ3 ◦ φ̃2 ◦ φ1(u1, ..., un)
= (h1(u1, ..., un), h2(u1, ..., un), · · · , hn(u1, ..., un)).

The Matsumoto-Imai (MI) cryptosystem was broken by Patarin [Pat95],
and later Patarin developed the HFE cryptosystem [Pat96]. The only differ-
ence between HFE and the MI is that they choose different φ2. Currently the
more promising cryptosystems are new variants of the MI and the HFE through
Oil-Vinegar constructions and internal perturbations [Din04a] [FGS05] [DG05]
[DS04a]. The idea to put several ”big fields” together to build a cryptosystem is
also used [MI88] [Pat96]. The new MFE cryptosystem [WYH06] uses what the
designers call ”Medium Field Encryption”. The non-linear critical part of the
public key is a function over an extension of the base field K of degree smaller
than what would be called the ”big field”. Another key difference between MFE
and HFE is that MFE uses functions derived from a matrix structure while the
MI and the HFE use only polynomials of a single variable.

In the attack on MFE, we first use second order linearization equations
(SOLEs), which we derive from the special algebraic structure of the crucial
nonlinear map in MFE. This is the most essential step in our attack. Any given
ciphertext can be inserted into the SOLEs to produce a set of equations linear in
the plaintext variables. Solutions to these equations are finally plugged back into
the original public key polynomial equations, providing a set of new quadratic
equations that could be easily solved. The complexity of our break is less than
252 one-time multiplications over K for any given public key, and the practical
complexity of recovering a ciphertext is less than 223 K-operations.

The current MFE is based on matrices of size 2 × 2 and one may extend it
to a construction using matrices of bigger size. The HOLEs of higher order can
be extended to attack such an extension of the current MFE and the order of
HOLE corresponds exactly to the size of the matrices.

We organize the paper as follows. We introduce the MFE cryptosystem in
Section 2, and present our attack in Section 3. In Section 4, we discuss the
connection of HOLE with the XL method. In the final section, we present the
conclusion.
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2 MFE Public Key Cryptosystem

Let K be a finite field, generally F216 . Let L be its degree r extension field; L is
considered the ”Medium Field”. In MFE, we always identify L with Kr by a K-
linear isomorphism π : L → Kr. Namely we take a basis of L over K, {θ1, · · · , θr},
and define π by π(a1θ1 + · · · + arθr) = (a1, · · · , ar) for any a1, · · · , ar ∈ K. It
is natural to extend π to two K-linear isomorphisms π1 : L12 → K12r and
π2 : L15 → K15r.

A private key of MFE consists of two invertible affine transformations φ1 and
φ3; and φ1 is defined on K12r, and φ3 on K15r. Let φ2 : L12 → L15 be the central
nonlinear quadratic map of MFE. Note φ2 is fixed except for the three compo-
nents Q1, Q2, and Q3, which have randomly chosen coefficients. The correspond-
ing public key is 15r quadratic polynomials h1(u1, ..., u12r), h2(u1, ..., u12r), · · · ,
and h15r(u1, ..., u12r) given by

(h1(u1, ..., u12r), · · · , h15r(u1, ..., u12r)) = φ3 ◦π2 ◦φ2 ◦π−1
1 ◦φ1(u1, ..., u12r). (1)

Let φ2(X1, · · · , X12) = (Y1, · · · , Y15). The expressions of the Yi are given by

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X9 + X7X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12.

(2)

Here Q1, Q2, and Q3 form a triple (Q1, Q2, Q3) which is a triangular map from
K3r to itself as follows. Let π(X1) = (x1, · · · , xr), π(X2) = (xr+1, · · · , x2r),
π(X3) = (x2r+1, · · · , x3r), and let qi ∈ K[x1, · · · , xi−1] for 2 ≤ i ≤ 3r. Then

Q1(X1) =
r∑

i=2

qi(x1, · · · , xi−1)θi,

Q2(X1, X2) =
2r∑

i=r+1

qi(x1, · · · , xi−1)θi−r,

Q3(X1, X2, X3) =
3r∑

i=2r+1

qi(x1, · · · , xi−1)θi−2r.

The qi can be any randomly chosen quadratic polynomials. A specific ”tower”-
structural choice for them is given in §5 of [WYH06].

The encryption of MFE is the evaluation of public key polynomials, namely
given a plaintext (u1, · · · , u12r), its ciphertext is

(v1, · · · , v15r) = (h1(u1, · · · , u12r), · · · , h15r(u1, · · · , u12r)).
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Given a valid ciphertext (v1, · · · , v15r), the decryption of MFE is to calcu-
late in turn φ−1

1 ◦ π1 ◦ φ−1
2 ◦ π−1

2 ◦ φ−1
3 (v1, · · · , v15r). Here the point is how to

invert φ2, its basic idea is to use the triangular structure of φ2. Relating to our
cryptanalysis, the method of computing φ−1

2 is listed as follows, see §4.2 and
Appendix B of [WYH06].

Write X1, · · · , X12, Y4, · · · , Y15 as six 2× 2 matrices:

M1 =
(

X1 X2

X3 X4

)
,M2 =

(
X5 X6

X7 X8

)
,M3 =

(
X9 X10

X11 X12

)
,

Z3 = M1M2 =
(

Y4 Y5

Y6 Y7

)
, Z2 = M1M3 =

(
Y8 Y9

Y10 Y11

)
,

Z1 = MT
2 M3 =

(
Y12 Y13

Y14 Y15

)
.

(3)

Then det(M1) · det(M2) = det(Z3),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).

When M1, M2, and M3 are all invertible, we can get values of det(M1), det(M2),
and det(M3) from det(Z1), det(Z2), and det(Z3), for instance, det(M1) =

(
det(Z2)·

det(Z3)/det(Z1)
)1/2

. The square root operation is easy to handle over a field of
characteristic 2.

With values of det(M1), det(M2), and det(M3), we solve the following trian-
gular map over K3r Y1 = X1 + Q1 + det(M2)

Y2 = X2 + Q2 + det(M3)
Y3 = X3 + Q3 + det(M1)

(4)

to get in turn x1, · · · , xr, xr+1, · · · , x2r, x2r+1, · · · , and x3r. Thus, we recover
X1, X2, and X3. From X1X4+X2X3 = det(M1) we then get X4 provided X1 6= 0.
The X5, · · · , X12 are consequently solved from the 4th to 11th equations of (2).
Appendix B of [WYH06] presents a method of computing the Xi in the case
when X1 = 0. It is slightly easier than the case of X1 6= 0.

If there is a non-invertible matrix among M1, M2, and M3, then the de-
cryption mentioned above will not work. This decryption failure exists in MFE
[WYH06]. We call a plaintext singular if its corresponding M1, M2, and M3

are not all invertible, otherwise it is called nonsingular. The ciphertext of a
nonsingular plaintext is called a nonsingular ciphertext.

It is easy to prove that the ratio of singular plaintexts to all possible plaintexts
is at most 4|L|−1; when L = F264 , the ratio is at most 2−62, which is quite small.
In the next section we only consider how to recover nonsingular ciphertext.

There are two typical instances of MFE proposed by the designers of MFE.
1) MFE-1, where K = F216 and r = 4. The public key has 60 polynomials

with 48 variables.
2) MFE-1′, where K = F216 and r = 5. The public key has 75 polynomials

and 60 variables.
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There is also a mini-version of MFE (MFE-0) using K = F28 and r = 4,
which has the same number of polynomials and variables as MFE-1.

3 Cryptanalysis on MFE

The designers of MFE noted they should avoid the linearization attack of Patarin
(§6.2 of [WYH06]), and this is indeed the case. In the design of MFE, the last
equations of (2) in MFE are defined such that Z1 = MT

2 M3 (see (2)), instead
of Z1 = M2M3. Otherwise we would have Z3M3 = M1Z1 (= M1M2M3); this
would have produced linearization equations for the cryptosystem. However we
can use the HOLE, in particular the SOLE, to attack this cryptosystem.

3.1 Second Order Linearization Equations

First, we will show algebraically why the MFE has second order linearization
equations. Denote by M∗ the associated matrix of a square matrix; for M =(

a b
c d

)
, its associated matrix is M∗ =

(
d −b
−c a

)
. From (3), we have

Z3 = M1M2, Z2 = M1M3. (5)

From these, we can derive

M3M
∗
3 M∗

1 M1M2 = M3(M1M3)∗(M1M2) = M3Z
∗
2Z3,

M3M
∗
3 M∗

1 M1M2 = (M3M
∗
3 )(M1M

∗
1 )M2 = det(M3)det(M1)M2 = det(Z2)M2,

and hence,
M3Z

∗
2Z3 = det(Z2)M2, (6)

that is,(
X9 X10

X11 X12

)(
Y11 −Y9

−Y10 Y8

)(
Y4 Y5

Y6 Y7

)
= (Y8Y11 − Y9Y10)

(
X5 X6

X7 X8

)
. (7)

Expanding (7), we get four equations of the form∑
a′ijkXiYjYk = 0, (8)

which hold for any corresponding pair (X1, · · · , X12, Y1, · · · , Y15). For any non-
singular plaintext, if we substitute all the Yi by its corresponding value in the
four equations of the form (8) derived from (7), we would get four linear equa-
tions with Xi as its . These four equations are linearly independent, since the

matrices
(

Y11 Y9

Y10 Y8

)
and

(
Y4 Y5

Y6 Y7

)
are invertible.
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Substituting (X1, · · · , X12) = π−1
1 ◦ φ1(u1, · · · , u12r) and (Y1, · · · , Y15) =

π−1
2 ◦ φ−1

3 (v1, · · · , v15r) into (8), we get 4r equations of the form

∑
i

ui

∑
j≤k

aijkvjvk +
∑

j

bijvj + ci

+
∑
j≤k

djkvjvk +
∑

j

ejvj + f = 0, (9)

where the coefficients aijk, bij , ci, djk, ej , f ∈ K, and the summations are respec-
tively over 1 ≤ i ≤ 12r, 1 ≤ j ≤ k ≤ 15r and 1 ≤ j ≤ 15r. These equations,
which are linear in plaintext components ui and quadratic in ciphertext compo-
nents vj , are second order linearization equations (SOLEs). It is easy to
show that when all the vj are substituted by any nonsingular ciphertext, the 4r
SOLEs derived from (9) become linearly independent linear equations in ui.

Similarly to (6), we can deduce from (5) another equation

M2Z
∗
3Z2 = det(Z3)M3, (10)

or in its matrix form,(
X5 X6

X7 X8

)(
Y7 −Y5

−Y6 Y4

)(
Y8 Y9

Y10 Y11

)
= (Y4Y7 − Y5Y6)

(
X9 X10

X11 X12

)
. (11)

The 4r SOLEs resulted from (11) are clearly different from the ones correspond-
ing to (9). Furthermore, we can show that the 8r SOLEs obtained from (9) and
(11) are all linearly independent. However, we note that when the vi in these
8r SOLEs derived from (7) and (11) are assigned any nonsingular ciphertext,
we will get only 4r linearly independent linear equations in ui. In other words,
once the values of vi are given, as linear equations in Xi, (10) is completely
equivalent to (6), and one can deduce (10) directly from (6) and vice versa. One
can see this by the fact that multiplying from the right the both sides of (6)
by Z∗

3Z2/det(Z2) (this is a constant invertible matrix if the yi values are given)
gives (10).

Now, it is obvious that there are more SOLEs. We apply the above trick that
results (6) and (10) from (5) to obtain

M2(ZT
1 )∗ZT

2 = det(Z1)MT
1 , (12)

MT
1 (ZT

2 )∗ZT
1 = det(Z2)M2, (13)

from Z2 = M1M3 and Z1 = MT
2 M3. We can also obtain

MT
1 (ZT

3 )∗Z1 = det(Z3)M3, (14)

M3(Z1)∗ZT
3 = det(Z1)MT

1 , (15)

from Z3 = M1M2 and Z1 = MT
2 M3. It is not hard to check that the polynomial

equations derived from (6), (10), and (12)-(15) in terms of Xi and Yj are all
linearly independent. Thus, we get at least 24r linearly independent SOLEs in
ui and vi over K.
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To find all SOLEs, we need to evaluate sufficiently many plain/cipher-texts
in (9) to get a system of linear equations on the aijk, bij , · · · , f . Let s be the
dimension of its solution space and (a(l)

ijk, b
(l)
ij , · · · , f (l)), 1 ≤ l ≤ s, be its s

linearly independent solutions. As mentioned above, we know s ≥ 24r. For attack
purposes, we only need to do the computation to get all the SOLEs once for any
given public key.

Similarly to the relation between (6) and (10), as linear equations in Xi, (12)
is equivalent to (13), and (14) is equivalent to (15) provided that the Yi are
assigned a nonsingular ciphertext value.

In addition, we can show that if we are given the values of vi of a nonsingular
ciphertext, from the 24r linearly independent SOLEs we derived above, we will
produce only 8r linearly independent linear equations in ui. Write (12) in its
matrix form:(

X5 X6

X7 X8

)(
Y15 −Y14

−Y13 Y12

)(
Y8 Y10

Y9 Y11

)
= (Y12Y15 − Y13Y14)

(
X1 X3

X2 X4

)
, (16)

which results in 4r SOLEs. Given the values of Yi of a nonsingular ciphertext,
the eight linear equations in Xi derived from (16) and (7) are linearly inde-
pendent, because the coefficient matrix corresponding to the set of eight linear
equations, with the four equations from (16) as the first four ones, is in the form(

I ∗ 0
0 I ∗

)
, where each row is scaled by a factor Y8Y11−Y9Y10 or Y12Y15−Y13Y14

correspondingly, and I and 0 are respectively the identity matrix and the zero
matrix of order 4. This matrix is clearly of rank 8. This shows that the s′ in-
troduced in the next subsection is at least 8r. The reason that the other SOLEs
will not produce any new linear equations on ui for any given values of vi of a
nonsingular ciphertext is that when the Yi are assigned a nonsingular value, (14)
can be easily deduced from (6) and (12).

3.2 Ciphertext-only Attack

Now assume we have found a basis of the linear space of all SOLEs.
Given a ciphertext (v′1, · · · , v′15r), our aim is to recover its plaintext (u′1, · · · , u′12r).
We plug the values of ciphertext (v′1, · · · , v′15r) into the basis SOLEs:

∑
i

ui

(∑
j≤k

a
(l)
ijkv′jv

′
k +

∑
j

b
(l)
ij v′j + c

(l)
i

)
+
∑
j≤k

d
(l)
jkv′jv

′
k +

∑
j

e
(l)
j v′j + f (l) = 0

1 ≤ l ≤ s
(17)

giving us a linear system on u1, · · · , u12r. Assume it has s′ linearly independent
solutions. From the previous subsection, we know 8r ≤ s′ ≤ 12r. We can repre-
sent s′ of the variables u1, · · · , u12r by linear affine expressions of the remaining
t := 12r − s′. Let w1, · · · , wt be these t variables.

Substitute these s′ linear expressions into the original public key polynomi-
als to get 15r new quadratic polynomials h̃1(w1, ..., wt), h̃2(w1, ..., wt), · · · , and
h̃15r(w1, ..., wt).
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Let S be the solution space of (17). Let Y ′
i and Z ′

i be components and matrices
corresponding to the given (v′1, · · · , v′15r), namely

(Y ′
1 , · · · , Y ′

15) = π−1
2 ◦ φ−1

3 (v′1, · · · , v′15r),

Z ′
3 =

(
Y ′

4 Y ′
5

Y ′
6 Y ′

7

)
, Z ′

2 =
(

Y ′
8 Y ′

9

Y ′
10 Y ′

11

)
, Z ′

1 =
(

Y ′
12 Y ′

13

Y ′
14 Y ′

15

)
.

We have found a basis of all SOLEs and each SOLE is a linear combination of
this basis. This fact holds when the variables vi in the equations are substituted
by v′i. Applying this fact to (7), we know the four resulting equations in ui from

M3(Z ′
2)
∗ · Z ′

3 = det(Z ′
2)M2 (18)

are all linear combinations of the equations in (17). In other words, (18) holds
on S. Let P23 = det(Z ′

2) ((Z ′
2)
∗ · Z ′

3)
−1; then M3 = M2P23. P23 is a constant

matrix dependent only on the ciphertext.
Now we have that MT

2 M3 = Z1 always holds on K12r; therefore, we have
that MT

3 M3 = MT
3 M2P23 = Z1P23 holds on S. That is,(
X2

9 + X2
11 X9X10 + X11X12

X9X10 + X11X12 X2
10 + X2

12

)
=
(

Y12 Y13

Y14 Y15

)
P23 (19)

holds on S. Comparing the diagonal entries of the matrices in both sides of (19),
we find X2

9 + X2
11 and X2

10 + X2
12 are linear combinations of the Yi. Applying

φ1 and φ3 to these combinations and utilizing the fact that squaring is a lin-
ear operation on a field of characteristic 2, we have, on S, the 2r expressions
corresponding to X2

9 + X2
11 and X2

10 + X2
12 are of the form

∑
a′iu

2
i + b′ and K-

linear combinations of h1(u1, ..., u12r), h2(u1, ..., u12r), · · · , h15r(u1, ..., u12r) and
1 (constant).

Thus, of linear combinations of h̃1(w1, ..., wt), · · · , h̃15r(w1, ..., wt) and 1, there
must exist 2r which contain only squaring terms and a constant term and cor-
respond to X2

9 + X2
11 and X2

10 + X2
12.

It is easy to solve the following linear system on the ãi and b̃j :
15r∑
i=1

ãih̃i(w1, ..., wt) +
t∑

j=1

b̃jw
2
j + c̃ = 0

∀w1, ..., wt ∈ K
(20)

Essentially, this is to solve a linear equation system whose coefficients are the
coefficients of the cross-terms and linear terms of the h̃i(w1, ..., wt).

Let (ã1
(l), · · · , ã15r

(l)
, b̃1

(l)
, · · · , b̃t

(l)
), 1 ≤ l ≤ p, be a basis of the solutions

of (20). Set 
t∑

j=1

(
b̃j

(l)
)1/2

wj +
(

15r∑
i=1

ãi
(l)v′i + c̃(l)

)1/2

= 0.

1 ≤ l ≤ p

(21)
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For each (u1, ..., u12r) ∈ S, its corresponding (w1, ..., wt) satisfies (21). From
(21) we can represent p of the variables w1, ..., wt by the remaining t−p linearly.
Totally, s′ + p components of the plaintext vector (u′1, ..., u

′
12r) are represented

linearly by the remaining 12r − s′ − p.
Note that we surely have s′ + p ≥ 10r, since the matrix of the coefficients on

X1, X2, · · · , X12 of ten expansions in (16), (7), (X2
9 +X2

11)
1/2, and (X2

10+X2
12)

1/2

is

 I ∗ 0
0 I ∗
0 0 A

 , where A =
(

1 0 1 0
0 1 0 1

)
, and the matrix is obviously of rank 10. In

other words, solving two systems (17) and (21) eliminates at least 10r variables
of the plaintext components. If p = 0, i.e., there is no nonzero linear combination
of the h̃i(w1, ..., wt) being of the form

∑
a′iw

2
i + b′, then we must have s′ ≥ 10r

and after the first elimination (i.e., via (17)), the expressions corresponding to
X2

9 + X2
11 and X2

10 + X2
12 are constants.

3.3 Finding the Plaintext

We substitute these linear expressions that result from solving (21), into h̃1(w1, ..., wt), · · · ,
h̃15r(w1, ..., wt) to get 15r new quadratic polynomials on 12r−s′−p (≤ 2r) vari-
ables. Denote them by ĥ1, · · · , ĥ15r. Since 12r−s′−p is very small (at most 8 and
10 for MFE-1 and MFE-1′, respectively), in principle, we can use the Gröbner
basis method to solve the system

ĥi = v′i, ∀ i = 1, · · · , 15r (22)

very easily to find the plaintext finally.
However, we know here that we start from 15r equations; therefore we expect

to get many more than 2r (the number of variables) equations. This means we can
solve it easily, for example, using the XL method [CKPS00]. In our experiments,
this set of equations does turn out to be very easy to solve.

3.4 A Practical Attack Procedure, Its Complexity and Experimental
Verification

Our attack can be divided into the following four steps:
Step 1 of the attack: Find a basis of the linear space of the coefficient

vectors (aijk, bij , · · · , f) of all SOLEs.
As mentioned in §3.1, this is solving a system of linear equations obtained by

evaluating sufficiently many plain/cipher-texts in (9). There are
(
12r+1

1

)(
15r+2

2

)
monomials of the form uα

i vβ
j vγ

k on ui and vj (α, β, γ = 0 or 1). This number is
92659 and 178486 for r = 4 and 5, respectively, and is somewhat large. Choosing
a number of plain/cipher-text pairs slightly more than the number of unknowns,
say 1000, we can completely find the solution space in general. The complexity
is respectively 1

2 · 926593 ≈ 248.5 < 249 and 1
2 · 1784863 ≈ 251.34 < 252 F216-

multiplications using a naive Gaussian elimination.
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This step is an one-time computation for any given public key. Let (a(l)
ijk, b

(l)
ij ,

· · · , f (l)), 1 ≤ l ≤ s, be a basis of the equation system.
Our computer experiments confirm that the dimension of SOLE is exactly

24r, which is performed on the level of the Medium field L not on the small field
K.

Step 2 of the attack: Given a valid ciphertext (v′1, · · · , v′15r), we plug it into
(17) and solve the system of linear equations to obtain linear expressions of the
remaining 12r−s′ in terms of the other s′ variables of the plaintext components.

The complexity of this step is 15rs2 < (15r)3, and is less than 219.
Substitute these linear expressions into the original public key polynomials

to get new quadratic polynomials h̃1(w1, ..., wt), · · · , and h̃15r(w1, ..., wt).
Step 3 of the attack: Solve the system (20) and obtain its solution basis

(ã1
(l), · · · , ã15r

(l)
, b̃1

(l)
, · · · , b̃t

(l)
), 1 ≤ l ≤ p. Then solve the system (21) to find

expression of the p components of the plaintext by the remaining 12r − s′ − p
linearly.

The complexity of solving (20) is (15r+ t)3 < (30r)3 < 222, and that for (21)
is pt2 < (15r)3 < 219.

Our computer experiments show that s′ is indeed 8r and p is 2r.
Step 4 of the attack: Derive new public key polynomials (ĥ1, · · · , ĥ15r)

from the solutions of (21), solve the system (22) and finally obtain the value of p
components of the plaintext by using a Gröbner base or a linearization method.
Then we use the linear expressions on the remaining plaintext components de-
rived in steps 2 and 3 to find the eliminated components.

In 1000 experimental samples we have done, we find that after Step 3, the
number of linearly independent quadratic equations are actually 20 for MFE-1.
We solve them by finding a set of 2r linearly independent linear equations inside
the space spanned by these equations. It takes almost no time.

Therefore the total attack complexity is less than 252. The complexity of the
attack recovering the plaintext (steps 2, 3 and 4) is less than 223.

3.5 Experimental Results

We chose 10 different pairs of φ1 and φ3, for each of which we chose 100 dif-
ferent valid ciphertext for experiments. For all chosen ciphertexts, the attack
successively found their corresponding plaintexts.

The time-consuming step of our attack is the first step. In our experiments,
we randomly selected 92800 plain/cipher-text pairs and substituted them into
the public key. Then the main work we will do is a Gaussian elimination on a
92800 × 92659 matrix on F216 . The complexity of this process is less than 252.
We estimate the time to do this Gaussian elimination will be about two years
on a standard PC.

So, we performed our experiment on a DELL PowerEdge 7250, a mincom with
4 Itanium2 CPU and 32GB ECC fully buffered DIMM memory. The operating
system we used was 64-bit Windows Server2003. We programmed the attack
using VC++. Multiple threads can improve the efficiency of programs on a
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computer with multiple CPU. In our experiments, we used four threads to deal
with Gaussian elimination. And we designed a method which will be patented
to speed up the multiplication on F216 .

Our experiments showed that 282 hours and 6 minutes (11 days and 18
hours and 6 minutes) were required for the first step, which is an one time
computation for any given public key. Only about 2 seconds were needed to
execute the remaining steps.

For MFE-1, our experiments confirm that we can find 96 linearly independent
SOLEs for a given valid public key in step 1. And we can eliminate 32 plaintext
variables in step 2 and 8 plaintext variables in step 3, namely, s′ = 32 and p = 8.

One more important point of our experiments is the fact that we actually used
parallel computation (4 Itanium2 CPU) to speed up and accomplish the com-
putation in a reasonable time, which, we thought, was impossible at the very
beginning. This demonstrated that parallel computation, in particular, large
scale parallel computation, could extend much further the limit of our computa-
tion capacity. We believe this is a direction that deserves serious consideration
especially in practical attacks.

3.6 Extension of MFE and High Order Linearization Attack

The construction of MFE relies on the multiplicative structure of 2× 2 matrices
and it is not difficult to see that one can extend this construction in a straight-
forward way by using matrices of larger sizes m×m, for example, 3× 3 or 4× 4,
to build new MFE cryptosystems. For any such an construction using matrix of
m×m, it is not difficult to see that the m-th order LE can be applied to attack
the cryptosystem. The fundamental reason behind is the formula that for any
matrix Q of size m×m, we know that

Q−1 =
1

det(Q)
Q∗,

where Q∗ is the associated matrix of Q. In terms of algebraic formulas for det(Q)
and Q∗, we know that det(Q) can be expressed as a degree m polynomial of the
components Qij of Q and each component of Q∗ can be expressed in terms
of a degree (m− 1) polynomial of the components Qij of Q. With this and the
formulas (6) and (10) and other similar formulas, we can see that, for such a case,
the order m linearization equations exists and they can be used to attack such a
system. Therefore the current design of MFE needs to increase m substantially
to avoid such an attack.

4 The Connection of HOLE with XL

One important point we want to make is that the HOLE method is closely
related to the XL method [CKPS00]. In particular one may also explore the pos-
sibility of combining these two algebraic methods together to develop additional
techniques.
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Assume we are given a system of equations fi(u1, · · · , un) = v′i, 1 ≤ i ≤ m.
Let U = (u1, · · · , un) and gi(U) = fi(U)−v′i. For any nonnegative integral vector
α = (α1, · · · , αn), denote uα1

1 · · ·uαn
n by Uα. Similarly, for β = (β1, · · · , βm),

denote fβ1
1 · · · fβm

m by F β and gβ1
1 · · · gβm

m by Gβ .
A variant of the XL method first translates the equation system above into

another system of equations of the form:
∑

aα,iU
αgi(U) = 0, where 1 ≤ i ≤

m and α are nonnegative integral vectors with small component sum (upper-
bounded by some small integer D). Then define all terms UαUγ as new unknowns
and solve the resulting linear equation system.

On the other hand, the HOLE method attempts to solve a system of equations
of the form:

∑
i,β

ai,βuiG
β = 0, where 1 ≤ i ≤ n and β are chosen small vectors.

Since the fi(U) are equivalent to the gi(U) under affine transformations, the
above system is equivalent to the form:

∑
i,β

bi,βuiF
β = 0. Our attack presented

in the previous section actually finds identical equations with the form above,
and hence we can substitute F β by v′β1

1 · · · v′βm
m and get a linear system that the

plaintext satisfies.
As a comparison, we find that if a HOLE with order D could be used to

successfully attack a system by finding linear equations, then one should expect
that the XL method should work as well. But the order of XL should be of degree
2D − 1 (the total degree is 2D + 1), because the vi in general are of degree 2.
From this consideration, we conclude that though HOLE definitely cannot be a
replacement for the XL method. Yet there could be cases that the HOLE method
would be much more efficient than XL. In one case we consider polynomials of
degree D+1 (HOLE), while in the other case, we consider polynomials of degree
2D +1 (XL). Another critical point is that when we use the HOLE method, the
computation of HOLEs is performed only once for a given public key, then the
HOLEs are used for any ciphertext; while the general XL algorithm needs to run
its main part each time for different values of ciphertext. Thus one should think
HOLE as a possibly more efficient alternative to XL, if it can work; and there
would be cases that HOLE can work practically while the XL cannot.

More importantly, one may consider unifying the XL and HOLE methods.
We may expect to efficiently solve the system of equations of the form:∑

α,β

aα,βUαGβ = 0. (23)

From the point view of algebraic geometry, this definitely makes sense. But
at this moment, we have not yet found any example where such a method could
indeed be more efficient in an attack. Furthermore, one can expect that this
method may be useful to attack other cryptosystems, such as symmetric ciphers.

5 Conclusion

In this paper, we use an extension of the linearization equation attack method of
Patarin, which we call the high order linearization equation method, to break the
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MFE multivariate public key cryptosystem in CT-RSA 2006. This shows that
the high order linearization equation method is indeed an important algebraic
attack method. For any multivariate public key cryptosystem, one should take
into account this new method.
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