
On the Generic and Efficient Constructions of
Secure Designated Confirmer Signatures

Guilin Wang1, Joonsang Baek1, Duncan S. Wong2, and Feng Bao1

1 Institute for Infocomm Research (I2R)
21 Heng Mui Keng Terrace, Singapore 119613

{glwang, jsbaek, baofeng}@i2r.a-star.edu.sg
2 City University of Hong Kong, Hong Kong

duncan@cityu.edu.hk

Abstract. For controlling the public verifiability of ordinary digital sig-
natures, designated confirmer signature (DCS) schemes were introduced
by Chaum at Eurocrypt 1994. In such schemes, a signature can be veri-
fied only with the help of a semi-trusted third party, called the designated
confirmer. The confirmer can further selectively convert individual des-
ignated confirmer signatures into ordinary signatures so that anybody
can check their validity. In the last decade, a number of DCS schemes
have been proposed. However, most of those schemes are either inefficient
or insecure. At Asiacrypt 2005, Gentry, Molnar and Ramzan presented
a generic transformation to convert any signature scheme into a DCS
scheme, and proved the scheme is secure in their security model. Their
DCS scheme not only has efficient instantiations but also gets rid of
both random oracles and general zero-knowledge proofs. In this paper,
we first show that their DCS transformation does not meet the desired
security requirements by identifying two security flaws. Then, we point
out the reasons that cause those flaws and further propose a secure im-
provement to fix the flaws. Finally, we present a new generic and efficient
DCS scheme without using any public key encryption and prove its se-
curity. To the best of our knowledge, this is the first secure DCS scheme
that does not require public key encryption.

Keywords: Designated Confirmer Signature, Digital Signature, Fair
Exchange.

1 Introduction

As an important cryptographic primitive, digital signatures are employed to
achieve the integrity and authenticity of digital documents. In some scenarios,
however, the public verifiability of ordinary signatures is not desired, since the
signer may wish the recipient of a digital signature could not show the signature
to a third party at will. To control the public verifiability, Chaum and van
Antwerpen [12] introduced the concept of undeniable signatures. Different from
ordinary signatures, undeniable signatures cannot be verified without the help
of the signer. Naturally, the signer can only confirm valid signatures or disavow
invalid signatures.

2 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

However, undeniable signatures will not be verifiable if the signer is unavail-
able or unwilling to help a verifier. To overcome this weakness, designated con-
firmer signature (DCS) schemes were suggested by Chaum at Eurocrypt 1994
[13]. In a DCS scheme, the ability of verifying signatures is delegated to a semi-
trusted third party, called the designated confirmer. If necessary, the confirmer
can further selectively convert individual designated confirmer signatures into
ordinary signatures in such a way that anybody can check their validity. In
the last decade, a number of DCS schemes [33, 30, 14, 10, 28, 32, 25] have been
proposed. However, most of those schemes are either inefficient or insecure.

Okamoto [33] presented the first formal model for DCS and proved that the
notion of DCS is in fact equivalent to that of public key encryption. But Michels
and Stadler [30] showed that in Okamoto’s concrete DCS schemes the confirmer
can forge valid signatures on behalf of the signer. Realizing this problem, they
further proposed a new security model and constructed efficient DCS schemes
secure in their model. However, Camenisch and Michels [10] identified an attack
against the DCS schemes proposed in [13, 33, 30] such that the validity of a DCS
issued by a signer S can be linked to that of a DCS issued by another signer
S′. Therefore, those schemes are insecure if multiple signers share the same con-
firmer, though this seems to be natural in e-commerce applications, such as fair
exchange of digital signatures [1–4], fair e-payment schemes [8, 14], and fair con-
tract signing [22]. Based on this observation, a new model that covers this kind
of attacks was proposed in [10]. At the same time, Camenisch and Michels also
suggested a generic DCS scheme, which is realized by encrypting an ordinary
signature under the confirmer’s public key. This construction is provably secure,
but inefficient since proving the correctness of such an encryption usually relies
on general zero-knowledge proofs for NP statements. In [28], Goldwasser and
Waisbard proposed several DCS schemes without appealing to either random
oracles [5] or generic zero-knowledge proofs. They achieved this goal by weak-
ening the security requirements of Okamoto [33] and exploiting strong witness
hiding proofs of knowledge, instead of zero-knowledge proof of knowledge. But
their Disavowal protocol (used to disavow an invalid DCS) is still inefficient since
it requires general ZK proofs. Monnerat and Vaudenay [32] naturally extended
Chaum’s DCS scheme [13], but the resulting scheme is provably secure only
under non-adaptive chosen-message attack.

At Asiacrypt 2005, Gentry, Molnar and Ramzan [25] presented a generic
transformation to convert any secure signature scheme into a DCS scheme. Their
basic idea is to add “a layer of indirection” in the signature generation procedure.
More precisely, in their scheme the signer generates a DCS by issuing an ordinary
signature on the commitment of a message and encrypting the randomness used
for commitment separately. They proved the DCS scheme constructed in this
manner is secure in their security model, which is an enhancement of the model
proposed in [28]. Their transformation is interesting, since it gives rise to an
efficient and generic DCS scheme without appealing to both random oracles and
general zero-knowledge proofs.

Generic Constructions of Secure Designated Confirmer Signatures 3

In this paper, we first identify two security flaws in Gentry et al’s DCS
transformation [25] by showing that their scheme does not meet two essential
security requirements under their security model. Specifically, we present two
attacks against their DCS scheme, in which (a) the confirmer and the signer
can collude together to cheat a verifier by issuing a confirmable but invalid
signature, and (b) an adaptive attacker can check the validity of a DCS without
directly asking for the confirmer’s help on this signature. We then point out the
reasons causing those flaws and propose an improvement to fix the flaws. Finally,
we propose a new generic and efficient DCS scheme without using public key
encryption and prove its security. To the best of our knowledge, this is the first
generic and secure DCS scheme that does not rely on any public key encryption.

Table 1 gives a brief comparison between our DCS constructions and other
existing efficient DCS schemes. Similar to the comparison made in [25], we also
compare those DCS schemes in three categories, i.e., whether the scheme relies
on the random oracle model [5], which kinds of the basic underlying signatures
are used, and how about the computational efficiency. Actually, most items are
adopted from [25]. A difference is that in Table 1, we also compare the efficiency
of ConfirmedSign protocols in those schemes, which is not discussed in [25]. In
Table 1, we list the estimated numbers of exponentiations needed in each inter-
active protocol. Note that those numbers include the computational overheads
introduced by the transformation from a SHVSK protocol to a CZK protocol
(See Section 2). In addition, as we shall see in Section 4.2, to achieve the sound-
ness of Confirm protocol both the GW [28] and GMR [25] schemes should be
updated. Naturally, this will introduce additional overheads. Due to this rea-
son, an asterisk (*) is marked to the corresponding Confirm protocols. From this
comparison, we can see that both of our improved GMR scheme and new DCS
scheme have comparable efficiency with the original GMR scheme. Especially,
our new DCS scheme without using public key encryption has a very efficient
Disavowal protocol, though its security relies on the random oracle. According
to our analysis in Section 4.2, however, the GMR scheme suffers two security
weaknesses.

Table 1. Comparison of DCS Schemes

Random Underlying ConfirmedSign Confirm Disavowal

Oracle Signature Protocol Protocol Protocol

CM [10] Yes RSA-FDH - 24λ 60λ

GW [28] No CS [17] 5λ 2λ * generic ZK

GW [28] No GMR [27] 5λ 2λ * generic ZK

GW [28] No GHR [23] 5λ 2λ * generic ZK

GMR [25] No Any 20 10 * 41

Improved GMR No Any 15 25 60

Our New DCS yes Any 15 15 16

4 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

The rest of this paper is organized as follows. In Section 2, we introduce
notations and some primitives. Section 3 describes the security model of a DCS
scheme. Section 4 reviews and analyzes Gentry et al.’s DCS scheme (called GMR
scheme for simplicity). We then improve the GMR scheme in Section 5 and
propose a new DCS scheme without any public key encryption in Section 6.

2 Preliminaries

Notations. Throughout the paper, λ denotes the security parameter, which is a
positive integer. We use negl(λ) to denote a negligible function in λ. For a positive
integer a, [a] is defined as the set of {0, 1, · · · , a−1}. For three integers a, b and c
with c > 0, a = b rem c denotes the balanced remainder of b modulo c. Namely,
a = b + kc ∈ [−c/2, c/2) for some integer k. If Alg(·, ·, · · ·) is a probabilistic
algorithm, then x ← Alg(x1, x2, · · ·) denotes the output x of algorithm Alg on
inputs x1, x2, · · ·, according to the probabilistic distribution determined by Alg’s
random choices.
Zero-Knowledge Proof. In the setting of DCS schemes, we usually need con-
current zero-knowledge (CZK) protocols rather than special honest-verifier zero-
knowledge (SHVZK) protocols [15]. The reason is that an adversary in DCS
schemes may act as an arbitrary cheating verifier during the execution of proto-
cols that confirm or disavow an alleged designated confirmer signature. Briefly
speaking, an interactive proof (P, V) for a language L is a CZK protocol if (a)
There is a simulator that can simulate transcripts of interaction between Prover
P and Verifier V ; (b) There is a probabilistic polynomial-time (PPT) knowledge
extractor E who can extract a witness (knowledge) given oracle access to Prover
P , where E could be rewound if necessary; and (c) Prover P can execute the
protocol with one or multiple verifiers in any concurrent way.

Fortunately, there are well known approaches [26, 18, 19, 24] that can effi-
ciently transform SHVZK protocols to CZK protocols. Specifically, Gennaro’s
approach [24] based on multi-trapdoor commitments has simple structure, while
Cramer-Damg̊ard-MacKenzie (CDM) approach [18] can be realized without in-
troducing additional intractability assumptions. In [25], the CDM approach is
suggested to use. In our constructions, we would like to select Gennaro’s ap-
proach due to its simplicity in structure. In any case, the signer or the confirmer
(in the GMR scheme and our DCS constructions) will use such CZK protocols
to convince a verifier that an alleged message-signature pair is either valid or
invalid. However, the verifier (or a number of colluding verifiers) cannot convince
the same fact to a third party, even if he/she (or they) executes those verification
protocols in any concurrent way as many polynomial times as possible.
CS-Paillier Cryptosystem. An efficient instance of the GMR DCS scheme
[25] uses an adaptation of Paillier-based encryption scheme [34] proposed by
Camenisch and Shoup in [11]. For simplicity, we call this encryption scheme “CS-
Paillier cryptosystem”, which can be exploited to realize verifiable encryption of
discrete logarithms conveniently. The CCA2 security of this scheme relies on the
decisional composite residuosity assumption (DCRA) in Z∗

n2 , where n = pq is the

Generic Constructions of Secure Designated Confirmer Signatures 5

product of two Sophie-Germain primes p and q (i.e., there exist two primes p′

and q′ such that p = 2p′ + 1 and q = 2q′ + 1). Informally, the DCRA states that
it is infeasible to distinguish random elements from Z∗

n2 and random elements
from the subgroup consisting of all n-th powers of elements in Z∗

n2 .
Now, we briefly review this encryption scheme (refer to [11] for details). The

user generates a composite modulus n = pq as above. The user’s public key
includes a collision-resistant hash function H, h = 1 + n, a random g′ ∈ Z∗

n2 ,
and values g = g′

2n
, y1 = gx1 , y2 = gx2 , and y3 = gx3 , where x1, x2, x3 ∈R [n2/4]

constitute the private key. Define a function abs(·) : Zn2 → Zn2 as abs(a) = a if
0 ≤ a ≤ n2/2, or abs(a) = n2 − a mod n2 if n2/2 < a < n2.

To encrypt a value r ∈ [n] with a label L ∈ {0, 1}∗, the sender picks t ∈R [n/4]
and computes a triple (u, e, v) by u = gt, e = yt

1h
r, and v = abs((y2y

H(u,e,L)
3)t).

The resulting ciphertext (u, e, v) with label L can be decrypted follows. First,
the user checks whether abs(v) ≡ v and u2(x2+H(u,e,L)·x3) ≡ v2. If any check
fails, output ⊥. Otherwise, the user computes r̂ = (e/ux1)2k for k = 2−1 mod n.
If r̂ is of form hr for some r ∈ [n] (i.e., r̂ − 1 is divisible by n), then output
r = (r̂ − 1)/n ∈ [n]. Otherwise, output ⊥.

3 Security Model and Definitions of DCS

We now review the security model and definitions of designated confirmer signa-
tures (DCS) following Gentry et al.’s exposition in [25]. Specifically, the syntax
of DCS is the same as given in [25], while the security definitions are improved
in some minor ways mainly for readability. A DCS scheme has three different
roles of parties: a signer S, a verifier V , and a designated confirmer C.
Definition 1 (Syntax). A designated confirmer signature (DCS) scheme
consists of a tuple of probabilistic polynomial-time (PPT) algorithms and inter-
active protocols, (DCGen,Sign, Verify,Extract,ConfirmedSign(S,V),Confirm(C,V),
Disavowal(C,V)), as described below.

– DCGen: As the key generation algorithm of DCS, it takes as input the security
parameter 1λ, and outputs two pairs of keys (skS , pkS) and (skC , pkC). Here,
(skS , pkS) are the signer S’s signing and verification keys respectively, while
(skC , pkC) the confirmer C’s private and public keys respectively 3.

– Sign: takes as input a message m and a signing key skS , and outputs a basic
signature σ such that Verify(m,σ, pkS) = Accept.

– Verify: takes as input a triple (m,σ, pkS), and outputs Accept if σ is an output
of Sign(m, skS) or ⊥ otherwise.

– Extract: takes as input (m,σ′, skC , pkS), and outputs a string σ such that
Verify(m,σ, pkS) = Accept if σ is an output of Sign(m, skS), or ⊥ otherwise.

3 As pointed in [25], for simplicity DCGen is here denoted as a single algorithm. In a
real implementation, the signer S and confirmer C would generate their key pairs
separately, using two distinct algorithms SGen and CGen, so that C does not learn
skS and S does not learn skC .

6 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

– ConfirmedSign(S,V): an interactive protocol between the signer S (with pri-
vate input skS) and a verifier V with common input (m, pkS , pkC). The
output of V is a pair (b, σ′) where b ∈ {Accept,⊥} and σ′ is S’s designated
confirmer signature on message m. For some verifier V , the ConfirmedSign
protocol should be complete and sound.
• Completeness: There is some signer S such that for any (valid) signer

and confirmer keys, any message m, the ConfirmedSign protocol outputs
(Accept, σ′), where Verify(m,Extract(m,σ′, skC , pkS), pkS) = Accept.
• Soundness: For any signer S′, if ConfirmedSign(S′,V)(m, pkS , pkC) =

(Accept, σ′), then

Pr[Verify(m,Extract(m,σ′, skC , pkS), pkS) = ⊥] < negl(λ). (1)

In other words, even a cheating signer S′ cannot convince an honest
verifier V that an “un-extractable” DCS σ′ is valid.

– Confirm(C,V): an interactive protocol between the confirmer C and a verifier
V to confirm a valid DCS σ′. The common input is (m,σ′, pkS , pkC), and C’s
private input is skC , while the output is b ∈ {Accept,⊥}. For some verifier
V , the Confirm protocol must be both complete and sound.
• Completeness: There is some C such that if Verify(m,Extract(m,σ′, skC ,
pkS), pkS) = Accept then Confirm(C,V)(m,σ′, pkS , pkC) = Accept.
• Soundness: For any confirmer C ′, if Verify(m,Extract(m,σ′, skC , pkS),
pkS) = ⊥, then

Pr[Confirm(C′,V)(m,σ′, pkS , pkC) = Accept] < negl(λ). (2)

That is, even a cheating confirmer C ′ cannot convince an honest verifier
V that an “un-extractable” DCS σ′ is valid.

– Disavowal(C,V): an interactive protocol between the confirmer C and a verifier
V to disavow an invalid DCS σ′. Given the common input (m,σ′, pkS , pkC)
and C’s private input skC , the Disavowal protocol outputs b ∈ {Accept,⊥}.
For some verifier V , the protocol must be complete and sound.
• Completeness: There is a confirmer C such that if Verify(m,Extract(m,
σ′, skC , pkS), pkS) = ⊥, then Disavowal(C,V)(m,σ′, pkS , pkC) = Accept.

• Soundness: For any PPT confirmer C ′, if Verify(m,Extract(m,σ′, skC ,
pkS), pkS) = Accept, then

Pr[Disavowal(C′,V)(m,σ′, pkS , pkC) = Accept] < negl(λ). (3)

In other words, even a cheating confirmer C ′ cannot convince an honest
verifier V that an “extractable” DCS σ′ is invalid. ut

We consider three security requirements of a designated confirmer signature
scheme, each of which is from the view point of a different role in a DCS scheme.
More specifically, a DCS should be: (a) secure for verifiers, i.e., confirmed DCS
should be extractable and disavowed DCS should be un-extractable; (b) secure
for the signer, i.e., anybody else (including the confirmer) should be unable to

Generic Constructions of Secure Designated Confirmer Signatures 7

forge a DCS on a new message unsigned by the signer; and (c) secure for the
confirmer, i.e., only the confirmer can confirm or disavow an alleged DCS.

For the purposes of the security model, a two-move protocol OutputDCS(S,V)

is also introduced, which is the stunted version of ConfirmedSign(S,V) in which
V queries m and S outputs a DCS σ′ on m without confirming its correctness.
In the following, the adversary A is allowed to access a collection of oracles
O = {ConfirmedSign(S,A),Confirm(C,A),Disavowal(C,A),Extract} for: 1) receiving
a confirmed signature on a message of its choice (via the ConfirmedSign(S,A)

oracle); 2) executing the interactive Confirm(C,A) protocol in the verifier role;
3) executing the interactive protocol Disavowal(C,A) in the verifier role; and 4)
getting a basic signature from a designated confirmer signature via the Extract
oracle. Furthermore, since we consider the security of a DCS scheme with mul-
tiple signers, any adversary in the following definitions is allowed at any time
to generate additional signature pairs (skS′ , pkS′) (not necessary by running the
key generation algorithm DCGen) and to interact with the confirmer C with
respect to those keys.

Informally, security for verifiers requires that even if the adversary A compro-
mises the private keys of both the confirmer C and the signer S simultaneously,
it is still unable to create a pair (m,σ′) that will be confirmed (via either Con-
firmedSign or Confirm) even though (m,σ′) is un-extractable, or that will be dis-
avowed (via Disavowal) even though (m,σ′) is extractable. For simplicity, in the
following descriptions we use π to denote the public parameters (1λ, pkS , pkC).

Definition 2 (Unfoolability: Security for Verifiers). Formally, we say a
DCS scheme is secure for verifiers if for any PPT algorithm A involved in the
experiment Exp1-UnFoolVerifier, its advantage Advfool(A) := Pr[bfool = 1] <
negl(λ), where bfool is the one bit information returned by the experiment.

Exp1-UnfoolVerifier:
1. (skS , pkS , skC , pkC)← DCGen(1λ)
2. (m,σ′, τ1, τ2, τ3)← AO0 (skS , skC , π)
3. (b1, σ′)← ConfirmedSign(A1(τ1),V)(m,π) in Case 1
4. b2 ← Confirm(A2(τ2),V)(m,σ′, π) in Case 1
5. b3 ← Disavowal(A3(τ3),V)(m,σ′, π) in Case 2
6. Return bfool = (b1 = Accept ∨ b2 = Accept ∨ b3 = Accept).

Note that here “Case 1” and “Case 2” refer to the restraint conditions on the
adversary’s output (m,σ′):

– Case 1: Verify(m,Extract(m,σ′, skC , pkS), pkS) = ⊥, i.e., σ′ is un-extractable.
– Case 2: Verify(m,Extract(m,σ′, skC , pkS), pkS) = Accept, i.e., σ′ is extractable.

ut

Security for the signer informally requires that an adversary A (including
the confirmer C) must be unable to forge a valid DCS pair (m,σ′) for a new
message m, though it may be able to create an extractable or confirmable (via
either ConfirmedSign or Confirm) (m,σ′′) for a signed message m.

8 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

For each DCS scheme, we can specify an efficiently computable equivalence
relationR, and say (m,σ′) and (m,σ′′) are equivalent if and only ifR(m,σ′, σ′′) =
1. For example, if a DCS scheme is assumed to be strongly existentially unforge-
able, it may be appropriate to define R(m,σ′, σ′′) = 1 iff σ′ = σ′′. However,
the relation R depending on the concrete implementation may need not be so
restrictive.
Definition 3 (Unforgeability: Security for the Signer). We formally say
a DCS scheme is secure for the signer if for any PPT adversary A involved in
the following experiment Exp2-UnForge, its advantage Advforge(A) := Pr[bforge =
1] < negl(λ), where bforge is the one bit information returned by the experiment.
Note that in the experiment, Lsig denotes the list of all message-signature pairs
(mi, σ

′
i) output by the ConfirmedSign oracle in Step 2 and all (mi, σ

′′
i) such that

R(mi, σ
′
i, σ

′′
i) = 1.

Exp2-UnForge:
1. (skS , pkS , skC , pkC)← DCGen(1λ)
2. (m,σ′)← AO(π, skC)
3. b← Verify(m,σ, pkS) for σ = Extract(m,σ′, skC , pkS)
4. Return bforge = (b = Accept ∧ (m,σ′) /∈ Lsig). ut

Security for the confirmer informally requires that the evidences of confirma-
tion or disavowal of a DCS σ′ should be non-transferable. Namely, the transcript
of a proof of knowledge in Confirm(C,V1)(m,σ

′, pkS , pkC) or ConfirmedSign(C,V1)

(m,σ′, pkS , pkC) should not convince V2 (6= V1) that σ′ signs m, while the tran-
script of a proof of knowledge in Disavowal(C,V1)(m,σ

′, pkS , pkC) should not con-
vince V2 (6= V1) that σ′ does not sign m. To guarantee that a DCS scheme satis-
fies non-transferability, i.e., the transcripts in those protocols are unconvincing,
we require that those transcripts be simulatable. In a DCS scheme with non-
transferability, even if verifier V1 already knew the validity of a message-signature
pair (m,σ′) (via interacting with the signer or the confirmer), it cannot convince
verifier V2 to believe this fact, since all the evidences provided by V1 could be
simulated, i.e., not true transcripts from real executions of the ConfirmedSign,
Confirm or Disavowal protocols.

In the following formal definition, algorithmsA1,A2 andA′1 represent verifier
V1, verifier V2 and a simulation algorithm, respectively. If A2 has only negligible
advantage to guess whether its input τ came from A1 or A′1, this suggests that
A1’s potentially authentic transcript showing that m0 was signed is no more
convincing or informative than A′1’s simulated transcript (falsely) showing that
m1 was signed. In the security proof, A′1 will use A1 as a subroutine, and will
simulate correct answers to A1’s oracle queries.
Definition 4 (Transcript Simulatability: Security for the Confirmer).
Formally, we say a DCS scheme is secure for the confirmer if for any PPT adver-
sary A = (A0,A1,A2) involved in the following experiment Exp3-Transcript
Simulatability, there exists a PPT algorithm A′1 such that A’s advantage re-
spect to A′1 is negligible in the security parameter. Namely, Advtrans(A,A′1) :=
|Pr[btrans = 1]− 1/2| < negl(λ), where btrans is the one bit information returned

Generic Constructions of Secure Designated Confirmer Signatures 9

by the experiment. In the experiment, A0 with skS first outputs two messages
m0 and m1 and some state s. Then, a DCS σ′ on m0 or m1 is output randomly
by ConfirmedSign. After that, A1, A′1 and A2 play a game in which A′1 tries to
make its output (when m1 is signed) look indistinguishable from A1’s output
(when m0 is signed); A2 attempts to distinguish whether its input τ came from
A1 or A′1. In the experiment, A1 gets oracle accesses O1, i.e., all oracles in O
under the restriction that (m0, σ

′), (m1, σ
′) /∈ Lext, where Lext is a list consist-

ing of each (mi, σ
′
i) that has been queried by A1 to the Extract oracle, as well

all (mi, σ
′′
i) for which R(mi, σ

′
i, σ

′′
i) = 1 4. On the other hand, A′1 is given very

limited oracle accesses, i.e., it can make only q OutputDCS queries as long as
A1 makes at most q ConfirmedSign queries. A2 is given access to oracles in O2,
i.e., all oracles in O with the restriction that A2 cannot make any oracle query
on (m0, σ

′′) if R(m0, σ
′, σ′′) = 1 or on (m1, σ

′′) if R(m1, σ
′, σ′′) = 1 (Otherwise,

the distinguishing task of A2 will become trivial.). Finally, A2 outputs one bit
information b′ as its guess to the value of b, i.e., whether m0 or m1 is signed.

Exp3-TranscriptSimulatability:
1. (skS , pkS , skC , pkC)← DCGen(1λ)
2. (m0,m1, s)← AO0 (π, skS)
3. b←R {0, 1}
4. (Accept, σ′)← ConfirmedSign(π,mb)
5. If b = 0, τ ← AO1

1 (π, b,m0,m1, s, σ
′);

else, τ ← A′OutputDCS
1 (π, b,m0,m1, s, σ

′)
6 b′ ← AO2

2 (π,m0,m1, τ, σ
′)

7. Return btrans = ((b′ = b) ∧ ((m0, σ
′) /∈ Lext) ∧ ((m1, σ

′) /∈ Lext)). ut

Note that the above transcript simulatability is not the strongest require-
ment, but it is strong enough, as pointed out in [25] and further explained below.
On the one hand, the transcript is not perfectly simulatable in the sense that σ′

may convince verifier A2 that the signer indeed signed some message m, though
A2 cannot tell which specific message (i.e. m0 or m1) was signed. So this security
requirement is weaker than that given in [33]. On the other hand, the above secu-
rity model actually prevents confirmer impersonation. Namely, even if an adver-
sary B controls skS it cannot impersonate the confirmer by executing Extract,
Confirm, Disavowal, or ConfirmedSign associated to a pair (m,σ′) ∈ Lsig\Lext

(See the discussions provided in [25]).
Moreover, we would like to point out that the above transcript simulatabil-

ity also implies the property of invisibility, whose formal definition is given by
Camenisch and Michels in [10] 5. Informally, invisibility requires that an adap-
tively chosen message attacker A cannot correctly guess a newly issued DCS σ′

is for m0 or m1 with probability better than 1/2 non-negligibly. It is not dif-
ficult to see that the corresponding experiment for invisibility can be obtained
4 Otherwise, A1 could trivially give A2 explicit proof that m0 was signed by revealing

the extraction of σ′.
5 Galbraith and Mao [21] formally specified another definition of invisibility, which

is a little stronger than the version given in [10]. For many real life applications,
however, it seems (weak) invisibility is enough.

10 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

from Exp3-TranscriptSimulatability by deleting algorithms A1 and A′1 (i.e.
Step 5), and deleting τ in the input of algorithm A2. From this observation, we
know that invisibility is implied by transcript simulatability. However, note that
according to the result in [10], the DCS schemes in [13, 33, 30] do not satisfy
invisibility.
Definition 5 (Security of a DCS Scheme). We say a designated confirmer
signature scheme is secure, if it satisfies security for verifiers, the signer, and
the confirmer. That is, the DCS scheme meets the formal requirements given in
definitions 2, 3 and 4 simultaneously. ut

4 The GMR Scheme and Its Security

4.1 Review of the GMR Scheme

This section reviews the GMR scheme [25], which is a generic construction
that transforms any existentially unforgeable signature scheme [27] into a DCS
scheme. In this transformation, the following two primitives are required: an
IND-CCA2 secure encryption scheme PKE [20], and a statistically hiding com-
putationally binding commitment scheme Com(m, r). The basic idea is to issue a
DCS on a message m the signer signs on a commitment Com(m, r) instead of m
itself. To guarantee that the confirmer can open a commitment Com(m, r) with
respect to m, the randomness r used in commitment is encrypted under the con-
firmer’s public key and the resulting ciphertext c is attached as a component of
DCS. To prove the validity of such a DCS, the signer or the confirmer convinces
a verifier that ciphertext c is properly prepared by exploiting zero knowledge
proofs secure against cheating verifiers. The following is the high-level descrip-
tions of the GMR scheme.

– DCGen: The signer S uses a secure digital signature scheme DSS=(SGen, Sig,
Ver), and creates a key pair (skS , pkS) ← SGen(1λ). The confirmer C uses
an IND-CCA2 encryption scheme PKE=(CGen, Enc, Dec), and creates key
pair (skC , pkC)← CGen(1λ). Note that C need not participate in any setup
other than creating and publishing a key pair.

– Sign: To sign a message m with auxiliary information c, the signer S cre-
ates a statistically hiding and computationally binding commitment ψ =
Com(m, r) to the message m by selecting randomness r and creates σ∗ =
Sig((ψ, c, pkS), skS). The basic signature is σ = (σ∗, c, r).

– Extract: On input σ′ = (σ∗, ψ, c) and m, it outputs r if σ∗ = Sig((ψ, c, pkS),
skS) and the confirmer C can derive r = Dec(skC , c) so that ψ = Com(m, r).
Otherwise, it outputs ⊥.

– ConfirmedSign: In addition to the above steps in the Sign procedure, the
signer S also computes the ciphertext c = Enc(pkC , r). The designated con-
firmer signature is σ′ = (σ∗, ψ, c), where σ∗ = Sig((ψ, c, pkS), skS). The
signer also performs a ZK proof of knowledge of a value r such that ψ =
Com(m, r) and c = Enc(pkC , r).

Generic Constructions of Secure Designated Confirmer Signatures 11

– Confirm: The confirmer C first checks that (ψ, c, pkS) has been signed with
skS using the provided pkS , and aborts if the check fails. Then, C performs
a ZK proof of knowledge of a value r such that ψ = Com(m, r).

– Disavowal: To disavow a purported signature σ′ = (σ∗, ψ, c) on message m,
the confirmer C does the following. C first checks if c is a valid encryption
of some r. If not, it performs a ZK proof of knowledge that the string c is
not a well-formed encryption. Otherwise, C computes r′ = Dec(skC , c). If
ψ 6= Com(m, r′), then C provides a ZK proof of knowledge that there is a
value r′ such that ψ 6= Com(m, r′) and r′ = Dec(skC , c).

Gentry et al. pointed out that all the above statements involving ZK proofs
can be expressed as NP statements (with short witnesses). Therefore, in theory
the above generic DCS scheme can be implemented in polynomial time from any
suitably secure encryption scheme, commitment scheme, and signature scheme.
Since generic ZK proofs for NP-statements are not very practical, they suggested
that an efficient instantiation can be obtained by selecting the CS-Paillier en-
cryption scheme [11], and the Pedersen commitment scheme [35] over a prime
order group Γ . However, in [25] this instantiation was just given in a high-level
description without implementation details.

4.2 Security of the GMR Scheme

The GMR scheme reviewed above is an interesting designated signature scheme,
since it is a generic transformation with efficient implementations. In this section,
however, we shall identify two security flaws in the GMR scheme. Namely, it does
not satisfy the unfoolablility and the invisibility.

According to the definition of security for verifiers, an adversary A should
not be able to create confirmable but un-extractable DCS message-signature
pair (m,σ′) or disavowable but extractable pair (m,σ′), even if the adversary A
compromises both skS and skC , i.e. the private keys of the confirmer S and the
signer C. However, according to the specification of the GMR scheme, such an
adversaryA can fool a verifier as follows.A first picks two random numbers r and
c (with proper lengths), then computes ψ = Com(m, r) for an arbitrary message
m and issues σ∗ = Sig((ψ, c, pkS), skS) using skS . The resulting DCS message-
signature pair is (m,σ′), where σ′ = (σ∗, ψ, c). Note that σ′ can be confirmed by
running the Confirm protocol, since σ∗ is S’s valid signature on (ψ, c, pkS) and
the adversary A with the randomness r can provide a ZK proof of knowledge
showing that there is a value r such that ψ = Com(m, r). In the experiment
UnFoolVerifier, this attack allows V to output b2 = 1 with probability 1.

In their security claim (Theorem 1 in [25]), Gentry et al. pointed out that se-
curity for verifiers follows the soundness of ConfirmedSign, Confirm and Disavowal
protocols. This is a correct reasoning, but in the context of their DCS scheme
the assumption is not true. Because their Confirm protocol is actually not sound,
as demonstrated by the above attack. Based on this observation, we can simply
get a sound Confirm protocol by requiring the confirmer C to prove in ZK that
it knows a value r such that ψ = Com(m, r) and r = Dec(skC , c).

12 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

Remark 1: Note that a similar attack applies to the GW generic DCS scheme
proposed by Goldwasser and Waisbard in [28], since their Confirmation Protocol
does not satisfy the soundness too (For detail, please check the first paragraph
of page 91 [28]). That is, a verifier can be fooled by an un-extractable DCS
signature, if the signer and the confirmer collude together or their private keys
are compromised by an adversary. Naturally, we could repair the GW scheme as
suggested above. By doing so, however, the resulting Confirmation Protocol will
become less efficient than the original one.

Informally, invisibility means that an (adaptively chosen message) adversary
A cannot distinguish whether a DCS σ′ is on message m0 or message m1 with
non-negligible advantage better than 1/2, even if A is given the signer’s private
key skS . The formal definition of this version of invisibility can be found in [10].
Now, we present an attack that breaches invisibility and then breaks transcript
simulatability, since the latter implies the former, as we mentioned before.

Our attack is based on the observation that in the GMR DCS scheme, the
ciphertext c of randomness r could be re-used in different signatures. For simplic-
ity, let us demonstrate the attack in the scenario where Pedersen commitment
scheme [35] and Cramer-Shoup CCA2 secure encryption scheme [16] are used in
the GMR scheme. That is, we compute ψ = Com(m, r) := δmγr, where δ and γ
are two random generators of a group Γ with prime order ρ. Let σ′ = (σ∗, ψ, c) be
a valid DCS for message m0 or message m1 with exact probability 1/2. So, there
exists b ∈ {0, 1} and a value r such that σ∗ = Sig((ψ, c, pkS), skS), ψ = δmbγr,
and c = Enc(pkC , r). The goal of an adversary A is to tell whether the bit b
equals 1 or 0. To this end, the adversary A first picks an arbitrary message m′

(m′ 6= m0 and m′ 6= m1), and computes ψ′ = ψδm′
δ−m0 (= δm′+mb−m0γr).

Then, A asks the signing oracle of the underlying signature scheme to get a
signature σ∗∗ on (ψ′, c, pkS), i.e., σ∗∗ = Sig((ψ′, c, pkS), skS). After that, A asks
the Extract oracle by enquiring (m′, σ′′ = (σ∗∗, ψ′, c)). Finally, A outputs b = 0
if a value r is received from the Extract oracle; otherwise (i.e., the Extract oracle
reveals ⊥), A outputs b = 1. Note that to correctly guess the random bit b, A
can alternatively run Confirm or Disavowal protocol on the same pair (m′, σ′′)
with the confirmer. It is not difficult to see that A wins the above game with
probability 1.

Actually, in the setting of multiple signers, the above adversary A can also
check the validity of signer S’s DCS σ′ = (σ∗, ψ, c) on message m by interacting
with the confirmer C on another message-signature pair (m′, σ′′) from signer
S′’s (different from S). The reason is that A can collude with S′ so that S′

issues his DCS σ′′ on a new message m′ by re-using c similarly, i.e., σ∗∗ =
Sig((ψ′, c, pkS′), skS′), where ψ′ = ψδm′

δ−m.

In the scenarios of fair exchange, the above attacks may allow one party
to cheat the other. In addition, the above attack also implies that the signer is
coercible [10, 32]. That is, even if the signer S erases the intermediate results (i.e.
randomness r etc.) after the computation of a DCS σ′, S may still be coerced
since a third party can prove the fact that S indeed issued σ′.

Generic Constructions of Secure Designated Confirmer Signatures 13

5 Improved GMR Scheme

To enhance the transcript simulatability of the GMR scheme, we should let the
confirmer know the “context” of the ciphertext c meaning that c is created with
respect to which message m and which verification key pkS . We notice that this
can be achieved if the underlying IND-CCA2 secure encryption scheme supports
the use of labels. Namely, we can define a label L = m||pkS so that the confirmer
is aware of the context of c. In the following, we describe our improvement on
the GMR DCS scheme in the setting of exploiting CS-Paillier encryption scheme
[11] and Pedersen commitment [35]. Such a treatment could be helpful to readers
who want to know (and apply) a concrete DCS implementation with clearly
technical details. At the same time, note that this concrete DCS scheme can be
straightforwardly generalized by using any IND-CCA2 secure encryption with
labels and any perfectly hiding and computationally binding commitment.

To obtain a verifiable encryption scheme from the CS-Paillier cryptosystem,
we assume that there is an additional composite modulus n2 = p2q2, where
p2 = 2p′2+1 and q2 = 2q′2+1 are two safe primes, along with elements g2, h2 ∈ Z∗

n2

of order p′2q
′
2. In addition, we select a third group Γ of prime order ρ, along with

two random generators δ and γ. In the group Γ , the discrete logarithm problem
is assumed to be hard. In our DCS scheme, a message digest m (the hashed value
of a real message) shall be committed by Com(m, r) = δmγr, where r ∈R [ρ]. We
require n2 6= n, ρ = |Γ | < n·2−k−k′−3, and 2k < min{p′, q′, p′2, q′2} for two further
security parameters k and k′. Actually, {0, 1}k defines the “challenge space” of
the verifier V , while k′ controls the quality of the ZK property [11]. In addition,
it is required that the prover (a signer S or the confirmer C) does not know the
factorization of n2. So, for simplicity, we just assume that (n2, g2, h2, Γ, γ, δ) are
generated by a trusted party and viewed as a common reference string.

– DCGen: The signer S generates a key pair (skS , pkS)← SGen(1λ) for any se-
cure digital signature scheme DSS=(SGen, Sig, Ver). The confirmer C gener-
ates a key pair (skC , pkC)← CGen(1λ) for the CS-Paillier encryption scheme.
Namely, we assume skC = (x1, x2, x3) and pkC = (n, g, h, y1, y2, y3,H).

– Sign: To sign a message m ∈ [ρ], the signer S first selects a random number
r ∈R [ρ], then computes ψ = Com(m, r) = δmγr and σ∗ = Sig((ψ, pkS), skS).
The basic signature for message m is σ = (σ∗, r).

– Verify: On input an extracted DCS signature σ = (σ∗, r) for a message m, it
returns the output of Ver((ψ, pkS), σ∗, pkS), where ψ = Com(m, r).

– Extract: On input σ′ = (σ∗, ψ, c) and message m, it outputs r if σ∗ =
Sig((ψ, pkS), skS) and the confirmer C can derive r = Dec(skC , c) w.r.t.
label L = m||pkS such that ψ = Com(m, r). Otherwise, it outputs ⊥.

– ConfirmedSign: In addition to the above steps in the Sign procedure, the
signer S also computes the ciphertext c := (u, e, v) = Enc(pkC , r) under the
label L = m||pkS (recall Section 2). The designated confirmer signature is
σ′ = (σ∗, ψ, c), where σ∗ = Sig((ψ, pkS), skS). Then, the signer runs a CZK
protocol with a verifier to show that c and ψ are properly prepared. That
is, the signer provides the following ZK proof of knowledge of values (t, r, s),

14 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

where s ∈R [n2/4] and α = ψδ−m:

PK{(t, r, s) : u2 = g2t ∧ e2 = y2t
1 h

2r ∧ v2 = (y2y
H(u,e,L)
3)2t∧

α = γr ∧ ` = gr
2h

s
2 ∧ −n/2 < r < n/2}.

(4)

– Confirm: Upon receiving a message-signature pair (m,σ′ = (σ∗, ψ, c)) with
respect to pkS , the confirmer C first checks whether σ∗ is S’s signature on
(ψ, pkS). C aborts if the check fails. Otherwise, C decrypts c = (u, e, v) using
label L = m||pkS to get a value r, and then checks that ψ ≡ Com(m, r). If any
step of this procedure fails, C performs the Disavowal protocol. Otherwise, C
needs to show that there is such an r in ZK. That is, the signer provides the
following ZK proof of knowledge of values (x1, x2, x3, r, s), where s ∈R [n2/4]
and α = ψδ−m:

PK{(x1, x2, x3, r, s) : y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧ e2 = u2x1h2r∧
v2 = u2x2u2H(u,e,L)x3 ∧ α = γr ∧ ` = gr

2h
s
2 ∧ −n/2 < r < n/2}. (5)

– Disavowal: To disavow a purported signature σ′ = (σ∗, ψ, c) on message m,
the confirmer C does the following. C first checks if c is a valid encryption
of some r. If not, it performs a ZK proof of knowledge that the string c is
not well-formed. Otherwise, C computes r = Dec(skC , c) and proves in ZK
that ψ 6= Com(m, r). That is, the confirmer C provides a ZK proof for the
following statement:

[c is invalid w.r.t. L = m||pkS] OR
[∃ r s.t. r = Dec(skC , c) AND ψ 6= Com(m, r)]. (6)

Compared with the original GMR scheme, there are three main changes in
the above improvement. First, our basic signature is a pair (σ∗, r) instead of
a triple (σ∗, c, r) in GMR scheme, where c is treated as auxiliary information
in [25]. Our proposal not only becomes simpler, but also avoids the potential
question whether a proof should be provided to show that c indeed encrypts r.
We also remark that the algorithm Verify is not specified in the GMR scheme
[25]. Second, the Confirm protocol is enhanced to guarantee the soundness, as
we mentioned before. Third, we explicitly specify how to use labels in the DCS
scheme. In contrast, the authors of [25] claimed that any IND-CCA2 secure
encryption scheme [20] can be used by the confirmer without mentioning how to
use the labels in their instantiation, where CS-Paillier cryptosysem is exploited.

In addition, a practical implementation should guarantee that the Extract
algorithm is performed correctly. To this end, we can require that the confirmer
first runs Confirm or Disavowal protocol with a verifier, and then outputs a correct
value r or ⊥ respectively. Alternatively, the confirmer can provide some non-
interactive proof to show that it did this properly. For example, the confirmer
can perform the non-interactive version of Confirm or Disavowal protocol with
additional output r or ⊥ correspondingly.

The implementation details and the security proof of the improved GMR
scheme can be found in the full version [37]. The following theorem summarizes
the security result on this DCS scheme.

Generic Constructions of Secure Designated Confirmer Signatures 15

Theorem 1. Let DSS = (SGen, Sig, Ver) be any signature scheme which is ex-
istentially unforgeable against chosen message attack, and PKE = (CGen, Enc,
Dec) be any IND-CCA2 secure encryption scheme supporting labels, and Com(m, r)
be any statistically-hiding computationally-binding commitment scheme. Then
the improved GMR scheme is a secure designated confirmer signature scheme,
i.e., it satisfies the security requirements for verifiers, the signer, and the con-
firmer as specified in definitions 2, 3 and 4.

6 A New DCS Scheme without Public Key Encryption

In this section, we propose a new generic DCS scheme, which is not only more
efficient but also does not rely on any public key encryption. The basic idea is to
exploit a confirmer commitment scheme, first introduced by Michels and Stadler
in [30]. The difficulty, however, lies in realizing the invisibility in this setting,
since Michels-Stadler DCS schemes were broken by Camenisch and Michels [10].
In our construction, we take a new approach to this problem by requiring the
signer to issue a partial proof showing that a confirmer commitment is delegated
to a specific signature and signer. To confirm or disavow an alleged signature,
we extensively exploit the zero-knowledge protocols proposed by Korusawa and
Heng [29] for their undeniable signatures.

Again, our scheme is just described for a short message digest m ∈ [ρ], where
ρ is a prime. To sign an arbitrary message M ∈ {0, 1}∗ we can exploit a collision-
free hash function H1 : {0, 1}∗ → [ρ] and then use H1(M) to replace m in the
following description.

– DCGen: The signer S generates a key pair (skS , pkS)← SGen(1λ) for any se-
cure digital signature scheme DSS=(SGen, Sig, Ver). The confirmer C chooses
a group Γ of prime order ρ with a generator δ, and generates a key pair
(skC = x, pkC = γ = δx) by selecting a random number x ∈R [ρ].

– Sign: To sign a message m ∈ [ρ], the signer S first selects a random number
r ∈ [ρ], then computes d1 = δr, d2 = γr+m, and σ∗ = Sig(d1||d2||pkS ||pkC ,
skS). After that, S with randomness r provides a non-interactive proof π0

showing that (δ, d1, γ, d2γ
−m) is a Diffie-Hellman (DH) tuple. That is,

π0 =SPK{(r, x) : (d1 = δr∧d2γ
−m = γr)∨(γ = δx∧d2γ

−m = dx
1)}(pkS ||pkC).

The basic signature is σ = (σ∗, d1, d2, π0).
– Verify: On input a basic signature σ = (σ∗, d1, d2, π0) and a message m, it

outputs Accept if σ∗ is the signer’s valid signature on (d1, d2, pkS , pkC) and
π0 is a valid proof showing that (δ, γ, d1, d2γ

−m) is a DH-tuple. Otherwise,
it outputs ⊥.

– Extract: On input an alleged DCS message-signature pair (m,σ′ = (σ∗, d1, d2,
π1)) w.r.t. pkS and pkC , it outputs a non-interactive proof π0 using the
confirmer’s private key x, if (δ, γ, d1, d2γ

−m) is a DH-tuple. Otherwise, it
outputs ⊥.

16 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

– ConfirmedSign: To generate a DCS σ′ = (σ∗, d1, d2, π1) for message m ∈ [ρ],
the signer first produces d1, d2 and σ∗ as in the Sign procedure by selecting
a random number r. Then, the signer S provides a non-interactive proof π1

showing that he or she knows the discrete logarithm of d1 to the base δ.
That is,

π1 = SPK{r : d1 = δr}(d2||pkS ||pkC).

We call (m,σ′ = (σ∗, d1, d2, π1)) is an alleged DCS message-signature pair
w.r.t. pkS and pkC , if σ∗ is a valid signature on d1||d2||pkS ||pkC w.r.t. public
key pkS , and π1 is a valid signature proof of knowledge (SPK) [9] for d1 = δr

w.r.t. message d2||pkS ||pkC . Finally, S performs the interactive version of π0

with a verifier V to show that (δ, d1, γ, , d2γ
−m) is a DH-tuple, i.e.,

π′0 = PK{(r, x) : (d1 = δr ∧ d2γ
−m = γr) ∨ (γ = δx ∧ d2γ

−m = dx
1)}.

– Confirm: For an alleged DCS message-signature pair (m,σ′ = (σ∗, d1, d2, π1))
with respect to pkS and pkC , the confirmer C checks if (δ, d1, γ, , d2γ

−m) is
a DH-tuple. If not, C performs Disavowal protocol. If yes, using its private
key x the confirmer C runs the interactive protocol π′0 (see above) with a
verifier V .

– Disavowal: To disavow an alleged DCS message-signature pair (m,σ′ = (σ∗,
d1, d2, π1)) w.r.t. pkS and pkC , where (δ, d1, γ, , d2γ

−m) is not a DH-tuple,
using its private key x the confirmer C performs the following interactive
protocol with a verifier V :

π′2 = PK{(r, x) : (d1 = δr ∧ d2γ
−m 6= γr) ∨ (γ = δx ∧ d2γ

−m 6= dx
1)}.

Note that in the above specification, d2||pkS ||pkC is particularly embedded
in the partial proof π1. The purpose is to prevent another signer from re-using
(d1, d2, π1). Otherwise, invisibility may be compromised. The implementation
details and the security proof of the above DCS scheme can be found in the full
version of this paper [37]. The following theorem summarizes the security result
on this DCS scheme.

Theorem 2. Let DSS = (SGen, Sig, Ver) be any signature scheme which is
existentially unforgeable against chosen message attack, and Γ = 〈δ〉 be a group
in which the Decisional Diffie-Hellman (DDH) problem is intractable. Then the
above DCS scheme without public key encryption is a secure designated confirmer
signature scheme, i.e., it satisfies the security requirements for verifiers, the
signer, and the confirmer as specified in definitions 2, 3 and 4.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Sig-
natures. In: Proc. of Advances in Cryptology - EUROCRYPT ’98, LNCS 1403, pp.
591-606. Springer-Verlag, 1998.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4): 591-606, 2000.

Generic Constructions of Secure Designated Confirmer Signatures 17

3. G. Ateniese. Efficient Verifiable Encryption (and Fair Exchange) of Digital Sig-
nature. In: Proc. of ACM Conference on Computer and Communications Security
(CCS ’99), pp. 138-146. ACM Press, 1999.

4. F. Bao, R.H. Deng, and W. Mao. Efficient and Practical Fair Exchange Protocols
with Off-line TTP. In: Proc. of IEEE Symposium on Security and Privacy, pp.
77-85, 1998.

5. M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for De-
signing Efficient Protocols. In: Proc. of the 1st ACM Conf. on Computer and Com-
munications Security (CCS ’93), pp. 62-73. ACM press, 1993.

6. F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In:
Proc. of Advances in Cryptology - EUROCRYPT ’00, LNCS 1807, pp. 431-444.
Springer-Verlag, 2000.

7. J. Boyar, D. Chaum, I. Damgard and T. Pedersen. Convertible Undeniable Signa-
tures. In: Proc. of Advances in Cryptology - CRYPTO’90, LNCS 537, pp. 189-208,
Springer-Verlag, 1990.

8. C. Boyd and E. Foo. Off-line Fair Payment Protocols Using Convertible Signatures.
In: Proc. of Advances in Cryptology - ASIACRYPT ’98, LNCS 1514, pp. 271-285.
Springer-Verlag, 1998.

9. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In: Proc. of Advances in Cryptology - CRYPTO ’97, LNCS
1294, pp. 410-424. Springer-Verlag, 1997.

10. J. Camenisch and M. Michels. Confirmer Signature Schemes Secure against Adap-
tive Adversaries. In: Proc. of Advances in Cryptology - EUROCRYPT ’00, LNCS
1870, pp. 243-258. Springer-Verlag, 2000.

11. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Proc. of Advances in Cryptology - CRYPTO ’03, LNCS
2729, pp. 126-144. Springer-Verlag, 2003. Full version of this paper is available at
http://shoup.net/papers/.

12. D. Chaum and H. van Antwerpen. Undeniable Signatures. In: Proc. of Advances
in Cryptology - CRYPTO’89, LNCS 435, pp. 212-216, Springer-Verlag, 1989.

13. D. Chaum. Designated Confirmer Signatures. In: Proc. of Advances in Cryptology
- EUROCRYPT ’94, LNCS 950, pp. 86-91, Springer-Verlag, 1994.

14. L. Chen. Efficient Fair Exchange with Verifiable Confirmation of Signatures. In:
Proc. of Advances in Cryptology - ASIACRYPT ’98, LNCS 1514, pp. 286-299.
Springer-Verlag, 1998.

15. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplied Design of Witness Hiding Protocols. In: Proc. of Advances in Cryptology
- CRYPTO ’94, LNCS 839, pp. 174-187. Springer-Verlag, 1994.

16. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Proc. of Advances in Cryptology
- CRYPTO ’98, LNCS 1462, pp. 13-25. Springer-Verlag, 1998.

17. R. Cramer and V. Shoup. Signature Schemes based on the Strong RSA Assump-
tion. In: Proc. of the 6th ACM Conf. on Computer and Communications Security
(CCS ’99), pp. 46-51. ACM press, 1999.

18. R. Cramer, I. Damg̊ard, and P. MacKenzie. Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In: Proc. of PKC ’00, LNCS 1751,
pp. 354-373. Springer-Verlag, 2000.

19. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Proc. of Advances in Cryptology - EUROCRYPT ’00, LNCS 1807, pp. 418-430,
Springer-Verlag, 2000.

18 Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao

20. D. Dolev, D. Dwork, and N. Naor. Non-meallleable cryptography. In: SIAM Journal
on Computing, 2000, 30(2): 391-437.

21. S. D. Galbraith and W. Mao. Invisibility and Anonymity of Undeniable and Con-
firmer Signatures. In: Proc. of CT-RSA ’03, LNCS 2612, pp. 80-97. Springer-Verlag,
2003.

22. J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free Optimistic Contract Sign-
ing. In: Proc. of Advances in Cryptology - CRYPTO ’99, LNCS 1666, pp. 449-466.
Sprnger-Verlage, 1999.

23. R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signatures without the
Random Oracle. In: Proc. of Advances in Cryptology - EUROCRYPT ’99, LNCS
1592, pp. 123-139. Springer-Verlag, 1999.

24. R. Gennaro. Multi-trapdoor Commitments and Their Applications to Proofs of
Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Advances in
Cryptology - CRYPTO ’04, LNCS 3152, pp. 220-236. Springer-Verlag, 2004.

25. C. Gentry, D. Molnar, and Z. Ramzan. Efficient Designated Confirmer Signatures
without Random Oracles or General Zero-knowledge Proofs. In: Advances in Cryp-
tology - ASIACRYPT 2005, LNCS 3788, pp. 662-681. Springer-Verlag, 2005.

26. O. Goldreich and A. Kahan. How to Construct Constant-Round Zeroknowledge
Proof Systems for NP. Journal of Cryptology, 9(3): 167-189, 1996.

27. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against
Adaptive Chosen-message Attack. SIAM Journal of Computing, 17(2): 281-308,
1988.

28. S. Goldwasser and E. Waisbard. Transformation of Digital Signature Schemes into
Designated Confirmer Signature Schemes. In: Proc. of Theory of Cryptography
TCC ’04, LNCS 2951, pp. 77-100, Springer-Verlag, 1996.

29. K. Kurosawa and S.-H. Heng. 3-Move Undeniable Signature Scheme. In: Proc. of
Advances in Cryptology - EUROCRYPT ’05, LNCS 3494, pp.181-197. Springer-
Verlag, 2005.

30. M. Michels and M. Stadler. Generic Constructions for Secure and Efficient Con-
firmer Signature Schemes. In: Proc. of Advances in Cryptology - EUROCRYPT
’98, LNCS 1403, pp. 406-421. Springer-Verlag, 1998.

31. M. Michels and M. Stadler. Efficient Convertible Undeniable Signature Schemes.
In: Proc. of 4th Annual Workshop on Selected Areas in Cryptography (SAC ’97),
pp. 231-244, 1997.

32. J. Monnerat and S. Vaudenay. Chaum’s Designated Confirmer Signature Revisited.
In: Proc. of Information Security (ISC ’05), LNCS 3650, pp. 164-178. Springer-
Verlag, 2005.

33. T. Okamoto. Designated Confirmer Signatures and Public Key Encryption Are
Equivalent. In: Proc. of Advances in Cryptology - CRYPTO ’94, LNCS 839, pp.
61-74. Springer-Verlag, 1994.

34. P. Paillier. Public Key Cryptosystems based on Composite Degree Residuosity
Classes. Proc. of Advances in Cryptology - EUROCRYPT ’99, LNCS 1592, pp.
223-238. Springer-Verlag, 1999.

35. T.P. Pedersen. Non-interactive and Information-theoretic Secure Verifiable Secret
Sharing. In: Proc. of Advances in Cryptology - CRYPTO ’91, LNCS 576, pp. 129-
140. Springer-Verlag, 1992.

36. C.P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy, 4(3): 161-174, 1991.

37. G. Wang, J. Baek, D.S. Wong, and F. Bao. On the Generic and Efficient Con-
structions of Secure Designated Confirmer Signatures. Full version of this paper is
available from the authors or Cryptology ePrint Archive.

