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Abstract. Direct anonymous attestation (DAA) is an anonymous au-
thentication scheme adopted by the Trusted Computing Group in its
specifications for trusted computing platforms. This paper presents an
efficient construction that implements all anonymous authentication fea-
tures specified in DAA, including authentication with total anonymity,
authentication with variable anonymity, and rogue TPM tagging. The
current DAA construction is mainly targeted for powerful devices such
as personal computers, and their corresponding application areas, but is
not entirely suitable for embedded devices with limited computing ca-
pabilities (e.g., cell phones or hand-held PDAs). We propose a new con-
struction with more efficient sign and verify protocols, making it more
attractive for embedded devices. We prove that the new construction
is secure under the strong RSA assumption and the decisional Diffie-
Hellman assumption.
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1 Introduction

In this paper, we present an efficient direct anonymous attestation scheme for
embedded devices. DAA is a group signature variant designed to protect the
privacy of the owner of a trust computing platform, and has been adopted by
the Trusted Computing Group, an industry consortium developing standards
for “trusted computing platforms.” A group signature is a privacy-preserving
signature scheme introduced by Chaum and Heyst [12]. In such a scheme, there
are two basic types of entities: a group manager and certain number of group
members. The group manager issues a group membership certificate/credential
for each group member. Later, based on its own group membership certificate,
a group member can sign a message on behalf of the group without revealing its
identity. That is, a third party can only verify that the signature was produced
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by a legitimate group member without being able to find which particular one.
Only the group manager is able to open a signature and reveal its originator (in
some cases this ability is held by a separate party known as an “open authority”).
In addition, signatures signed by the same group member cannot be identified
as from the same source, i.e., “linked.” Recently, the study of group signature
schemes has attracted considerable attention, and many solutions have been
proposed in the literature (e.g., [1, 4, 5, 7–9]).

1.1 Background

The Trusted Computing Group [21] (TCG) is an industry consortium formed
to develop standards for Trusted Computing Platforms. A trusted computing
platform is a computing device integrated with a cryptographic chip called a
trusted platform module (TPM), which is designed and manufactured in a way
such that all parties can trust cryptographic computing results from this TPM.
Based on the TPM, a trusted computing platform can implement many security
related features, such as secure boot, sealed storage, and software integrity at-
testation. More information about TPMs and trusted computing platforms can
be found at the TCG website [21].

TPMs are tamper-resistant cryptographic chips. When a TPM is manufac-
tured, a unique RSA keypair, called the Endorsement Key (EK), is created and
stored in the protected area of the TPM. The EK might be generated inside a
TPM, or imported from an outside key generator. The public part of the EK is
authenticated by the manufacturer, while the private part of the EK will never
be revealed to the outside. A TPM independently performs cryptographic com-
putations inside itself, and even its manufacturer cannot obtain knowledge of
these computations. TPMs are embedded into computing devices by a device
manufacturer, and these devices are called trusted computing platforms when
coupled with appropriate software. At the heart of trusted computing platform
is the assumption that TPMs should independently work as expected, and be
“trusted” by remote parties. Essentially, trusted computing platforms are based
on trust of TPMs.

The deployment and use of TPMs introduces privacy concerns. If the authen-
tication of a TPM is directly based on its EK, all transactions by the same TPM
can be linked through the public part of the EK. Furthermore, if the TPM is
associated with a user’s identity, the user may suffer a loss of privacy. To protect
the privacy of a TPM owner, two solutions have been proposed in the TPM
specifications.

Privacy in the TPM v1.1 specification is based on a trusted third party, called
a Privacy CA. A TPM generates a second RSA keypair called an Attestation
Identity Key (AIK). The TPM sends an AIK to the Privacy CA, applying for
a certificate on the AIK. After the TPM proves its ownership using a valid
EK, the Privacy CA issues a certificate for this AIK. Later, the TPM sends
the certificate for this AIK to a verifier, and proves it owns this AIK. This
way, the TPM hides its identity during the transaction. Obviously, this is not a
completely satisfactory solution, since each AIK creation needs the involvement



of the Privacy CA, and compromise of the Privacy CA (or a dishonest Privacy
CA) can destroy all privacy guarantees.

An alternate solution added in TPM v1.2 is called Direct Anonymous At-
testation (DAA), adopting techniques from group signatures: A TPM applies
for a credential from an issuer, and later the TPM generates a special signature
using this credential. A remote verifier can verify the signature has been con-
structed from a valid credential without the ability to recover the underlying
credential. Different signatures based on the same credential might be linkable
or unlinkable depending on a verifier’s requirements. If the method implements
unlinkable authentication, it is called total anonymity. It should be noted that
the open operation defined in standard group signature schemes, which allows
the group manager to learn the creator of a signature, is not included in DAA
for privacy protection.

Variable anonymity [22] is a conditionally linkable anonymous authentication,
in which the signatures signed by the same TPM in a certain time interval are
linkable. However, when the signing parameters change, the signatures across the
different periods cannot be linked. When the time interval becomes short, the
method works like perfectly unlinkable authentication. When the period never
expires, this leads to pseudo-anonymity. A verifier can adjust the time interval
to detect suspicious attestation. If too many attestation requests come from the
same TPM in a period of time, it is likely this TPM has been compromised.

Rogue TPM tagging is about the revocation of the key of a corrupted TPM.
When a broken TPM is discovered and identified by its EK, its secrets will be
published on the revocation list. A verifier can identify and exclude any rogue
TPM on the list, and an issuer can refuse to issue new credentials to a TPM
with a revoked EK.

The current solution for DAA is due to Brickell, Camenisch, and Chen [6],
which we refer to as the BCC scheme in this paper. The BCC scheme is de-
signed mainly for devices with powerful computing capabilities such as personal
computers. The scheme is quite complex with high computing overhead. To
expedite the authentication process, the computation has been distributed be-
tween a TPM and the host into which the TPM is embedded. The TPM finishes
the computation related to the signature generation, while the host finishes the
computation related to anonymity. The BCC scheme works fine with personal
computers. However, it would be an expensive solution for devices with low
computing capabilities, such as cell phones, hand-held PDA, etc.

1.2 Our Results

In this paper, we propose a new construction that can carry out all required
features in DAA (total anonymity, variable anonymity, and rouge TPM tagging),
and has much more efficient sign and verify protocols.

Our construction is built up from the group signature scheme due to Ca-
menisch and Michels [8], which we will refer to as the CM scheme. We directly
adopt their join protocol. However, our sign and verify protocols are totally dif-
ferent. We have devised an efficient way to carry out anonymous authentication



with much less computation. So far we are not aware of any similar method
being adopted in other cryptographic constructions for anonymous authentica-
tion. Due to the simplicity and efficiency of our method, the new construction
is more appealing for embedded devices with low computing capability. We will
demonstrate this point in Section 4.6 when we present a performance analysis.

However, we also need to point out that the join protocol, which we directly
adopt from the CM scheme, is not an efficient one. Furthermore, the security
argument for the join protocol assumes a static adversary, while the counterpart
in the BCC scheme can be proved secure under an adaptive adversary. However,
we consider this to be a minor issue in real applications. The join protocol is the
way a TPM obtains its anonymous certificate/credential. In practice, the join
protocol normally is conducted in the system setup stage, and is run infrequently
in later phases. Meanwhile, the join protocol generally should be completed in
more strict environments with rigorous security requirements, so security under
static attack should be reasonable and acceptable. Furthermore, the join protocol
may not be the only option for certificate generation. In some applications,
certificates could be produced at manufacturing time, just as the endorsement
key (EK) is. In such a situation, the join protocol might not even be necessary.

The rest of this paper is organized as follows. The next section introduces
the model for our construction. Section 3 reviews some definitions, cryptographic
assumptions, and building blocks of our proposed scheme. Section 4 presents the
proposed scheme. Security properties are considered in Section 5. Finally, we
summarize and give conclusions in Section 6.

2 The Model

This section introduces the model for direct anonymous attestation, which is a
variant of the group signature model [1]. Both these two models support pro-
cedures Setup, Join, Sign, and Verify, while DAA further supports mechanism
such as variable linkability and rogue group member identification, i.e., rogue
TPM tagging.

Definition 1. Direct anonymous attestation is a digital signature scheme with
two types of participants: the certificate issuer, and TPMs. It consists of the
following procedures:

– Setup: For a given security parameter σ, the issuer produces system-wide
public parameters and a group master key for group membership certificate
generation.

– Join: An interactive protocol between a TPM and the issuer. The TPM
obtains a group membership certificate to become a group member. The public
certificate and the TPM’s identity information are stored by the issuer in a
database for future use.

– Sign: Using its group membership certificate and private key, the TPM cre-
ates an anonymous group signature for a message.



– Verify: A signature is verified to make sure it originates from a legitimate
TPM without knowledge of which particular one.

– Rogue tagging: A rogue TPM can be identified and excluded for the group.

Similar to a group signature, DAA should satisfy the following properties:

– Correctness: Any valid signature can be correctly verified by the Verify
protocol.

– Forgery-Resistance: A valid group membership certificate can only be
created by a TPM and the issuer through the Join protocol.

– Anonymity: It is infeasible to identify the real TPM of a signature unless
this TPM is on the revocation list.

– Unlinkability: It is infeasible to link two different signatures of the same
TPM.

– Non-framing: No one (including the issuer) can sign a message in such a
way that it appears to come from another TPM.

3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions,
and building blocks that we will use in this paper.

3.1 Number-Theoretic Assumption

Definition 2 (Special RSA Modulus). An RSA modulus n = pq is called
special if p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗
n be the multiplicative

group modulo n, which contains all positive integers less than n and relatively
prime to n. An element x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 ≡ x (modn). The set of all quadratic residues of Z∗
n forms

a cyclic subgroup of Z∗
n, which we denote by QRn. If n is the product of two

distinct primes, then |QRn| = 1
4 |Z

∗
n|.

We list two properties about QRn which will be be used in the later security
proof.

Property 1 If n is a special RSA modulus, with p, q, p′, and q′ as in Def-
inition 2 above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are
generators of QRn.

Property 2 If g is a generator of QRn, then ga mod n is a generator of QRn

if and only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following security assumptions
which are widely accepted in the cryptography literature. (see, for example, [1,
2, 9, 10, 15]).



Assumption 1 (Strong RSA Assumption) Let n be an RSA modulus. The
Flexible RSA Problem is the problem of taking a random element u ∈ Z∗

n and
finding a pair (v, e) such that e > 1 and ve = u (modn). The Strong RSA
Assumption says that no probabilistic polynomial time algorithm can solve the
flexible RSA problem with non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption for QRn) Let n
be a special RSA modulus, and let g be a generator of QRn. For two distributions
(g, gx, gy, gxy), (g, gx, gy, gz), x, y, x ∈R Zn, there is no probabilistic polynomial-
time algorithm that distinguishes them with non-negligible probability.

Kiayias et al. have investigated the Decisional Diffie-Hellman Assumption
over a subset of QRn in [17], i.e., x, y, z are randomly chosen from some subsets,
truncation of QRn. They showed that the Decisional Diffie-Hellman Assumption
is still attainable over subsets of QRn with the size down to at least |QRn|1/4.

3.2 Building Blocks

Our main building blocks are statistical honest-verifier zero knowledge proofs
of knowledge related to discrete logarithms over QRn [10, 11, 16]. They include
protocols for things such as knowledge of a discrete logarithm, knowledge of the
equality of two discrete logarithms, and knowledge of a discrete logarithm that
lies in certain interval, etc. We introduce one of them here. Readers may refer
to the original papers for more details.

Definition 4 (Protocol 1). Let n be a special RSA modulus, QRn be the
quadratic residue group modulo n, and g be a generator of QRn. Let α, l, and
lc be security parameters that are all greater than 1, and let X be a constant
number. In the following protocol, Alice knows x, the discrete logarithm of T1

(so gx ≡ T1(modn)), where x ∈ [X − 2l, X + 2l]. After the protocol is ex-
ecuted, Bob is convinced that Alice knows the discrete log x of T1 such that
x ∈ [X − 2α(l+lc)+1, X + 2α(l+lc)+1].

1. Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes T2 = gt (mod n).
Alice sends (T1, T2) to a verifier Bob.

2. Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
3. Alice computes

w = t− c(x−X),

which she sends to Bob. Notice that an honest Alice knows a value of x ∈
[X−2l, X +2l], so given the range in which t and c were selected, an honest
Alice will produce a w that satisfies w ∈ [−2α(l+lc)+1, 2α(l+lc)+1] (actually in
a slightly smaller interval than this, but this is a sufficiently tight bound for
our purposes).

4. Bob checks that w ∈ [−2α(l+lc)+1, 2α(l+lc)+1] and

gw−cXT c
1 ≡ T2 (mod n).

If both tests pass, then Bob is convinced that Alice knows the discrete loga-
rithm of T1 and that it lies in the range [X − 2α(l+lc)+1, X + 2α(l+lc)+1].



Remark 1: The parameter α > 1 is used since we do not know the size of the
group QRn, and determines the statistical closeness of our actual distribution
to the ideal one. In other words, α determines the statistical zero-knowledge
property of this protocol. For a more in-depth discussion and analysis, we refer
the reader to [8].

Remark 2: Using the Fiat-Shamir heuristic [14], the protocol can be turned
into a non-interactive “signature of knowledge,” which is secure in the random
oracle model [3]. We will introduce our new signature scheme in the manner of
a “signature of knowledge” in the next section.

4 The Direct Anonymous Attestation Scheme

In this section, we describe our method for implementing direct anonymous
attestation. As mentioned earlier, our construction is based on the same group
certificate as the CM scheme [8]. However, the sign and verify protocols are
re-designed.

4.1 System Parameter Setting

The certificate issuer picks a security parameter σ, and generates the system
parameters as follows:

– n, g: n is a special RSA modulus such that n = pq, where p and q are each
at least σ bits long (so p, q > 2σ), and p = 2p′ + 1, and q = 2q′ + 1, with p′

and q′ both being prime. g is a random generator of the cyclic group QRn.
n, g are public values while p and q are kept secret by the group manager.

– α, lc, ls, lb: Security parameters that are greater than 1.
– X, Y : constant integers. Y > 2α(lc+lb)+1, and X > 2Y + 2α(ls+lc)+2.
– Two strong collision-resistant hash functions: H1 : {0, 1}∗ → Z∗

n, and H2 :
{0, 1}∗ → {0, 1}lc .

An illustration of the system parameters is the setting of σ = 1024 (so n
is 2048 bits), α = 9/8, X = 2792 (99 bytes), Y = 2520 (65 bytes), ls = 540,
lb = 300, and lc = 160.

4.2 Join Protocol

We adopt the same join protocol as in the CM group signature. A TPM obtains
its group membership certificate as a keypair (E, s), such that s is prime, s ∈
(X, X + 2ls), and

Es ≡ g (mod n).

s is the TPM’s private key and is kept secret by the TPM. For further details
on how the join protocol works, see [8].



4.3 Authentication with Total Anonymity

The idea of our method for implementing authentication with total anonymity is
as follows: the TPM picks a random blinding integer b < s, computes T1 = Eb =
gs−1b (mod n), T2 = gb (mod n). Then the TPM sends (T1, T2) to a verifier
along with a proof that (T1, T2) is constructed from a legitimate keypair. Thus,
a TPM’s keypair is covered by this blinding integer b. The requirement for b < s
is important, which will be seen more clearly in the later security proof.

This method is very different from the one used in many group signature
schemes (e.g., [1, 6, 8]). In those schemes, a group member basically adopts the
ElGamal encryption to hide its identity [13]. For instance, in the CM group
signature, a group member hide itself by computing

T1 = Eyb (mod n), T2 = gb (mod n),

where y is the group manager’s public key. Afterwards, the task for the group
member is to prove that (T1, T2) was constructed from a legitimate keypair,
which is much less efficient than our method.

Now, we introduce our sign protocol. For a message m, the TPM executes
the following steps to complete the sign protocol:

1. Generate a random b ∈R [Y − 2lb , Y + 2lb ], t1 ∈R ±{0, 1}α(ls+lc), t2 ∈R

±{0, 1}α(lb+lc), and compute

T1 = Eb ( mod n), T2 = gb ( mod n); d1 = T t1
1 ( mod n), d2 = gt2 ( mod n); .

2. Compute:
c = H2(g||T1||T2||d1||d2||m);

w1 = t1 − c(s−X), w2 = t2 − c(b− Y ).

3. Output (c, w1, w2, T1, T2).

To verify a signature, the verifier computes

c′ = H2(g||T1||T2||Tw1−cX
1 T c

2 ||gw2−cY T c
2 ||m),

and accepts the signature if and only if c = c′, w1 ∈ ±{0, 1}α(ls+lc)+1, and
w2 ∈ ±{0, 1}α(lb+lc)+1.

4.4 Authentication with Variable Anonymity

To achieve variable anonymity, each signature will belong to a “linkability class”
that is identified using a “linkability class identifier,” or LCID. All signatures
made by the same TPM with the same LCID are linkable, and in an interactive
authentication protocol the LCID can be negotiated and determined by the TPM
and verifier. For example, to link authentications to a single server over a single
day, the LCID could simply be the server name concatenated with the date. If
the same LCID is always used with a particular server (e.g., the server name),



then the result is a pseudo-anonymity system. If complete anonymity is desired,
the signer can simply pick a random LCID (which is possible if the server is not
concerned with linkability and allows arbitrary LCIDs).

The TPM derives a generator j of QRn by hashing the LCID of this signature.

j = (H1(LCID))2 (mod n).

To implement variable anonymity, we add the following computations to the
Sign protocol:

T3 = js (mod n), d3 = jt1 (mod n),

c = H2(g||j||T1||T2||T3||d1||d2||d3||m);

and outputs (c, w1, w2, T1, T2, T3,m). The verifier then computes

c′ = H2(g||j||T1||T2||T3||Tw1−cX
1 T c

2 ||gw2−cY T c
2 ||jw1−cXT c

3 ||m).

Since j will remain unchanged for a certain time interval, the same TPM
will always produce the same T3 during this interval. The frequency of T3 will
be used by the verifier to identify suspicious authentication, and may refuse to
provide further services. Since j changes in different periods of time, this ensures
the unlinkability of the same TPM between periods.

4.5 Rogue TPM Tagging

As described earlier, TPMs are manufactured to provide tamper-resistance. Oth-
erwise, the basic benefits of trusted computing platforms would become mean-
ingless. However, in extreme circumstances, a TPM may be compromised and its
keypair exposed, so a verifier should be able to identify the attestation request
from rogue TPMs. To do so, the secrets of a corrupted TPM (e.g., EK, E, and s)
should be published on the revocation list. For a keypair (E, s) on the revocation
list, a verifier checks

T s
1 =? T2 (mod n).

If the equation holds, the request comes from a revoked TPM.

4.6 Performance Analysis

We present a performance analysis of our scheme in the section. It can be ob-
served that the computation complexity in our scheme is dominated by the
modular squaring and multiplication operations. To estimate the computation
cost, it is sufficient to count total modular squarings and multiplications in the
protocol. For simplicity, we estimate the computation cost based on techniques
for general exponentiation [19]. For a particular exponentiation operation, let m1

be the bit length of the exponent, and m2 be the number of 1’s in the binary rep-
resentation. Then the total computation cost can be estimated as m1 squarings
and m2 multiplications. For example, if y = gx (mod n), and x ∈R {0, 1}160,



then the expected number of 1’s in x is 80, so the total expected computation
includes 160 squarings and 80 multiplications.

Suppose we set σ = 1024, so n is 2048 bits (p, q are 1024 bits). We further
choose α = 9/8, lc = 160, ls = 540, lb = 300. We also set X = 2792 (99 bytes),
Y = 2520 (65 bytes). This parameter setting conforms to the requirements of the
decisional Diffie-Hellman assumption over the subset of QRn. We can observe
that most bits of s, b are 0’s. The computation with exponent b has 520 squarings
and 151 expected multiplications. For authentication with total anonymity, a
TPM needs 2352 (520× 3 + 792) squarings, and 958 (151× 2 + 520/2 + 792/2)
multiplications.

We have counted the total exponent bit-length in the BCC scheme, which is
25844 for authentication with total anonymity. However, due to the computation
distribution between the TPM and its host, efficient algorithm for mult-based
exponentiation can be used on the host part (Algorithm 15.2 in [18]). Accord-
ing to our counting result, in the BCC scheme, the total exponent bit-length
for the TPM is around 4088, and 12098 for the host. So the total exponent
bit-length is 16186 (4088 + 12098), which includes 16186 squarings and 8093
expected multiplications. If we assume the cost of squaring is equal to that of
multiplication (squaring can be at most two times faster than multiplication),
our scheme is about 7 (24279/3310) times faster than the BCC scheme. Even
if we only consider the computation inside the TPM, our scheme is almost 2
(6132/3310) times faster than the BCC scheme. For variable anonymity, our
scheme needs 5561 modular multiplications, which still can be carried out by
the TPM alone.

It should be noticed that the computation can also be distributed in our
scheme. T1, T2, d2, w2 can be calculated by the host, and T3, d1, d3, w1 must be
computed inside the TPM. Generally speaking, this should be unnecessary since
all the computation can be done by the TPM alone.

Without the distribution of computation, the system design can be greatly
simplified. Thus, our method is more appropriate for mobile devices with low
computing capabilities.

5 Security Properties

We first propose a lemma that deals with the valid range of system parameters.

Lemma 1. If X > 2α(ls+lc)+2, α, ls, lc > 1, then (X − 2α(ls+lc)+1)2 > X +
2α(ls+lc)+1.

Proof.

(X − 2α(ls+lc)+1)2 − (X + 2α(ls+lc)+1)

= X2 −X2α(ls+lc)+2 + 22α(ls+lc)+2 −X − 2α(ls+lc)+1

= X(X − 2α(ls+lc)+2 − 1) + 22α(ls+lc)+2 − 2α(ls+lc)+1

Since α, ls, lc > 1, and X > 2α(ls+lc)+2, the equation is greater than 0. ut



Next we introduce a lemma due to Shamir [20].

Lemma 2. Let n be an integer. Given values u, v ∈ Z∗
n and x, y ∈ Zn such that

GCD(x, y) = r < x, and vx ≡ uy (mod n), there is an efficient way to compute
a value z such that zk ≡ u (mod n), where k = x/r.

Proof. Since GCD(x, y) = r, r < x, using the extended Euclidean GCD algo-
rithm, we can obtain values α and β such that αx/r + βy/r = 1. Then we
have

u ≡ uαx/r+βy/r ≡ uαx/ruyβ/r ≡ uαx/rvβx/r ≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ , we have zk ≡ u (mod n). ut

Based on this lemma, we can immediately obtain a corollary for later proof.

Corollary 1. Let n be an integer. For given values u, v ∈ Z∗
n and x, y ∈ Zn such

that x > y and vx = uy (mod n), there is an efficient way to compute values
(x, k) such that xk = u (mod n).

Proof. Since x > y, we have GCD(x, y) = r, 1 ≤ r ≤ y < x. Due to Lemma 2,
we can find a pair (x, k) such that

xk ≡ u (mod n),

where k = x/r. Therefore y ≤ k ≤ e. ut

Now, we start addressing the security of our scheme. We need to address the
issue of keypair forgery in case an attacker can obtain a set of legitimate keypairs.
A successful attack is one in which a new keypair is generated that is valid and
different from current keypairs. The following theorem shows that, assuming the
strong RSA assumption, it is intractable for an attacker to forge such a keypair.
This analysis assumes a static adversary, not an adaptive adversary who can
adaptively obtain polynomial amount of keypars at his own choice.

Theorem 1 (Forgery-resistance). If there exists a probabilistic polynomial
time algorithm which takes a list of valid keypairs, (E1, s1), (E2, s2), . . . , (Ek, sk)
and with non-negligible probability produces a new valid keypair (E, s) such that
Es ≡ g (mod n) and s 6= si for 1 ≤ i ≤ k, then we can solve the flexible RSA
problem with non-negligible probability.

Proof. Suppose there exists a probabilistic polynomial-time algorithm which
computes a new legitimate keypair based on the available keypairs, and succeeds
with some non-negligible probability p(σ). Then we construct an algorithm for
solving the flexible RSA problem, given a random input (u, n), as follows (the
following makes sense as long as u is a generator of QRn, which is true with non-
negligible probability for random instances — we consider this more carefully
below when analyzing the success probability of our constructed algorithm):



1. First, we check if GCD(u, n) = 1. If it’s not, then we have one of the factors of
n, and can easily calculate a solution to the flexible RSA problem. Therefore,
in the following we assume that GCD(u, n) = 1, so u ∈ Z∗

n.
2. We pick random prime numbers s1, s2, . . . , sk in the required range s ∈

[X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], and compute

r = s1s2...sk,

g = ur = us1s2...sk (mod n).

Note that since the si values are primes strictly less than either p′ or q′, it
must be the case that GCD(r, |QRn|) = 1, so Property 2 says that g is a
generator of QRn if and only u is a generator of QRn.

3. Next, we create k group keypairs, using the si values and Ei values calculated
as follows:

E1 = us2...sk (mod n)
E2 = us1s3...sk (mod n)

...
Ek = us1s2...sk−1 (mod n)

Note that for all i = 1, . . . , k, raising Ei to the power si “completes the
exponent” in a sense, giving Esi

i = us1s2···sk = ur = g (mod n).
4. We use the assumed forgery algorithm for creating a new valid keypair (E, s),

where s ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], and Es = g = ur (mod n).
5. If the forgery algorithm succeeds, then s will be different from all the si’s.

By Lemma 1, s cannot be the product of si, sj , 1 ≤ i, j ≤ k. Therefore,
either GCD(s, s1s2 · · · sk) = 1, or GCD(s, s1s2 · · · sk) = si, 1 ≤ i ≤ k. In the
first case, due to Lemma 2, we can find a pair (y, s) such that

ys = u (mod n)

so the pair (y, s) is a solution to our flexible RSA problem instance. In the sec-
ond case, assume s = v×si, then v < X−2α(ls+lc)+1, and GCD(v, s1s2 · · · sk) =
1 (or GCD(v, r) = 1). We then have

Es ≡ Evsi ≡ ur (mod n).

Again by Lemma 2, we can find a pair (y, v) such that

yv = u (mod n) ,

so the pair (y, v) is a solution to our flexible RSA problem instance.

We now analyze the probability that the above algorithm for solving the flexible
RSA problem succeeds. The algorithm succeeds in Step 1 if GCD(u, n) 6= 1, so let
P1 represent the probability of this event, which is negligible. When GCD(u, n) =
1, the algorithm succeeds when the following three conditions are satisfied: (1)



u ∈ QRn, which happens with probability 1
4 , (2) u is a generator of QRn, which

fails for only a negligible fraction of elements of QRn, due to Property 1, and
(3) the key forgery algorithm succeeds, which happens with probability p(σ).
Putting this together, the probability that the constructed algorithm succeeds
is P1 + (1− P1) 1

4 (1− negl(σ)) p(σ), which is non-negligible. ut

In step 5 of the proof about forgery resistance (Theorem 1), we can obtain
a corollary as follows.

Corollary 2. Under the strong RSA assumption, it is intractable to forge a
keypair (E, s) such that s lies in the interval (0, X − 2α(ls+lc)+1) or (X +
2α(ls+lc)+1, (X − 2α(ls+lc)+1)2), and Es = g (mod n).

Proof. In step 5 of the proof for Theorem 1, if s ∈ (0, X − 2α(ls+lc)+1), since all
si ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1] are prime, then GCD(s, s1s2 · · · sk) = 1,
and we can solve a flexible RSA problem.

If s ∈ (X +2α(ls+lc)+1, (X−2α(ls+lc)+1)2), due to Lemma 1, s can not be the
product of any sisj , i, j < k. Thus the proof is as before to solve a flexible RSA
problem. Therefore, under the strong RSA assumption, we have the corollary as
given above. ut

Now we address the security of the sign and verify protocol.

Theorem 2. Under the strong RSA assumption, the interactive protocol under-
lying the Sign and Verify protocol is a statistical zero-knowledge proof in honest-
verifier mode that the TPM holds a keypair (E, s) such that Es ≡ g (mod n)
and s lies in the correct interval.

Proof. The proofs of completeness and statistical zero-knowledge property (sim-
ulator) follow the standard method. Here we only outline the existence of the
knowledge extractor.

In the sign protocol, the TPM proves T2 ≡ gb (mod n), and b ∈ [Y −
2α(lc+lb)+1, Y + 2α(lc+lb)+1]. This is a statistical honest-verifier zero-knowledge
protocol that is secure under the strong RSA assumption. b can be recovered by
a knowledge extractor following the standard method.

We need to show a knowledge extractor is able to recover the legitimate key-
pair once it has found two accepting tuples. Let (T1, T2, d1, c, w1), (T1, T2, d1, c

′, w′
1)

be two accepting tuples. Without loss of generality, we assume c > c′. Then we
have

Tw1−cX
1 T c

2 ≡ T
w′

1−c′X
1 T c′

2 ≡ d1 (mod n).

It follows that

T
(w′

1−w1)+(c−c′)X
1 ≡ T c−c′

2 ≡ gb(c−c′) (mod n). (1)

By the system parameter settings, we require X > 2Y + 2α(ls+lc)+2, and
Y > 2α(lc+lb)+1. Then we can have

(c− c′)X > (c− c′)(Y + 2α(lc+lb)+1 + 2α(ls+lc)+2).



Since we already have b < Y + 2α(lc+lb)+1, we further obtain

(c− c′)X > (c− c′)(b + 2α(ls+lc)+2).

Since w1, w
′
1 ∈ ±{0, 1}α(ls+lc)+1, w′

1 −w1 is at least −2α(ls+lc)+2. Since c− c′ is
at least 1, we finally have

(w′
1 − w1) + (c− c′)X > b(c− c′).

Due to Corollary 1, we can solve Equation 1 to obtain a pair (E, s) such
Es ≡ g (mod n), s ≤ (w′

1 − w1) + (c− c′)X.
In our parameter settings, (w′

1 − w1) + (c− c′)X < (X − 2α(ls+lc)+1)2. Due
to Corollary 2, s must be a legitimate keypair in the correct interval. Therefore,
(E, s) is a valid keypair, which completes the proof. ut

For variable anonymity, (j, T3, d3;T1, T2, d1) are used to prove equality of
the discrete logarithms of T3 with base j, and T2 with base T1. This is also a
statistical honest-verifier zero-knowledge protocol which has been proved secure
under the strong RSA assumption.

Finally, we present a theorem for the unlinkability of a TPM’s signatures.

Theorem 3 (Unlinkability). Under the decisional Diffie-Hellman assumption
over subset of QRn, the protocol implements anonymous authentication such that
it is infeasible to link the transactions by a TPM with different LCID.

Proof. To decide whether two transactions are linked to a TPM, one needs to
decide whether two equations are produced from the same E.

T1, T2 ≡ gb ≡ T s
1 (mod n)

T ′
1, T ′

2 ≡ gb′ ≡ (T ′
1)

s (mod n)

Since T1, T
′
1 are random generators of QRn, under the DDH assumption it

is infeasible to decide whether or not there exist an s such that T s
1 ≡ T2, and

(T ′
1)

s ≡ T ′
2. The same argument can be applied to variable anonymity, in which

case
T3 ≡ js (mod n), T ′

3 ≡ j′s (mod n)

where j, j′ are two random generators of QRn in different periods of time. ut

6 Conclusion

In this paper, we have presented an efficient direct anonymous attestation scheme
for Trusted Computing Platform. We adopt the same group certificate as the CM
group signature scheme with new sign and verify protocols. Our construction
supports authentication with total anonymity, variable anonymity, and rogue
TPM tagging.

Compared to the current construction for DAA (the BCC scheme), our
scheme has more efficient sign and verify protocols, thus all computation can



be completed in the TPM alone, making the computation distribution in the
BCC scheme unnecessary. Therefore, our scheme is more attractive for embed-
ded devices, such as cell phone, PDA, etc.

Finally, we proved our construction is secure under the strong RSA assump-
tion and the decisional Diffie-Hellman assumption.
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