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Abstract. A k-Times Anonymous Authentication (k-TAA) scheme al-
lows users to be authenticated anonymously so long as the number of
times that they are authenticated is within an allowable number. Some
promising applications are e-voting, e-cash, e-coupons, and trial brows-
ing of contents. However, the previous schemes are not efficient in the
case where the allowable number k is large, since they require both users
and verifiers to compute O(k) exponentiation in each authentication. We
propose a k-TAA scheme where the numbers of exponentiations required
for the entities in an authentication are independent of k. Moreover, we
propose a notion of public detectability in a k-TAA scheme and present
an efficient publicly verifiable k-TAA scheme, where the number of mod-
ular exponentiations required for the entities is O(log(k)).

Keywords: k-times anonymous authentication, efficiency, public verifi-
ability.

1 Introduction

1.1 Background

A k-Times Anonymous Authentication (k-TAA) scheme [TFS04,NN05] allows
users to be authenticated anonymously so long as the number of times that
they are authenticated is within an allowable number. The scheme not only
offers a time restriction mechanism to well-known group signature schemes
[CH91,ACJT00,BBS04,BSZ05,CG04,KY05], but provides stronger properties of
anonymity and traceability. Regarding anonymity, users who are authenticated
within the allowable number times can enjoy anonymity even from an authority,
whereas in a group signature scheme users are always identifiable by the au-
thority. Regarding traceability, any verifier can trace a malicious “over-time”
user (that is, a user who exceeds the time restriction) from an authentica-
tion log in a k-TAA scheme, whereas in a group signature scheme it is only
the authority who has this capability. There are many applications of the k-
TAA scheme, such as e-voting [SK94,OMAFO99,DJ01,FS01, Neff01], e-cash
[CP92,B93,AF96,CFT98,PBF99], e-coupon [OO98,NHS99], and trial browsing
of contents [TFS04]. Moreover, these various application services can be offered
based on a single secret key issued to users at the joining phase. For example,
a user who paid an annual membership fee can download up to 1000 titles of
digital music and 100 movie titles anonymously every year and can participate
in anonymous questionnaires held every month.



We use the term “application providers” (APs) to refer to verifiers who wish
to authenticate members and who want to restrict the number of times the
members can use their service anonymously. In the previous example, the music
downloading site is set to 1000, and the movie downloading site is set to 100,
and monthly questionnaires site is set to 1.

A problem with the previous k-TAA schemes [TFS04,NN05] is that they
require large computation when the number k becomes large, since O(k) expo-
nentiation is necessary for both users and AP.

1.2 Our Contributions

We propose, for the first time, a k-TAA scheme where the number of exponen-
tiations required for users and AP for authentication is independent of k. The
proposed scheme is constructed using a bilinear pairing [MSK02,BB04], and is
secure under the SDH assumption [BB04], the DDHI assumption [BB04], and
the random oracle assumption.

Moreover, we propose and formalize a stronger variant of the detectability
requirement [TFS04] called the public detectability. It requires that anyone can
verify that the AP indeed provided a fair limit to all users regarding the number
of accesses to their service. For most applications such as e-coupon schemes and
trial browsing, it is the APs that wish to restrict the number of times they offer
service to a user, or else they will be paying for over-time users. So the property
of the public detectability may not be necessary. However, in applications such
as e-voting, one may want to publicly verify that the verifier has not accepted
votes from the same user for more than a given number.

We also present an efficient and public detectable k-TAA scheme, where
the number of exponentiations required for the user and verifier is O(log k).
The scheme is secure under the same assumptions as those of the constant-cost
scheme.

1.3 Key Ideas

We present here the ideas of the proposed schemes. First, we present the previous
mechanism of detecting over-timed users [TFS04] at the cost of O(k) exponen-
tiations. We then show how this could be decreased to O(log k) and to O(1). If
an AP wishes to restrict the access time to be k, he publishes k public informa-
tion items, namely, r1, . . . , rk. In the authentication, a user picks one of the AP
information items, say rw , and sends a tag data rw

x using his secret key x. If a
malicious user tries to be authenticated more than k times, the same tag rw′

x

should appear in the authentication log and thus such a user will be detected.
This is the mechanism to detect over-time users.

In the course of authentication a user needs to prove in zero knowledge that
the tag is well-formed, that is, it is one of the public information items provided
to his secret key. In the schemes of [TFS04,NN05], a user prove this using the
‘OR proof’, that is, a user proves that one of τ = r1

x, τ = r2
x, . . ., or τ = rk

x

is satisfied. This resulted in the cost of O(k) exponentiation.
In order to avoid the ‘OR proof’, we employ a deterministic function fx to

construct our tag. In the authentication, the user computes τ = fx(IDAP||k, w)



using his secret key x, sends it to the verifier and proves the inequality 1 ≤ w ≤ k.
The user can prove the inequality more efficiently by committing each bit of w.
This is our first scheme with the public detectability property at the cost of only
O(log k) exponentiation.

In our second scheme, the AP publishes signatures Sig(1), . . ., Sig(k) in ad-
vance. In the authentication, the user computes τ = fx(IDAP||k, w) but proves
the knowledge of a signature Sig(w), instead of proving the inequality regarding
w. Since only k signatures Sig(1), . . ., Sig(k) are published, it indirectly ensures
that 1 ≤ w ≤ k. This resulted in the cost of only O(1) exponentiation. However,
this is not publicly detectable since a malicious AP may secretly reveal Sig(w)
for w > k.

Based on the ideas above, we sought the best choice for the function f . We
observed that a weakened pseudorandom function f is sufficient for our purpose
and were able to choose efficiently computable f .

1.4 Related Works

E-cash schemes are similar to k-TAA schemes in the sense that they issue e-coins,
or identification tokens, that can be used k times. A major difference between
e-cash schemes and k-TAA schemes lies in the meaning of k, and who determines
it.

In an e-cash scheme, the number k refers to the upper bound of the number
of times the token issued by the Bank can be used. The Bank specifies k at
the withdrawal phase, and the token can be spent in any shops. In contrast,
in k-TAA schemes, Group Manager issues identification token at joining phase,
but the use of this token is not limited. Instead, in k-TAA schemes, we want to
limit the number of times this token is used in each shop, or in our term, each
Application Provider. So it will be each AP that determines the number k, which
is the upper bound of the number of times a user can use the token to received
services from AP. There can be multiple APs and each of them can determine
the upper bound independently. So a same token can be used at most say 100
times to Provider-1, 20 times to Provider-2 , and maybe once to Provider-3.

Having said the difference in the model, the techniques used in e-cash schemes
and in our schemes is very similar. Independent to our work, Camenisch et. al.
presented an e-cash scheme [CHL05] using similar ideas in our first scheme. The
difference is in techniques in showing the inequality of 1 ≤ w ≤ k. Although the
smart use of Boudot scheme [B00] makes their scheme more efficient than our
first scheme, it still requires number of exponentiations to be dependent of k,
namely O(log k).

2 Definition of k-TAA scheme

2.1 Modified Points

Our definition is based on that of Teranishi et.al. [TFS04] with generalizations
of allowing an AP to publish its own public information besides its ID and its
allowable number k.



The generalization requires us to modify the previous definition in two other
points, which are concerned with the “public tracing” algorithm. This is an
algorithm which enables anyone to identify a user authenticated more times
than the allowable number. In the case where the identification of the user fails,
it also enables anyone to know why it does so.

We next describe our modifications. Since we allow an AP to publish its public
information, we add a new type of output “AP”, which means “the identification
fails since the AP publishes a maliciously generated public information items
(or behaves maliciously in an authentication)”, to a public tracing procedure.
We also add new security requirements, called the exculpability for APs. This
requires that the public tracing algorithm outputs AP only if the AP is dishonest.

We note that Nguyen and Naini [NN05] also adopt the definition which allows
an AP to publish its own public information, but they do not adopt the other
two modifications.

2.2 Model

Three types of entities take part in the model, namely, the group manager
(GM ), users, and APs. The k-TAA scheme comprises the three algorithms GM
setup (GM-Setup), AP setup (AP-Setup), and public tracing (trace) and two pairs
of interactive protocols joining (Join = (Join-U, Join-GM)), and authentication
(Auth = (Proof, Verify)). In the definitions below, κ is a security parameter.

GM-Setup : The GM executes GM-Setup on inputting 1
κ and obtains a GM public

key/GM secret key pair (gpk, gsk). Then it publishes gpk.

AP-Setup : Each AP v determines the allowable number k = kv, which indicates
how many times the AP v allows each user to access. The AP v executes the
AP-Setup on inputting its ID v and k, and obtains an AP public information api.

Join = (Join-U, Join-GM) : A user who wants to be a group member executes a
Join protocol with the GM. The user and the GM execute Join-U and Join-GM

respectively. The user’s ID and gpk are input to both the Join-U and Join-GM,
and gsk is input only to the Join-GM. The aims of the protocol are to add new
members to the group and to generate new member public key/secret key pair
(mpk, msk). If the Join protocol is successful, the user obtains both mpk and msk,
and the GM obtains only mpk.

The member public key mpk comprises two parts. One part mck is called the
member certificate key and the other part mik is called the member identification
key. The key mck is a certificate which proves that the user is a member of the
group. The key mik is added to the public list List along with the user’s ID and
will be used in order to identify the user.

Auth = (Proof, Verify) : An AP executes an Auth protocol with a user who wants
to access the AP. The user and the AP execute Proof and Verify respectively.
The public information (gpk, v, k, api) are input to both Proof and Verify, and
msk is input only to Proof. If the protocol is successful, the AP records the data
sent by the user in its authentication log Log, and outputs accept or reject. Here
accept means that “the user is a group member and has not accessed the AP
more times than the allowable number k”.



trace : Anyone can execute trace algorithm using only public information (gpk,
List, v, k, api) and the authentication log Log of an AP. The output of trace algo-
rithm is either some user’s ID u, “GM”, “AP”, or “NoOne”. These four types of
output respectively mean “the algorithm finds a malicious user u who is authen-
ticated by the AP more times than the allowable number”, “the algorithm finds
that the GM published maliciously generated public information (gpk, List)”,
“the algorithm finds that the AP published maliciously generated (api, k, Log)
or behaves maliciously in an authentication”, and “the algorithm could not find
any malicious entity”.

We note that an AP can always mask a malicious user and generate Log,
such that trace algorithm with input Log outputs “NoOne”. That is, the AP can
delete entries of the over times users.

2.3 Informal Definition of Requirements

A secure k-TAA scheme has to satisfy the following requirements:

Correctness: An honest group member is always accepted in an authentication
by an honest AP.
Total Anonymity: No one is able to identify any authenticated member, or
decide whether two accepted authentication protocols are performed by the same
group member or not, if the authenticated user(s) has followed the authentication
protocol within the allowed number of times per AP. These are satisfied even if
all other users, the GM, and all APs collude with one another.
Exculpability for Users: trace algorithm does not output the ID of an honest
user who is authenticated within the allowed number of times. This is satisfied
even if all other users, the GM, and all APs collude with one another.
Exculpability for the GM: trace algorithm does not output “GM” if the GM
is honest. This is satisfied even if all users and all APs collude with one another.
Exculpability for APs: trace algorithm using an honest AP’s authentication
log does not output “AP”. This is satisfied even if the GM, all users and all other
APs collude with one another.
Detectability: trace algorithm using an honest AP’s authentication log does not
output “NoOne”, if a colluding subset of group members has been authenticated
more than kn times. Here k is the allowable number set by the AP and n is the
number of colluders.

We stress that the detectability property is satisfied only if the AP is honest.
For most applications such as e-coupon schemes and trial browsing, the AP does
not have to be honest, since it is the AP itself who wishes to limit the number
of times to serve a user. However in applications such as e-voting, one wants to
publicly verify that the AP has not accepted votes from the same user for more
than a given number. In order to meet such applications, we newly introduce
the stronger detectability notion, public detectability :

Public Detectability: trace algorithm using an honest or dishonest AP’s au-
thentication log does not output NoOne, if the log contains more than kn mali-
cious entries. Here k is the allowable number set by the AP and n is the number



of the group members. This is satisfied even if every user and every AP collude
with one another.

2.4 Formal Definition of Requirements

We modify the experiments for defining the requirements of the previous paper
[TFS04] in order to suit the modification described in 2.1, but our experiments
are essentially the same as those of [TFS04]. The major modification is that we
introduce the oracles OAP-Setup and OVList. Here the former is the oracle which
executes AP-Setup honestly, and latter is the oracle which manages the public
list VList of a pair of AP’s IDs v, the allowable number k set by the AP, and its
public information api. We will describe the details of OVList later.

The experiments of our version of the total anonymity and the exculpability
for users and for the GM are the same as those of [TFS04], except that an
adversary is allowed to access the oracle OVList. Moreover, the definition of the
experiment for defining the detectability is also the same as that of [TFS04],
except an adversary is allowed to access oracle OVList and the oracle OAP-Setup.

Before we describe the experiments, we first describe what A can do when it
colludes with GM, users, and AP respectively.

– IfA colludes with the GM, it can maliciously execute GM-Setup and Join-GM.
– If A colludes with a user, it can execute Join-U and Proof maliciously on

behalf of the user.
– If A colludes with an AP, it can execute AP-Setup and Verify maliciously on

behalf of the AP.

We next describe the oracles. Let OJoin-GM be the oracle which executes
Join-GM procedures honestly. Let OJoin-U and OProof be oracles which execute
Join-U and Proof procedures on behalf of honest users. Similarly, let OAP-Setup

and OVerify be the oracles which execute AP-Setup and Verify on behalf of honest
verifiers.

We also introduce the list oracle OList(X, ·) [TFS04], which manages the
public list List of a pair of user’s IDs and his member identification key mik, and
allows A to read List. Moreover, the oracle also manages the set X of IDs of
entities who collude with an adversary A, and it allows A to write an (honestly
or dishonestly generated) pair (u, mik) if A colluded with the user u. The list
oracle also allows A to delete entries of List if it colludes with the GM.

We also introduce the new list oracle OList, which manages the public list
VList of pairs of AP’s IDs and their public information. The definition of OVList

is quite similar to that of the original OList. However, OVList does not allow the
GM to delete the data of List. This is because, even in the actual scenario, VList

is managed not by the GM, but by some trusted party (such as a Certified
Authority of a PKI). Therefore the GM cannot delete entries of VList. See the
full paper for the formal definition of OList and OVList.
A is allowed to access oracles only sequentially. We describe when A is allowed

to access the oracles.

– A is allowed to access the list oracles OList and OVList.



– If A does not collude with the GM, it is allowed to access OJoin-GM.

– If A does not collude with a user u, it is allowed to access OJoin-U and OProof .
Here these oracles take roles of the user u.

– If A does not collude with an AP v, it is allowed to access OAP-Setup and
OVerify. Here these oracles take roles of the AP v.

We now describe the experiments for defining the requirements. Figure 1
describes the security experiments formally. Here κ is a security parameter,
(gpk, gsk) is a GM public key/secret key pair, mik is a member identification
key, and api is AP public information.

—Exp
anon-(u1,u2,β)
A (κ)—

(gpk, v, k, api, St)← A(1κ)

β′←AOanon(·)(St)
If (N1, N2 ≤ k and β = β′) Return Win.
Return Lose.

—Exp
excul-u1
A (κ)—

(gpk, St)← A(1κ).

(v, k, api, Log)← AOexcul-u1
(·)(St).

Return traceOList(∅,·)(gpk, v, k, api, Log).

—Expdetect
A (κ)—

(gpk, gsk)← GM-Setup(1κ)

AOdetect(·)(1κ, gpk).

If (∃(v, k) ∈ VList s.t. #Logv,k > k ·#List)

Return traceOList(∅,·)(1κ, gpk, v, k, api, Logv,k).
Return ⊥.

—Expexcul-GM
A (κ)—

(gpk, gsk)← GM-Setup(1κ)

(v, k, api, Log)← AOexcul-GM(·)(κ).

Return traceOList(∅,·)(gpk, v, k, api, Log).

—Exp
excul-AP-(v, k)
A (κ)—

api← AP-SetupOVList({v},·)(1κ, v, k).

(gpk, St)← AOVList({v}c,·)(1κ, v, k).

AOexcul-AP-(v,k)(·)(St).

Return traceOList(∅,·)(gpk, v, k, api, Log).

—Exp
pub-detect
A (κ)—

(gpk, gsk)← GM-Setup(1κ)

(v, k, api, Log)← AOpub-detect(·)(1κ, gpk).
If (#Log > k ·#List)

Return traceOList(∅,·)(1κ, gpk, v, k, api, Log).
Return ⊥.

Oracles:
Oanon(·) =(OList({u1, u2}

c, ·),OVList(∅
c, ·),OJOIN-U(gpk, ·),OProof (gpk, ·),
OQuery(β, gpk, (u1, u2), (v, k, api), (·, ·)) )

Oexcul-u1
(·) =(OList({u1}

c, ·),OVList(∅
c, ·)OJOIN-U(gpk, ·),OProof (gpk, ·))

Oexcul-GM(·) =(OList({GM}c, ·),OVList(∅
c, ·),OJOIN-GM(gpk, gsk, ·))

Oexcul-AP-(v,k)(·)=(OList(∅
c, ·),OVList({v}c, ·),OVerify(gpk, (v, k, api), ·))

Odetect(·) =(OList({GM}c, ·),OVList(∅
c, ·),OJoin-GM(gpk, gsk, ·),OAP-Setup(1

κ, ·, ·),OVerify(gpk, ·, ·)
Opub-detect(·) =(OList({GM}c, ·),OVList(∅

c, ·),OJoin-GM(gpk, gsk, ·))

Comments:
1. To simplify, we abbreviate the hash oracle OHash.

2. In the experiment Exp
anon-(u1,u2,β)
A (κ), Ni is the total number of times OJOIN-U and

OQuery executes Proof using using a public key/secret key pair of user uβ⊕d+1 and
an APs public information (v, k, api).

3. In the definition of Expdetect
A (κ), Logv,k is the log of OVerify on the behalf of the AP v

with the allowable number k.

4. In the definition of Expexcul-AP-(v, k), Log is the log of OVerify.

Fig. 1. The experiments.

Total Anonymity: In advance, two target users u1 and u2 are determined,
and a secret number β ∈ {0, 1} is selected randomly. An adversary A is allowed
to collude with the GM, all APs, and all users except target users u1 and u2.



First, A determines and publishes the group public key gpk, an AP’s ID v, the
allowable number k of the AP, and the AP’s public information api. Next, A
maliciously executes the Join and Auth protocols with OJoin-U and OProof . These
oracles execute protocols on the behalf of the target users.

Moreover, A is allowed to access the query oracle OQuery(β, gpk, (u1, u2),
(v, k, api), (·, ·)). We give the definition of the query oracle. The oracle executes
Proof algorithm on the behalf of a target user, but does not disclose which target
user the oracle takes the role of. More precisely, if A sends (d, M) to oracle
OQuery(β, gpk, (u1, u2), (v, k, api), (·, ·)), the oracle regards M as data sent by a
user and executes Proof using a public key/secret key pair of user uβ⊕d+1 and
an APs public information (v, k, api). A is allowed to execute the Auth protocol
with the query oracle once only for each d ∈ {0, 1}. If A requires for the oracle
to execute the Auth protocol for the same d twice, OQuery returns ⊥.

In the experiment, A is not allowed to authenticate the target user ui more
than k times. This is because a k-TAA scheme provides anonymity to users only
if a user has been authenticated less than the allowed number of times. More
precisely, let Ni be the total number of times OJoin-U and OQuery execute Proof

using a public key/secret key pair of user ui. Then A must preserve N1, N2 ≤ k.

The aim of A is to determine whether β = 1 or not. A wins if N1, N2 ≤ k is
satisfied and A succeeds in outputting β.

Exculpability for Users: In the experiment for defining the exculpability for
users, a target user u is fixed in advance. A is allowed to collude with all entities
except the target user u. If A succeeds in computing the log with which the
public tracing procedure outputs the ID u of the target user, it wins.

Exculpability for GM: A is allowed to collude with all entities except the
GM. If A succeeds in computing the log with which the public tracing procedure
outputs “GM”, it wins.

Exculpability for APs: A target AP v is fixed in advance. A is allowed to
collude with all entities except the target AP v. Let Log be the authentication
log of OVerify. If a public tracing procedure using Log outputs “AP”, A win. We
stress that not A but OVerify outputs Log in this experiment, although adversaries
of the other two exculpability properties are allowed to output Log themselves.

Detectability: A is allowed to collude with all users. If A succeeds in being
accepted by some AP in more than kn authentications, A wins. Here, k is the
number of times the AP allows access for each user, and n is the number of users
who collude with A.

Public Detectability: A is allowed to collude with all users and all APs.A wins
if A succeeds in outputting a tuple (v, k, api, Log) satisfying both of the following
conditions: (1) the authentication Log contains more than k ·#List elements and
(2) a public tracing procedure using (v, k, api, Log) outputs NoOne.

Definition 1 We say a k-TAA scheme satisfies the total anonymity, exculpabil-
ity for users, exculpability for GM, exculpability for APs, detectability and public
detectability properties if no adversary can win with a non negligible advantage



in the experiments for defining these requirements. More precisely, we say a k-

TAA scheme satisfies these requirements if |Pr(Exp
anon-(u1,u2,0)
A (κ) = Win)

−Pr(Exp
anon-(u1,u2,1)
A (κ) = Win)|, Pr(Expexcul−u1

A (κ) = u1),

Pr(Expexcul-GM
A (κ) = GM), Pr(Exp

excul-AP-(v, k)
A (κ) = AP), Pr(Expdetect

A (κ)

= NoOne) and Pr(Exp
pub-detect
A (κ) = NoOne) are negligible for security pa-

rameter κ, for all (A, u1, u2), (A, u1), A, (v, k,A), A and A respectively.
We say a k-TAA scheme is secure if it satisfies the first five requirements.

3 Proposed Schemes

We propose two schemes. Authentications of the first and the second schemes
require computing O(log k) or O(1) exponentiations respectively. Although the
first scheme is less efficient than the second scheme, only the first scheme satisfies
the public detectability property. As in the previous schemes [TFS04,NN05],
our proposed schemes are based on a group signature scheme. We adopt the
Furukawa-Imai scheme [FI05], since it is one of the most efficient group signature
schemes. The GM setup and the joining procedures of our two schemes are similar
to those of [FI05].

3.1 Notations

Let κ be a security parameter. Let (G,H, T , q, 〈·, ·〉, φ) be a bilinear pairing tuple,
that is, a tuple satisfying the following properties: (1) q is a prime number whose
bit length is κ, (2) G,H, and T are cyclic groups of order q, (3) φ is a polynomial
time computable homomorphism from H to G, (φ is called distorsion map), (4)
〈·, ·〉 is a polynomial time computable mapping from G × H to T , (5) for all
(a, b) ∈ G ×H, if 〈a, b〉 = 1 is satisfied, then a = b = 1 is satisfied, and (6) for all
a ∈ G, b ∈ H, and x, y ∈ Zq , 〈a

x, by〉 = 〈a, b〉xy is satisfied.
Let U be a group on which the DDH problem is hard and whose order is the

same as that of T . Although we can set U to T itself, the Furukawa-Imai scheme
and our schemes become more efficient if we set U to an elliptic curve on which
a pairing is not defined.

3.2 First Scheme

Let Hash denote a full domain hash function onto set U2. For a bit string X , let
(gX , hX) denote Hash(X). For x ∈ Zq , we set fκ

x : {0, 1}∗ × Zq → U to

fκ
x : (X, w) 7→ gX

whX
1/(x+w).

GM-Setup: The GM-Setup generates and outputs a GM public key gpk = (a0, a1,
a2, b, b

′) and a GM secret key gsk = y following [FI05]. That is, the algorithm
selects a0, a1, a2 ∈ G, b ∈ H, and y ∈ Zq randomly, and computes b′ = by.

Join: The Join protocol generates a member certificate key mck = (A, e), a mem-
ber identification key mik = fκ

x (0, 0), and the member secret key msk = (x, r),
following [FI05]. These keys satisfy the equation 〈a0a1

xa2
r, b〉 = 〈A, beb′〉. The

algorithm outputs (mck, mik, msk) for users and outputs only mck for the GM.



More precisely, the GM and a user perform as described in Figure 2, where
u is the ID of the user, mik is the member identification key of the user, and
List is the list of the user’s ID and his member identification key. Then the user
checks that 〈a0a1

xa2
r, b〉 = 〈A, beb′〉 is satisfied.

User GM

x, r′ ← Zq, A
′ ← a1

xa2
r′

mik← h← fκ
x (0, 0)

Add (u, mik) to List.
A′,mik

−−−−−−−−−−−−→ Check that (u, mik) is in List.
Proof the validity of (A′, mik))←−−−−−−−−−−→ Verify the proof.

r′′, e← Zq

r← r′ + r′′ mod q
((A,e),r′′)

←−−−−−−−−−−−− A← (a0
1/(y+e)A′a

r′′/(y+e)
2 )

Fig. 2. Joining of the First Scheme

Auth: In w-th authentication, a user and an AP first perform as in Figure 3.
Here pf is a proof of knowledge of ((A∗, e∗), (x∗, r∗), w∗) satisfying the follow-
ing conditions: (T1): 〈a0a1

x∗

a2
r∗

, b〉 = 〈A, be∗

b′〉, (T2): (τ, τ̂ ) = (fκ
x∗(v||k, w∗),

fκ
x∗(0, 0)`fκ

x∗(v||k,−w∗)), and (T3): 1 ≤ w∗ ≤ k.

User AP
`

←−−−−−−−−−−−− `← Zq

(τ, τ̂)← (fκ
x (v||k, w), mik` · fκ

x (v||k,−w))

pf ← (Validity proof of (τ, τ̂))
((τ,τ̂),pf)

−−−−−−−−−−−−→ Verify pf.

Fig. 3. Authentication

The AP next executes the following procedures. Let Log be the AP’s authen-
tication log. If Ver(pf) = accept and τ /∈ Log are satisfied, add (τ, τ̂ , `, pf) to Log

and output accept. If Ver(pf) = accept but τ ∈ Log are satisfied, add (τ, τ̂ , `, pf)
to Log but output reject. Otherwise, add no data to Log and output reject.

trace: From Log, the trace algorithm searches entries (τ, τ̂ , `, pf) and (τ ′, τ̂ ′, `′, pf ′)
satisfying τ = τ ′. We first consider the case where such entries exist. Then the
algorithm verifies pf and pf ′. If ` = `′ is satisfied, output AP and stop. Otherwise,
the algorithm computes mik = (τ̂ /τ̂ ′)1/(`−`′) and searches the ID corresponding
with mik from List. If there is such an ID, the algorithm outputs the ID and
stop, otherwise outputs GM and stops.

We next consider the case where there exists no pair of entries (τ, τ̂ , `, pf)
and (τ ′, τ̂ ′, `′, pf ′) satisfying τ = τ ′ in Log. Then in order to check that the AP
added invalid entries to the Log, the algorithm verifies all proofs in Log. If some
proof is invalid, output AP and stops. If all proofs in Log are valid, the algorithm
outputs NoOne and stops.

We note that one must verify all proofs in trace in order to ensure the public
detectability. One is not required to verify this if only normal detectability is
required.



3.3 Second Scheme

By modifying the first scheme, we construct the second k-TAA scheme such that
the numbers of exponentiations in an authentication is O(1). In order to reduce
the computational cost of an authentication, we use a signature scheme. In our
second scheme, AP publishes signatures Sig(1), . . ., Sig(k) in its setup. In the
authentication, the user computes (τ, τ̂ ) as in the first scheme, but proves the
knowledge of a signature Sig(w), instead of proving the inequality 1 ≤ w ≤ k.
Since only k signatures Sig(1), . . ., Sig(k) are published, it indirectly ensures
that 1 ≤ w ≤ k. This resulted in the cost of only O(1) exponentiation. However,
this is not publicly detectable since a malicious AP may secretly reveal Sig(w)
for w > k.

We use the following Boneh-Boyen signature scheme (SGen, Sig,SVer) [BB04]
in order to construct our second scheme. Here SGen, Sig, and SVer are respec-
tively the key generation, the signing, and the verification algorithms:

SGen: The algorithm selects s ∈ G, t ∈ H and z ∈ Zq randomly and computes
t′ = tz. Then it outputs the public key (s, t, t′) and the corresponding secret key
z.

Sig: If a message w ∈ Zq is input, the algorithm output a signature S = s1/(z+w)

on w.

SVer: The algorithm accepts (w, S) if and only if 〈S, twt′〉 = 〈s, t〉 is satisfied.

We now describe our second scheme. Let fκ
x be the deterministic function

described in 3.2.

GM-Setup and Join : These are the same as those of the first scheme.

AP-Setup: Let v be an AP’s ID. The AP v determines the allowable number k.
Generate a public key/private key pair (spk, ssk) = SGen(1κ) of the signature
scheme [BB04]. Then compute signatures Sw = Sigspk,ssk(w) on w for all w =
1, . . . , k. The AP public information is api = (spk, {Sw}). Add (v, k, api) to the
AP public information list VList.

Auth: The only difference from the first scheme is what the user proves. In the
second scheme, pf is the proof of knowledge of (mck∗, (x∗, r∗), w∗, S∗) which
satisfies (T1) and (T2) of 3.2 and (T3’): SVerspk(w

∗, S∗) = accept.

trace: Search (τ, τ̂ , `, pf) and (τ ′, τ̂ ′, `′, pf ′), satisfying τ = τ ′ from Log. If there ex-
ist such entries, subsequent procedures are the same as those of the first scheme.
If there exist no such entries, output NoOne and stop.

We next show that the second scheme does not satisfy the public detectabil-
ity property. Indeed, an AP is able to generate any number of signatures, and
therefore a colluding subset of the AP and a user is able to generate any number
of entries of the AP’s authentication log.

However, if we allow APs to access the GM (or some third party) in their
setup, we can improve the second scheme so that it satisfies the public detectabil-
ity property. In an AP’s setup of the improved scheme, not each AP but the GM
(or the third party) generates the signatures {Sw}. Then no colluding subset of



an AP and a user is able to execute the above attack, and therefore the improved
scheme satisfies the public detectability property.

3.4 Selection of fκ

x

The deterministic function fκ
x plays central role in our protocol, and the choice

of this functions influence the efficiency of our protocol. In this subsection, we
discuss why we chose it to be fκ

x (X, w) = gX
whX

1/(x+w), where gX and hX are
deterministically computed from the value Hash(X).

The function takes two inputs, which is the identifier of AP, X , and the
value w specifying that this is w-th authentication for the user. We represent
the family of the set of the two inputs as {Xκ} and {Yκ}.

If we chose fκ
x to be pseudorandom, namely its output is indistinguishable

from random function then it would be sufficient to make our scheme secure.
However, in our protocol we further need to prove knowledge of input to some
output of function fκ

x . We could not build an efficient proof if we choose fκ
x to be

one of the pseudorandom functions that we know of [BCK03,DN02,GGM86,NR97].
Instead, we introduce a non-pseudorandom function but one which we can

construct an efficient proof, and one which we can prove the scheme to be se-
cure. This property of this function can be generalized as to be called partial
pseudorandom function family. That is, the function may not be pseudorandom,
but if we restrict the domain of one of the input to be polynomial in regard
to security parameter κ, the resulting function is pseudorandom. Since we only
consider polynomial adversary, we can show that considering partial psuedoran-
dom function is sufficient for the security of the schehe. The details of the proof
is provided in the full paper.

Definition 2 Let {Xκ}, {Yκ}, and {Zκ} be families of sets, and {fκ
x }κ be a

function family of fκ
x : Xκ × Yκ → Zκ. We call the function family {fκ

x }κ a
(secure) partial pseudorandom function family if the following property is satis-
fied: for any polynomial p(κ), and for any family {Cκ} of sets satisfying Cκ ⊂ Yκ

and #Cκ ≤ p(κ), the family of restricted mappings {fκ
x |Xκ×Cκ

}κ is a secure
pseudorandom function family.

The property of partial pseudorandomness is helpful in proving the property
of the total anonymity. That is, if fκ

x satisfies the partial pseudorandomness, the
tag (τ, τ̂ ) = (fκ

x (X, w), mik`fκ
x (X,−w)) is equivalent to some random pair. This

means that (τ, τ̂ ) do not reveal who is authenticated.
We next discuss why we set (gX , hX) to a hash value of some data in our

construction. If we arbitrary chose gX and hX , an adversary A can choose
((gX , hX), (gX′ , hX′)) satisfying some polynomial time checkable relation, such
as (gX , hX) = (gX′

2, hX′
2). Then the polynomial time checkable relation, such

as fκ
x (X, w) = fκ

x (X ′, w′)2, is maintained. This means that fκ
x does not sat-

isfy the partial pseudorandomness. Restricting (gX , hX) to be generated from
hash function prevents this kind of attack. Proofs regarding that the proposed
function satisfies partial pseudorandomness is provided in the full paper.

We note another important property of the function is collision resistance,
which is defined below.



Definition 3 We say that {fκ
x (X, w)}κ satisfies collision resistance, if it satisfies

the following: for all X , a mapping (x, w) 7→ fκ
x (X, w) is collision resistant.

The collision resistant property is helpful to prove the exculpability for users
or the GM. If we use not fκ

x but another function F κ
x which does not satisfy the

collision resistant property, then an adversary A can find two pairs (x1, w1) and
(x2, w2) satisfying Fx1(X, w1) = Fx2(X, w2). Let miki be the member identifica-
tion key corresponding to xi, and (τi, τ̂i) be a tag (fκ

xi
(X, wi), miki

`ifκ
xi

(X,−wi)).
Then two tags (τ1, τ̂1) and (τ2, τ̂2) satisfy τ1 = Fx1(X, w1) = Fx2(X, w2) = τ2.
However, (τ1/τ2)

1/(`1−`2) corresponds to neither mik1 nor mik2. Therefore, the
tracing algorithm using (τ1, τ

′
1) and (τ2, τ

′
2) outputs some other user’s ID or GM.

This means that the k-TAA scheme does not satisfy exculpability for users or
the GM.

We provide in the full paper that with this choice of the function the proposed
scheme is secure.

3.5 Computational Costs of an Authentication

We show that the computational cost of an authentication of the first and the
second schemes are O(log k) and O(1) respectively. All we must show are that the
condition (T1), (T2), and (T3’) can be proved only with O(1) exponentiations
and that (T3) can be proved only with O(log k) exponentiations. See the full
paper for the details of the validity proof.

The condition (T1) and (T3’) can be proved only with O(1) exponentiations,
since this condition does not contain k. The condition (T2) is equal to the
condition (τ, τ̂ ) = (gv||k

whv||k
1/(x+w), gv||k

whv||k
1/(x−w)). Since (gv||k, hv||k) =

Hash(v||k) is public information, one can prove the condition (T2) with O(1)
exponentiations too.

The condition (T3) is able to be proved using commitments K(w), {K(wi)},
and K(ui). Here K(w), K(wi), and K(ui) are Pedersen commitments [P91] of
w, i-th bit wi of w, and i-th bit ui of k − w. More precisely, one can prove the
condition (T3) by proving the knowledge of ({wi}, {ui}) satisfying the following

conditions: K(w) = ΠjK(wj)
2j

, K(w)ΠjK(ui)
2j

= K(k), wi, ui ∈ {0, 1} for
i = 0, . . . , log2 k. Here K(k) is a commitment of k. From the above discussion,
(T3) can be proved only with O(log k) exponentiations.

4 Security

We can show that our schemes are secure based on the following assumptions:

Definition 4 (Strong Diffie-Hellman (SDH) assumption [BB04] on (G,H, T ))
Let φ be the distorsion map from H to G. Let n = n(κ) be a polynomial and
A be an adversary. Then ProbA(κ, n(κ)) = Pr(v ←R H, u ← φ(v), x ←R

Zq ,A(u, v, vx . . . , vxn

) = (u1/(x+β), β)) is negligible for all n(κ) and A.

Definition 5 (Decision Diffie-Hellman Inversion (DDHI) assumption [BB04] on
U) Let n = n(κ) be a polynomial and A be an adversary. For b = 0, 1, we set

Probb
A(κ, n(κ)) = Pr(g ←R U , x ←R Zq ,A(hb, g, gx1

, . . . , gxn

) = 1). Here h0 is
a randomly selected element of U and h1 is the element g1/x. Then for all n(κ)
and A, AdvA(κ, n(κ)) = |Prob1

A(κ, n(κ))− Prob0
A(κ, n(κ))| is negligible for κ.



Our scheme satisfies the following:

Theorem 6. Suppose that {fκ
x (X, w)}κ is a secure collision resistant partial

pseudorandom function family. Suppose also the SDH assumption [BB04] on
(G,H, T ) and the random oracle assumption. Then the first scheme is secure and
satisfies the public detectability. Suppose also that a signature scheme (SGen, Sig,
SVer) is existentially unforgeable even if an adversary knows signatures S1, . . . , Sk(κ)

on known messages 1, . . . , k(κ) for all polynomial k(κ). Then the second scheme
is secure.

From [BB04], the signature scheme (SGen, Sig, SVer) satisfies the above con-
dition under the SDH assumption. We next consider the security of {fκ

x (X, w)}κ.

Proposition 7 Under the random oracle assumption and the DDHI assumption
[BB04] on U , the function family {fκ

x (X, w)}κ is a secure collision resistant
partial pseudorandom function family.

From the above discussion, we can conclude the following theorem:

Theorem 8. Under the SDH assumption on (G,H, T ) and the DDHI assump-
tions on U , our two proposed schemes are secure in the random oracle. Moreover,
under the same assumptions and in the same model, the first scheme satisfies
the public detectability property.

4.1 Sketch of the Security Proof

We sketch the proof of Theorem 6. See the full paper for the detailed proof. We
first examine the security of the first scheme.

Total Anonymity: Let (xu, ru) be the member secret key of the target user
u. Subinformation about xu which an adversary can obtain are the following:
(1) A′

u = a1
xua2

r′

u and miku = fκ
xu

(0, 0), generated in the user u’s joining
protocol, and (2) (τ, τ̂ ) = (fκ

xu
(v||k, w), miku

` · fκ
xu

(v||k,−w)) generated in each
authentication. Since r′u is randomly selected, A′

u gives no information about xu.
From Proposition 7, fκ

xu
satisfies the partial pseudorandomness. Since the

adversary is polynomial time algorithm, the oracles computes fκ
xu

only a poly-
nomial number of times. Therefore, A cannot distinguish miku and (τ, τ̂ ) from
random elements. Hence A cannot distinguish which user is authenticated.

Exculpability for Users: In order to be authenticated on the behalf of the
target user, A has to obtain the target user’s secret key xu. Subinformation
about xu which an adversary can obtain is the (1) and (2) described in the
security discussion of the total anonymity. As in the case of the total anonymity,
no adversary is able to obtain the target user’s secret key xu. Therefore, no
adversary is able to be authenticated on the behalf of the target user.

Exculpability for the GM: This followed from the coalition resistance prop-
erty [ACJT00,NN04] of the Furukawa-Imai scheme. Here the coalition resistance



is the following property: an adversary, not colluding with the GM, cannot ob-
tain a member public key/private key pair not generated in the joining protocols
with the GM. It is well known that a secure group signature scheme satisfies
the coalition resistance property [BMW03,BSZ05]. Hence, the Furukawa-Imai
scheme (and therefore our first scheme) satisfies this property.

Suppose that an adversary of the exculpability property for the GM wins.
In other words, suppose that there exist (τ, τ̂ , `, pf) and (τ ′, τ̂ ′, `′, pf ′) in the
authentication log of an AP such that τ = τ ′ is satisfied and (τ̂ /τ̂ ′)1/(`−`′)

is not in the List. Since τ = τ ′ is satisfied, and since fκ is collision resis-
tance, member public key/private key pairs used to compute τ and τ ′ are the
same. Let ((mck, mik), msk) be this key pair. From the definition of τ̂ and τ̂ ′,
mik = (τ̂ /τ̂ ′)1/(`−`′) is satisfied. From the coalition resistance property, this key
was generated in a joining protocol with the GM. Therefore, mik is in List. It
contradicts to the fact that mik = (τ̂ /τ̂ ′)1/(`−`′) is not in the List.

Exculpability for APs: This is clearly satisfied.

Public Detectability: Let N be the number of times an adversary A executes
the joining with the GM. From the definition of the joining protocol of our
first scheme, N is not more than the number of elements of List. Let k be the
allowable number of an AP v colluding with A. Suppose that A succeeds to
output Log which contains more than kN elements. In each entry (τ, τ̂ , `, pf) of
Log, (τ, τ̂ ) = (fκ

x (v||k, w), mik` · fκ
x (v||k,−w)) has to be satisfied for some x and

w, since A has generated the validity proof pf of (τ, τ̂ ).

Since the coalition resistance property is satisfied, x is a part of a secret key
generated in a joining with the GM. Hence, there are only N choices of x. Since
A has proved the condition (T3) of 3.2, 1 ≤ w ≤ k is satisfied. Hence, there are
only k choices of w. (We note that 1 ≤ w ≤ k has to be clearly satisfied even
if A colludes with the AP). Therefore, the number of choices of x and w are
respectively less than N and k. Therefore, an adversary generates at most kN
elements (τ, τ̂). This means that Log cannot have more than kN elements.

We now intuitively show the security of the second scheme. We only show
that our second scheme satisfies the detectability property, since the proofs of
the other requirements are similar to those of the first scheme.

Detectability: Let N be the number of times an adversary A executes the join-
ing with the GM. In each authentication, A computes (τ, τ̂ ) = (fκ

x (v||k, w), mik` ·
fκ

x (v||k,−w)). Since A proves the condition (T3’) of 3.3, A knows a signature
S on w by the AP. Since the AP has published the signatures only on 1, . . . , k,
and since A is not allowed to collude with the AP, 1 ≤ w ≤ k has to be satisfied.
Hence, there are only k choices of w. Moreover, as in the case of the security
discussion of the public detectability property of the first scheme, there are only
N choices of x. Therefore, an adversary generates at most kN elements (τ, τ̂ ).
It means that Log cannot have more than kN elements.



5 Conclusion

We proposed two k-TAA schemes, one where the numbers of exponentiations in
an authentication are O(log k) and the other O(1). The proposed schemes are
secure under the SDH assumption [BB04], the DDHI assumption [BB04], and
the random oracle assumption.

We also proposed and formalized the public detectability requirement, and
showed that the first scheme satisfies this requirement. The public detectability
requires that anyone can verify that the AP indeed provided a fair limit to all
users regarding the number of accesses to their service.
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