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Abstract. Signcryption schemes aim to provide all of the advantages
of simultaneously signing and encrypting a message. Recently, Dent [8,
9] and Bjørstad [4] investigated the possibility of constructing provably
secure signcryption schemes using hybrid KEM-DEM techniques [7]. We
build on this work by showing that more efficient insider secure hybrid
signcryption schemes can be built using tag-KEMs [1]. To prove the
effectiveness of this construction, we will provide several examples of
secure signcryption tag-KEMs, including a brand new construction based
on the Chevallier-Mames signature scheme [5] which has the tightest
known security reductions for both confidentiality and unforgeability.

1 Introduction

The signcryption primitive was introduced by Zheng in 1997 [13] to study asym-
metric schemes that offer most or all the benefits provided by public-key en-
cryption and signature schemes. Signcryption schemes must provide message
authenticity, confidentiality and integrity, and may also offer a way to provide
non-repudiation. As such, a signcryption scheme provides a secure, authenticated
channel for message transmission. Although Zheng only considered schemes that
are more computationally efficient than a direct composition of encryption and
signature schemes, the definition of signcryption is normally expanded to include
any asymmetric scheme that provides this functionality, regardless of efficiency.
Direct composition of public-key encryption and signatures has been studied by
An et. al. [2].

In order to obtain efficient encryption schemes in practice, hybrid tech-
niques are commonly used. The practice of combining symmetric and asym-
metric schemes to encrypt and transmit long messages efficiently has been com-
mon knowledge for many years. However, formal analysis was first performed
by Cramer and Shoup in the late 1990s [7]. The usual construction paradigm,
known as the KEM-DEM construction, consists of two parts: a key encapsula-
tion mechanism (KEM) and a data encapsulation mechanism (DEM). The KEM
uses asymmetric techniques to encrypt a symmetric key, while the DEM uses a
symmetric cipher to encrypt the message payload using the key from the KEM.



The main benefit of the KEM-DEM construction paradigm is that the security
of KEM and DEM may be analyzed separately.

The use of hybrid techniques to build signcryption schemes has been studied
by Dent [8–10] and Bjørstad [4]. This has provided a useful perspective for analy-
sis of those classes of signcryption schemes that use hybrid techniques. However,
previous efforts have yielded complex verification-decryption (unsigncryption)
algorithms, stemming from the need to verify a link between message, key and
encapsulation. This article will examine a way to simplify the hybrid construction
through use of tag-KEMs [1]. We show that adapting the tag-KEM + DEM con-
struction to signcryption yields simpler scheme descriptions and better generic
security reductions than previous efforts.

To demonstrate the usefulness of this new paradigm, we construct several
signcryption schemes based on signcryption tag-KEMs. The first is a simple mod-
ification of Zheng’s original signcryption scheme [13]. This scheme has become
baseline standard for judging the efficiency and security of any new signcryption
scheme or construction method. The second is a new signcryption scheme based
on the Chevallier-Mames signature scheme [5]. As far as the authors are aware,
this new signcryption scheme has the tightest known security bounds.

2 Preliminaries

2.1 Signcryption

The signcryption primitive was introduced in 1997 by Zheng [13].

Definition 1 (Signcryption). A signcryption scheme SC = (Com, KeyS ,
KeyR, SC , USC ) is defined as tuple of five algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS ) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic signcryption algorithm SC . It takes as input the private key
of the sender skS , the public key of the receiver pkR, and a message m. It
outputs a signcryptext σ.

– A deterministic unsigncryption algorithm USC. It takes as input the public
key of the sender pkS , the private key of the receiver skR, and a signcryptext
σ. It outputs either a message m or the unique error symbol ⊥.

For a signcryption scheme to be sound, it is required that m = USC
(
pkS , skR,

SC (skS , pkR,m)
)

for (almost) all fixed keypairs (skS , pkS ) and (skR, pkR).



For a signcryption scheme to be useful, it is necessary that it also satisfies well-
defined notions of security corresponding to the design goals of confidentiality
and authenticity/integrity. Formally, the probability of an adversary breaking
the security of signcryption should be negligible as a function of the security
parameter 1k.

Definition 2 (Negligible Function). A function f : N → R is negligible if,
for every polynomial p, there exists a n0 ∈ N such that |f(n)| ≤ 1/|p(n)| for all
n ≥ n0.

Security models are commonly phrased in terms of games played between a
hypothetical challenger and an adversary, who are both modelled as probabilistic
Turing machines. The canonical notion of confidentiality for signcryption is that
of indistinguishability of signcryptions (IND-CCA2). This is adapted directly
from the corresponding security notion for encryption schemes: an adversary
should not, even when given adaptive access to signcryption and unsigncryption
oracles, be able to distinguish between the signcryption of two messages of his
own choice. This security notion may be expressed by a game played between
the challenger and a two-stage adversary A = (A1,A2). For a given security
parameter 1k, the game proceeds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS ) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). During its execution,
A1 is given access to signcryption and unsigncryption oracles. The sign-
cryption oracle takes a message m as input, and returns SC (skS , pkR,m).
The unsigncryption oracle takes a signcryptext σ as input, and returns
USC (pkS , skR, σ). A1 terminates by outputting two messages (m0,m1) of
equal length, and some state information state.

3. The challenger computes a challenge signcryption by generating a random
bit b ∈ {0, 1} and computing σ = SC (skS , pkR,mb).

4. The adversary runs A2 on the input (state, σ). During its execution, A2

has access to signcryption and unsigncryption oracles as above, with the
restriction that the challenge signcryptext σ may not be asked to the un-
signcryption oracle. A2 terminates by outputting a guess b′ for the value of
b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣Pr[b = b′]− 1/2
∣∣.

With regards to the authenticity and integrity of signcryption, the notion of
existential forgery (UF-CMA) is adapted from analysis of signature schemes. It
is however necessary to distinguish between different types of such forgery. In an
outsider-secure signcryption scheme, the adversary is given access to signcryp-
tion and unsigncryption oracles, and the public keys of the sender and receiver.
For the stronger notion of insider security, the unsigncryption oracle is replaced
by giving the adversary direct access to the receiver’s private key. This article



will focus on insider-secure signcryption only. Efficient and secure hybrid sign-
cryption scheme against outsider adversaries have been constructed by Dent [10]

It is also necessary to specify what it means for the adversary to win the se-
curity game. We use the notion of strong existential unforgeability (sUF-CMA).
Here an adversary wins if it outputs a valid message/signcryption pair (m,σ) and
the signcryption σ was not returned by the signcryption oracle when queried on
the message m. Given a security parameter 1k, a game for the sUF-CMA insider
security of a signcryption scheme proceeds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS ) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A is given access to a signcryption oracle, which takes a message m as input
and returns SC (skS , pkR,m). A terminates by outputting a message m and
a signcryptext σ.

The adversary wins the game if m = USC (pkS , skR, σ) and the signcryption
oracle never returned σ when queried on the message m. The advantage of A is
defined as Pr[A wins].

2.2 Tag-KEMs

In the traditional KEM-DEM framework for hybrid encryption, the KEM uses
public key methods to encrypt and transmit the symmetric key used by the
DEM. Formally, a KEM consists of an asymmetric key generation algorithm
that outputs a private/public keypair, an encapsulation algorithm that encrypts
a random symmetric key using public-key techniques, and a decapsulation al-
gorithm that uses the corresponding private key to decrypt said symmetric key
from its encapsulation. This paradigm for building hybrid encryption schemes
was extended in early 2005, when Abe et. al. [1] showed that one might build
more efficient hybrid schemes by replacing the KEM with what they call a tag-
KEM.

Definition 3 (Tag-KEM). A tag-KEM TKEM = (Gen, Sym, Encap, Decap)
is defined as a tuple of four algorithms:

– A probabilistic key generation algorithm, Gen. It takes as input a security
parameter 1k, and outputs a private key sk and a public key pk. The public
key contains all specific choices used by the scheme, such as choice of groups.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
a public key pk, and outputs a symmetric key K and some internal state
information ω.

– A probabilistic encapsulation algorithm, Encap. It takes as input the state
information ω together with an arbitrary string τ , which is called a tag, and
outputs an encapsulation E.

– A deterministic decapsulation algorithm, Decap. It takes a private key sk,
an encapsulation E and a tag τ as input, and outputs a symmetric key K.



For a tag-KEM to be sound, the decapsulation algorithm Decap must output the
correct key K when run with a correctly formed encapsulation E of K, and the
corresponding private key and tag.

Tag-KEMs as such may be viewed as a generalisation of regular KEMs: if the
tag τ is a fixed string, the Sym and Encap algorithms together make up the
encapsulation algorithm of the traditional model.

Definition 4 (DEM). A data encapsulation mechanism DEM = (Enc, Dec)
is defined as a pair of algorithms:

– A symmetric encryption algorithm Enc, that takes a symmetric key K ∈ K
and a message m as input, and returns a ciphertext C = EncK(m). The set
K is called the keyspace of the DEM.

– A symmetric decryption algorithm Dec, that takes a symmetric key K ∈ K
and a ciphertext c as input, and returns a message m = DecK(C).

For soundness, the encryption and decryption algorithms should be each other’s
inverses under a fixed key K. Notationally, m = DecK

(
EncK(m)

)
.

For the purposes of this paper, it is only required that DEMs are secure with
respect to indistinguishability against passive attackers (IND-PA). Formally, this
security notion is captured by the following game, played between a challenger
and a two-stage adversary A = (A1,A2):

1. The challenger generates a random symmetric K ∈ K.
2. The adversary runs A1 with the security parameter 1k as input. A1 termi-

nates by outputting two equal length messages m0 and m1, as well as some
state information state.

3. The challenger generates a random bit b ∈ {0, 1} and computes the challenge
ciphertext C = EncK(mb).

4. The adversary runs A2 on the input (state, C). A2 terminates by returning
a guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣Pr[b = b′]− 1/2
∣∣.

A tag-KEM may be combined with a DEM to form a hybrid encryption
scheme in a similar way as a regular KEM. However, in [1] this is done in a novel
manner, by using the ciphertext output by the DEM as the tag. The explicit
construction is shown in Figure 1.

The main result of Abe et. al. [1] is that the construction of Figure 1 is
IND-CCA2 secure, provided that the DEM is secure against passive attackers
(IND-PA), and it is not possible for an adversary, given a pair (E,K), to deter-
mine whether K is the key encapsulated by E, or a random key of the correct
length. This contrasts with the traditional KEM-DEM construction, in which the
DEM is required to be secure against an active attack for the resulting hybrid
encryption scheme to be IND-CCA2.



Encr(pk , m):

(K, ω)
R← Sym(pk).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

Decr(sk , σ):
(E, C) ← σ.
K ← Decap(sk , E, C).
m ← DecK(C).
Return m.

Key(1k):

(sk , pk)
R← Key(1k).

Return (sk , pk).

Fig. 1: Construction of asymmetric encryption scheme from a tag-KEM and
DEM.

3 Signcryption Tag-KEMs

3.1 Basic Definition

We define Signcryption Tag-KEMs (SCTK) by direct analogy to the previous
definition of tag-KEMs for encryption.

Definition 5 (Signcryption Tag-KEM). A signcryption tag-KEM SCTK =
(Com, KeyS , KeyR, Sym, Encap, Decap) is defined as a tuple of six algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS ) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
the private key of the sender skS and the public key of the receiver pkR, and
outputs a symmetric key K together with internal state information ω.

– A probabilistic key encapsulation algorithm, Encap. It takes as input the state
information ω and an arbitrary tag τ , and returns an encapsulation E.

– A deterministic decapsulation/verification algorithm, Decap. It takes as in-
put the sender’s public key pkS , the receiver’s private key skR, an encapsu-
lation E and a tag τ . The algorithm returns either a symmetric key K or
the unique error symbol ⊥.

For the SCTK to be sound, the decapsulation/verification algorithm must return
the correct key K whenever the encapsulation E is correctly formed and the
corresponding keys and tag are supplied.

The basic idea behind a signcryption tag-KEM is that the key encapsulation
algorithm provides what amounts to a signature on the tag τ . Signcryption tag-
KEMs may thus be combined with regular DEMs to form a hybrid signcryption



scheme as shown in Figure 2, using the SCTK to provide a signature on the
symmetric ciphertext c and encapsulate the symmetric key K.

Com(1k):

I
R← Com(1k).

Return I.

KeyS (I):

(skS , pkS )
R← KeyS (I).

Return (skS , pkS ).

KeyR(I):

(skR, pkR)
R← KeyR(I).

Return (skR, pkR).

SC (skS , pkR, m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

USC (pkS , skR, σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 2: Construction of hybrid signcryption scheme from SCTK and DEM.

Previous discussion of hybrid signcryption schemes have discussed efficient
hybrid signcryption as a variant of the “Encrypt-and-Sign” [2] paradigm. A
straightforward approach is to encrypt the message to be sent with a symmetric
cipher, while combining the features of key encapsulation and digital signatures
into one efficient operation [8, 9, 4]. Using signcryption tag-KEMs in the con-
struction yields something more akin to a “Encrypt-then-Sign” based scheme,
since the signature is made on the ciphertext “tag”.

Another feature of the signcryption tag-KEM construction is that it auto-
matically supports the sending of associated data with a message. In particular,
one may submit a tag τ = (C, l) to the encapsulation algorithm, consisting of
the ciphertext C as well as a label l containing any associated data that is to be
bound to C by the encapsulation. As the encapsulation acts as a signature on
the input tag, the authenticity and integrity of both ciphertext and associated
data is provided. The only requirement for doing this is that the tag τ must
be formatted in such a way that (C, l) ← τ may be parsed in a deterministic
and unambiguous manner. A standard application of this feature is the common
practice of “binding” the sender’s and receiver’s public key to any signcryption
sent between them. Many signcryption schemes explicitly do this, in order to
provide some degree of multi-user security. Of course, a similar effect can be
achieved by computing the signcryption of a combination of the message and
a hash of the associated data. This provides similar results but requires either
slightly greater bandwidth or a slightly reduced message space.



3.2 Security Models

For a signcryption tag-KEM to be considered secure, it must fulfill well-defined
security notions with respect to confidentiality and authenticity/integrity. The
tag-KEM confidentiality model used in [1] may easily adapted to the signcryption
setting, and the notion of strong existential unforgeability is adapted to provide
authenticity/integrity.

In the IND-CCA2 game for a signcryption tag-KEM, the adversary attempts
to distinguish whether a given symmetric key is the one embedded in an en-
capsulation. The adversary A = (A1,A2,A3) runs in three stages, with each
stage having access to oracles that fascilitate both adaptive encapsulation and
decapsulation queries. For a given security parameter 1k, this may be expressed
by the following game:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS ) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). Durings its execution, A1

is given access to three oracles, corresponding to each of the algorithms Sym,
Encap and Decap:
– The symmetric key generation oracle does not take any input, and com-

putes (K,ω) = Sym(skS , pkR). It then stores the value ω (hidden from
the view of the adversary, and overwriting any previously stored values),
and returns the symmetric key K.

– The key encapsulation oracle takes an arbitrary tag τ as input, and
checks whether there exists a stored value ω. If there is not, it returns ⊥
and terminates. Otherwise it erases the value from storage, and returns
Encap(ω, τ).

– The decapsulation/verification oracle takes an encapsulation E and a
tag τ as input, and returns Decap(pkS , skR, E, τ).

A1 terminates by returning state information state1 .
3. The challenger computes (K0, ω) = Sym(skS , pkR), and generates a random

symmetric key K1 ∈ K as well as a random bit b ∈ {0, 1}.
4. The adversary runs A2 on the input (state1 ,Kb). During its execution, A2

may access the same oracles as previously. A2 terminates by returning state
information state2 and a tag τ .

5. The challenger computes a challenge encapsulation E = Encap(ω, τ).
6. The adversary runs A3 on the input (state2 , E). During its execution, A3

may access the same oracles as previously, with the restriction that (E, τ)
may not be asked to the decapsulation oracle. A3 terminates by returning a
guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined
as

∣∣Pr[b = b′] − 1/2
∣∣. A signcryption tag-KEM is said to be IND-CCA2 secure

if, for any adversary A, the advantage of A in the IND-CCA2 game is negligible
with respect to the security parameter 1k.



It is important to notice the interaction between the symmetric key genera-
tion and encapsulation oracles. This is done to allow the adversary to perform
completely adaptive encapsulations, without having access to the internal infor-
mation stored in ω. The IND-CCA2 game ensures that a SCTK fulfills several
necessary properties with regards to malleability and information hiding, and re-
places the notions of IND-CCA2 and INP-CCA2 used by Dent [8, 9] for regular
signcryption KEMs.

With respect to authenticity and integrity, an adversary should not be able
to find encapsulation/tag-pairs (E, τ) such that Decap(pkS , skR, E, τ) 6= ⊥, ex-
cept by the way of oracles. Since the encapsulation algorithm should provide a
signature on the tag τ , this is closely tied to forging the underlying signature
scheme. An attack game corresponding to the sUF-CMA security of a SCTK
may thus be specified as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS ) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A may access the symmetric key generation and encapsulation oracles as
were defined in the previous game. A terminates by returning an encapsula-
tion E and a tag τ .

The adversary wins the game if ⊥ 6= Decap(pkS , skR, E, τ) and the encapsula-
tion oracle never returned E when queried on the tag τ . The advantage of A is
defined as Pr[A wins]. A signcryption tag-KEM is said to be sUF-CMA secure
if, for any adversary A, the advantage of A in the sUF-CMA game is negligible
with respect to the security parameter 1k.

Definition 6 (Secure Signcryption Tag-KEM). A signcryption tag-KEM
SCTK is said to be secure if it is IND-CCA2 and sUF-CMA secure.

3.3 Generic Security of Hybrid Signcryption

If the SCTK+DEM construction is to be of any use, the resulting signcryption
scheme must be provably secure.

Theorem 1. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is IND-CCA2 se-
cure and the DEM is IND-PA secure, then SC is IND-CCA2 secure.

Proof. Let Game 0 be the regular IND-CCA2 game for signcryption, as specified
in Section 2.1. In the following game, the hybrid signcryption procedure is altered
to use a random key when generating the challenge signcryptext, rather than
the real key output by Sym. We refer to the resulting game as Game 1:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS ) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).



2. The adversary runs A1 on the input (I, pkS , pkR). During its execution,
A1 has access to signcryption and unsigncryption oracles. The signcryption
oracle takes a message m as input, and returns SC (skS , pkR,m). The unsign-
cryption oracle takes a signcryptext σ as input, and returns USC (pkS , skR, σ).
A1 terminates by outputting two messages (m0,m1) and some state infor-
mation state.

3. The challenger computes (K, ω) = Sym(skS , pkR), and generates a random
key K ′ ∈ K, as well as a random bit b ∈ {0, 1}. He then computes C =
EncK′(mb) and E = Encap(ω, C), and sets σ = (E, C).

4. The adversary runs A2 on the input (state, σ). During its execution, A2 may
access signcryption and unsigncryption oracles as above, with the restriction
that σ may not be asked to the unsigncryption oracle. A2 terminates by
outputting a guess b′ for the bit b.

Let X0 and X1 be the events that b = b′ in Game 0 and Game 1, respectively.
It is well known that any substantial difference in the advantage of the adversary
A in Game 0 and Game 1 can be used to produce a distinguishing algorithm for
the signcryption tag-KEM.

Figure 3 gives a complete specification of such a distinguishing algorithm D.
It plays the IND-CCA2 game against SCTK, using A as a subroutine. Oracle
queries made by A are simulated by D. It uses the subroutines OSC to simulate
signcryption oracle queries, and OUSC to simulate unsigncryption queries. The
symmetric key generation, encapsulation and decapsulation/verification oracles
accessible by D are referred to as OS , OE and OD, respectively. We denote
the execution of an algorithm A that takes input values α, . . . and has access
to oracles O, . . . as A(α, . . . ;O, . . . ). A well-known derivation gives |Pr[X0] −
Pr[X1]| ≤ 2εSCTK , where εSCTK is the advantage that D has in attacking the
IND-CCA2 security of the SCTK.

We proceed to show that the advantage of A in Game 1 is bounded by that
of a passive attacker against the DEM. Figure 4 specifies an adversary B against
the IND-PA security of the DEM, that uses A as a subroutine. In the game
described in Figure 4, B simulates the environment of A in Game 1 perfectly.
Furthermore, B wins every time A would have won Game 1. Hence, they have
the same advantage. It follows that

εSC ≤ 2εSCTK + εDEM , (1)

where εSC , εSCTK and εDEM are the advantages of adversaries against IND-
CCA2 security of the hybrid signcryption scheme, the IND-CCA2 security of
the signcryption tag-KEM and the IND-PA security of the DEM, respectively.

ut
Remark 1. This reduction is significantly tighter than those found for regular
hybrid signcryption in [8, 4]. In the original approach to hybrid signcryption, the
confidentiality proof relies on four terms: the indistinguishability of the sym-
metric keys the KEM produces, the unforgeability of the KEM, the ability of
the KEM to disguise the messages and the passive security of the DEM. This



D1(I, pkS , pkR;OS ,OE ,OD):

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state1 ← (m0, m1, s).
Return state1 .

D2(state1 , K;OS ,OE ,OD):

b
R← {0, 1}.

C ← EncK(mb).
state2 ← (state1 , b, C).
Return (state2 , C).

D3(state2 , E;OS ,OE ,OD):
(m0, m1, s, b, C) ← state2 .
σ ← (E, C).

b′
R← A2(s, σ;OSC ,OUSC).

If b = b′: Return 1.
Else: Return 0.

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← OD(E, C):
Return ⊥ and terminate.
Else K ← OD(E, C).
m ← DecK(C).
Return m.

Fig. 3: Distinguisher algorithm D.

B1:

I
R← Com(1k).

(skS , pkS )
R← KeyS (I).

(skR, pkR)
R← KeyR(I).

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state ← (I, skS , pkS , skR, pkR, m0, m1, s).
Return (m0, m1, state

′).

B2(state, C):
(I, skS , pkS , skR, pkR, m0, m1, s) ← state.

(K, ω)
R← Sym(skS , pkR).

E
R← Encap(ω, C).

σ ← (C, E).

b
R← A2(s, σ;OSC ,OUSC).

Return b.

OSC(m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 4: IND-PA adversary against the DEM.



is particularly inefficient as many proofs of unforgeability contain weak security
reductions. We see this improved security result, and the comparative simplicity
of proving the security of a signcryption tag-KEM, as the main advantages of
the SCTK paradigm.

Theorem 2. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is sUF-CMA secure,
then SC is also sUF-CMA secure.

Proof. Since every valid forgery of SC implies a valid encapsulation, it is reason-
ably straightforward to show that forgery of SC implies forgery of the underlying
SCTK. Figure 5 specifies an adversary B, which uses a black-box adversary A
against the UF-CMA security of SC to win the corresponding sUF-CMA game
against SCTK. In the above scenario, A wins the forgery game against SC when-

B(I, pkS , skR, pkR;OS ,OE):

(m, σ)
R← A(I, pkS , skR, pkR;OSC).

(E, C) ← σ.
Return (E, C).

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

Fig. 5: Construction of a sUF-CMA adversary against SCTK.

ever the returned σ unsigncrypts to m and m has not been queried to the sign-
cryption oracle OSC . If this is the case, then B wins the sUF-CMA game against
SCTK.

To see this, note that B wins whenever it returns a pair (E,C) that does not
decapsulate to ⊥ and such that E was never a response from OE to a query C.
Since σ is a valid ciphertext, the former condition is always fulfilled. Furthermore,
one may note that the ciphertext σ is associated deterministically to m through
the decapsulation algorithm. Hence, σ has been returned by OSC if and only if
m was ever queried. This implies that (E, C) was a query/response pair from
OSC if and only if (m,σ) was a query/response pair from OE . Hence, B wins
every time A does.

It follows that
εSC ≤ εSCTK , (2)

where εSC is the advantage of the UF-CMA adversary against SC, and εSCTK

is the advantage of the resulting sUF-CMA adversary against SCTK. ut

4 Sample schemes

4.1 Zheng Signcryption Revisited

Zheng’s original signcryption scheme [13] has become somewhat of a canonical
reference when hybrid signcryption is discussed [8, 4]. It is therefore natural to see



whether it can be adapted to fit the generic tag-KEM framework as well. Since
Zheng’s original scheme essentially uses a KEM to sign the plaintext message,
this requires only minor alterations. Figure 6 gives a complete specification of a
signcryption tag-KEM that, when combined with a DEM as per Figure 2, yields
something very similar to Zheng’s original scheme. The only difference between
the schemes is that the tag τ used by Encap is the ciphertext C ← EncK (m),
rather than m itself. It is well established that both Zheng’s signcryption scheme
and its associated signcryption KEM are secure [3, 8, 4], and it is therefore no
surprise that the signcryption tag-KEM specified in Figure 6 is secure as well.

Com(1k):
Pick a k-bit prime p.
Pick a large prime q that divides p− 1.
Pick g ∈ Z∗q of order q.
Pick cryptographic hash functions:
G : {0, 1}∗ → K.
H : {0, 1}∗ → Z/qZ.
I ← (p, q, g,G,H).
Return I.

KeyS (I):

skS
R← Z/qZ.

pkS ← gskS mod p.
Return (skS , pkS ).

KeyR(I):

skR
R← Z/qZ.

pkR ← gskR mod p.
Return (skR, pkR).

Sym(skS , pkR):

n
R← Z/qZ.

κ ← pkR
n mod p.

bind ← pkS ||pkR.
K ← G(κ).
ω ← (skS , n, κ, bind).
Return (K, ω).

Encap(ω, τ):
(skS , n, κ, bind) ← ω.
r ← H(τ ||bind ||κ).
s ← n/(skS + r) mod q.
E ← (r, s).
Return E.

Decap(pkS , skR, E, τ):
(r, s) ← E.
κ ← (pkS · gr)s·skR mod p.
r′ ← H(τ ||bind ||κ).
If r 6= r′:
Return ⊥ and terminate.
Else K ← G(κ).
Return K.

Fig. 6: The Zheng signcryption tag-KEM.

Theorem 3. Zheng-SCTK, as specified in Figure 6, is a secure signcryption
tag-KEM.

A full version of the proof is given in the full version of the paper. The security
bounds for Zheng’s signcryption scheme in this framework are comparable to
those of the original scheme-specific reduction [3]. This was not the case in
generic models for hybrid signcryption [8, 4] based on regular KEMs. In the
full version of the paper, we show that an attacker who attempts to break the
confidentiality of the full signcryption scheme using at most qE queries to the
signcryption oracle, qD queries to the unsigncryption oracle, qG queries to the



random oracle representing the hash function G and qH queries to the random
oracle representing the hash function H has an advantage bounded3 by

2AdvGDH + AdvDEM

where AdvGDH is a related attacker’s probability of solving a Gap Diffie-Hellman
problem and AdvDEM is the advantage that a related attacker has in breaking
the passive security of the DEM. If we compare this to the results of Bjørstad
[4], then we find that an attacker who attempts to break the confidentiality of
Zheng’s scheme in Dent’s hybrid model [9] has an advantage which is bounded
above by

4AdvGDH + AdvDEM + 2qH

√
AdvDL

where AdvDL is a related attacker’s probability of solving a discrete logarithm
problem. This demonstrates the usefulness of the new construction, as it gives
significantly tighter security bounds.

Other existing signcryption schemes may also be representable as signcryp-
tion tag-KEMs. For example, it appears likely that the hybrid signcryption
scheme of Malone-Lee [11] could also be adapted to the signcryption tag-KEM
paradigm, along with its corresponding proof of security.

4.2 The CM Signcryption Tag-KEM

As discussed in [13, 4], the Zheng signcryption scheme is constructed by modify-
ing an existing signature scheme. By making the randomiser κ computed during
signature verification dependent on the receiver’s key skS , an efficient signcryp-
tion scheme can be constructed at a very low additional cost. This trick may
be applied to other signature schemes as well. In this section, we propose a new
signcryption tag-KEM, built from a recent signature scheme due to Chevallier-
Mames [5]. The resulting construction has tight security reductions with respect
to the Computational Diffie-Hellman and Gap Diffie-Hellman problems. This is
of practical interest, since previous hybrid signcryption schemes have had rela-
tively loose security reductions with respect to unforgeability. Figure 7 gives a
complete specification of the CM signcryption tag-KEM.

Theorem 4. The CM signcryption tag-KEM specified in Figure 7 is a secure
signcryption tag-KEM.

A full proof is given in full version of the paper. The proof uses techniques
that are directly analogous to those used in the security proofs for Zheng’s
scheme [3, 4]. However, this scheme has a better security reduction for authen-
ticity/integrity, since the security of the underlying signature scheme does not
rely on a “forking lemma” argument [12]. To the authors’ knowledge, this gives
this scheme the best known security reductions.

As a side note, we remark that, in order to prove the integrity/authenticity
of the CM signcryption tag-KEM, it was necessary to prove that the Chevallier-
Mames signature scheme was strongly unforgeable. A proof of this fact was
developed independently by Chevallier-Mames [6].
3 For simplicity, we disregard the constant terms in the following expressions



Com(1k):
Pick a large prime q.
Let G be a cyclic group of order q, such
that the representation of the elements of
G is included in {0, 1}k.
Pick a generator g of G.
Pick cryptographic hash functions:
G : {0, 1}∗ ×G6 → Zq.
H : G → G.
KDF : G → K.
I ← (q, G, g,G,H, KDF ).
Return I.

KeyS (I):

skS
R← Zq.

pkS ← gskS .
Return (skS , pkS ).

KeyR(I):

skR
R← Zq.

pkR ← gskR . Return (skR, pkR).

Sym(skS , pkR):

n
R← Zq.

u ← pkR
n.

K ← KDF (u).
ω ← (skS , pkR, n, u).
Return (K, ω).

Encap(ω, τ):
(skS , pkR, n, u) ← ω.
h ← H(u).
z ← hskS .
v ← hn.
c ← G(τ ||pkR, pkS , g, z, h, u, v).
s ← n + c · skS , mod q.
E ← (z, c, s).

Decap(pkS , skR, E, τ):
u ← (gs · pkS

−c)skR .
h ← H(u).
v ← hs · z−c.
If c 6= G(τ ||pkR, pkS , g, z, h, u, v) :
Return ⊥.
Else K ← KDF (u).
Return K.

Fig. 7: The CM signcryption tag-KEM

5 Building Better Key Agreement Mechanisms with
Signcryption Tag-KEMs

The idea that signcryption KEMs can be used as key agreement mechanisms
was first investigated by Dent [10]. Dent notes that whilst an encryption KEM
provides a basic mechanism for agreeing a symmetric key between two parties,
it does not provide any form of authentication or freshness guarantee. Moreover,
he notes that signcryption KEMs (with outsider security) can be used to agree
a symmetric key with authentication. A simple protocol key agreement protocol
is then proposed, wherein freshness is guaranteed by the computing the MAC of
a timestamp or nonce using the newly agreed symmetric key. However, as the
paper remarks, this protocol is susceptible to a known key attack and should
not be used in practice.

In this section we propose that signcryption tag-KEMs can be used as prac-
tical key agreement mechanisms, with the SCTK providing both the authenti-
cation and freshness components of the protocol in a simple way. Consider the
following protocol which allows Alice and Bob to agree a key for a session with
an ID SID between them:

1. Alice generates a random nonce rA of an agreed length, and sends rA to
Bob.



2. Bob computes (K, ω) = Sym(skBob , pkAlice) and E = Encap(ω, τ) using the
(unique) tag τ = rA||SID . Bob accepts K as the shared secret key, and sends
C to Alice.

3. Alice computes K = Decap(pkBob , skAlice , E, τ) using the tag τ = rA||SID ,
and accepts K as the shared key providing K 6= ⊥.

We argue that this protocol has the following attributes:

– Implicit key authentication to both parties. If both parties obtain
the other’s correct public key, then no attacker can distinguish between a
session’s correct public key and a randomly generated key without breaking
the confidentiality criterion for the SCTK.

– Resistance to known key attacks. It is easy to see that an attacker
that gains a key from any earlier protocol execution (or, indeed, in a later
protocol execution) between Alice and Bob gains no advantage in breaking
the scheme. This is because this “session corruption” is equivalent to making
a signcryption oracle query with a random tag. Since the SCTK remains
secure in this situation, so does the key agreement protocol.

– Key confirmation from Bob to Alice. Since no party (including Alice)
can forge a signcryptext that purports to come from Bob, if Alice recovers
a key K from C, then that key K must have been produced by Bob in the
correct way. Therefore, Alice can have confidence that Bob knows the correct
key. However, an extra round of interaction will be required if Alice wishes
to give Bob key confirmation.

We argue that this derivation is useful because it finally gives a secure way
to use KEMs for key establishment. Of course, a secure signcryption scheme can
always be used as a key transport mechanism; however, it was not previously
known if signcryption-style techniques could be used for key agreement. The
aforementioned protocol settles this question. Whether an individual signcryp-
tion tag-KEM should be regarded as a key transport or key agreement mecha-
nism depends upon its individual characteristics.

6 Conclusions

We have shown that there is a natural extension of the concept of a tag-KEM to
the signcryption setting and proven that secure signcryption tag-KEMs can be
combined with passively secure DEMs to provide signcryption schemes with full
insider security. This vastly simplifies and improves upon the KEM-DEM model
insider secure signcryption schemes proposed by Dent [9]. To show that this
construction is viable, we have given several examples of signcryption tag-KEMs,
including a brand new construction based on the Chevallier-Mames signature
scheme with very tight security bounds.
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