
Efficiency Tradeoffs for Malicious Two-Party

Computation

Payman Mohassel and Matthew Franklin

Department of Computer Science, University of California, Davis CA 95616
mohassel@cs.ucdavis.edu, franklin@cs.ucdavis.edu

Abstract. We study efficiency tradeoffs for secure two-party compu-
tation in presence of malicious behavior. We investigate two main ap-
proaches for defending against malicious behavior in Yao’s garbled circuit

method: (1) Committed-input scheme, (2) Equality-checker scheme. We
provide asymptotic and concrete analysis of communication and compu-
tation costs of the designed protocols. We also develop a weaker defi-
nition of security (k-leaked model) for malicious two-party computation
that allows for disclosure of some information to a malicious party. We
design more efficient variations of Yao’s protocol that are secure in the
proposed model.

Keywords: secure two-party computation, secure function evaluation, Yao’s
garbled circuit, malicious adversary.

1 Introduction

General two-party secure computation was an early success of modern cryptog-
raphy. Yao’s garbled circuit protocol [Yao86] is a classic and elegant solution
to this problem. Thanks to Lindell and Pinkas [LP04] (building on Goldreich
[Gol04] and others), we now have a careful proof of Yao’s protocol in a suitable
formal framework.

It is well-known that Yao’s protocol is vulnerable to malicious behavior by
its participants. The classic solution to this issue is the zero-knowledge compi-
lation of Goldreich et al. [GMW86,GMW87,Gol04]. This paradigm is of great
theoretical interest, but is not efficient in practice. For this reason, various al-
ternative methods for protecting Yao’s protocol against malicious behavior have
been suggested [Pin03,MNPS04].

The general approach is based on cut-and-choose techniques that tend to
gain efficiency at the cost of increased risk of undetected cheating. We cite in
particular, the impressive Fairplay system of Malkhi et al. [MNPS04], which has
made a major step forward in bringing Yao’s protocol to practice, and which
was the starting point for our work.

Although these cut-and-choose ideas are intuitive and natural, they have
some hidden subtleties and complexities. Indeed, we show that one of the pro-
tocols in the Fairplay paper has a subtle bug that allows one of the parties

to cheat undetectably. This suggests that cut-and-choose designs for protecting
Yao’s protocol from malicious behavior deserve a closer look.

Another reason to take a closer look at this design space is that the tradeoffs
of efficiency vs. undetected cheating are not immediately apparent (especially
when combined with other cryptographic techniques). We find some nice con-
structions with attractive balances of the relevant parameters. We are not claim-
ing that the best possible tradeoffs have been found. In fact, the design space
is so rich that we suspect that more work remains to be done in this area. This
is especially true when the parameter tradeoffs includes the number of bits of
secret information leaked to a malicious party (a setting we explore in Section
4).

1.1 Related Work

We mention some of the work in the literature that deals (in rather different
ways from ours) with information leakage in two-party protocols. The original
paper on zero-knowledge allowed for some information leakage to the verifier
[GMR89]. This notion was further explored by Goldreich and Petrank [GP99].

Two-party protocols for fair exchange have a problem of early termination by
a malicious party. One goal is to design protocols that minimize the advantage of
the early terminator over the honest party, measured as the difference between
the number of bits of recovered messages by each party. Of course, the progress of
two-party fair exchange research has primarily focused on increased inefficiency
to achieve less leakage to the early terminator. This is backwards from our
motivation. For examples, refer to [lMR83,Cle89].

Some two-party protocols for computing specific functions allowed some leak-
age of information [FNW96]. Bar-Yehuda et al. [BYCKO93] consider tradeoffs
of information leakage and round complexity for two-party secure computation
where the parties are computationally unbounded but non-malicious. Abadi et
al. [AFK87] give a model for information leakage to allow a computationally
bounded party to compute a function privately, with the help of a computation-
ally unbounded party.

1.2 Outline of the Paper

We study Yao’s garbled circuit protocol in the presence of malicious behavior.
We show that the Fairplay scheme of [MNPS04] is still vulnerable to a type of
malicious behavior, and suggest a simple way of fixing it. Then, we introduce two
different schemes for preventing malicious behavior (1) Committed-input scheme,
(2) Equality-checker scheme. Both constructions have exponentially small error
probabilities. We provide and compare communication and computation cost
for the designed protocols, both asymptotically and with more concrete mea-
surements. Then, we develop a weaker definition of security for two-party com-
putation that allows for leakage of some information. We then design efficient
variations of Yao’s protocol that are secure in the weaker model. We hope that

this weaker definition of security suggests a reasonable tradeoff between effi-
ciency and security, and allows for more efficient and practical implementations
of secure two-party protocols.

In Section 2, we review some preliminary concepts. We also give a descrip-
tion of Fairplay scheme of [MNPS04]. In Section 3, we mention a vulnerability
(against malicious behavior) in Fairplay, and describe our Committed-input and
Equality-checker schemes. In Section 4, we introduce our k-leaked model of se-
curity, and suggest several efficient constructions that are secure in that model.

2 Preliminaries

Two-Party Computation

A two-party computation is cast by specifying a random process that maps pairs
of inputs (one input per each party) to pairs of outputs (one for each party). We
refer to such a process as the desired functionality, denoted f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ where f = (f1, f2). For every pair of input x, y ∈ {0, 1}n, the
output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings.
The first party wishes to obtain f1(x, y) and the second party wishes to obtain
f2(x, y).

The security definition for two-party computation varies depending on whether
the adversary is malicious, or semi-honest. A semi-honest (honest-but-curious)
adversary follows the steps of the protocol, but does not hesitate to learn more
information using the transcripts of messages it receives. On the other hand, a
malicious party can behave in an arbitrary way. In this paper, we are concerned
with computationally bounded malicious adversaries. The definitions we use are
according to [Gol04]. These definitions compare the adversaries in the real-model
with those in an ideal-model in which the parties have a trusted party at their
disposal. Loosely speaking, a two-party protocol is secure if for any admissible
pair of parties (A,B) in the real-model, there is an admissible pair of parties
(A

′

, B
′

) in the ideal model where the outputs of the two executions are indistin-
guishable. A pair is admissible if at least one of the parties in the pair is honest.
Intuitively, a secure protocol is required to work correctly, and to provide privacy
for the honest participant.

In Section 4, we will present a tweaked version of these definitions that allows
a malicious party to learn k bits of extra information.

Oblivious transfer is a special two-party protocol introduced by Rabin [Rab81].
We need the 1-out-of-2 oblivious transfer where x = (z0, z1), y = σ, f1(x, y) =
empty, and f2(x, y) = zσ. Several oblivious transfer protocols that are secure in
presence of malicious or semi-honest adversaries exist.

Yao’s garbled circuit protocol

Yao’s garbled circuit [Yao86] is the first general purpose protocol designed for
secure two-party computation. In this protocol, the function being computed is a

polynomial size circuit. The first party computes the garbled form of the circuit
in the following way:

He assigns two random strings Kj,0 and Kj,1 to every wire j in the circuit.
These random strings correspond to values 0 and 1, respectively. He then com-
putes a garbled truth table for every gate in the circuit. For this purpose, he
uses the random strings as keys to a symmetric encryption scheme, to encrypt
the corresponding key for the output wire. He also creates a table that translates
the garbled form of the output wires to their actual values (0, or 1). He sends
the garbled circuit, and the garbled strings corresponding to his input, to the
second party. The second party learns the garbled form of his input bits through
a series of oblivious transfers. The second party computes the garbled circuit,
gate by gate, and obtains the output in the garbled form. He can then use the
translation table to find the actual value of his output. We refer the reader to
[LP04] for a complete description of Yao’s protocol and the proof of its security
in the semi-honest case.

Yao’s protocol, in this form, is not secure when the parties are malicious. Clas-
sical ways of making two-party protocols secure against malicious adversaries
exist [Gol04] (based on the zero-knowledge compilation technique of [GMW87],
and [GMW86]). In particular, the circuit garbler would need to accompany the
garbled circuit with a zero-knowledge proof that the circuit is built correctly,
and that it computes the desired functionality. Furthermore, the circuit eval-
uator would need to accompany his final message with a zero-knowledge proof
that the output is the result of performing the desired functionality on the inputs
exchanged in previous steps of protocol. The general zero-knowledge proofs are
quite inefficient and no efficient alternative zero-knowledge proofs are designed
for this purpose.

Fairplay Scheme

One of the main sources of malicious behavior in Yao’s garbled circuit protocol
is the ability of the circuit garbler to garble and send a wrong circuit. Malkhi
et al. [MNPS04] use a simple cut-and-choose construction which reduces the
probability of making the wrong garbled circuit to 1

m , where m is number of
circuits sent by circuit garbler (Bob) to circuit evaluator (Alice).

The following is the Fairplay scheme described in [MNPS04]. We only con-
sider the steps after both parties know the description of the circuit they want
to compute.

1. Bob constructs m garbled/encrypted circuits and sends them to Alice. Alice
randomly chooses one of the circuits that will be evaluated.

2. Bob exposes the secrets of the other m − 1 garbled/encrypted circuits, and
Alice verifies them against her reference circuit.

3. Bob specifies his inputs and sends them to Alice in garbled form. Alice inserts
Bob’s inputs in the garbled/encrypted circuits she chose to evaluate.

4. Alice specifies her inputs, and then Alice and Bob engage in oblivious trans-
fers (OTs) in order for Alice to receive her inputs (in garbled form) from
Bob. Bob learns nothing about Alice’s inputs.

5. Alice evaluates the chosen garbled/encrypted circuit, finds the garbled out-
puts of both her and Bob, and sends the relevant outputs to Bob.

6. Each party interprets his or her garbled outputs and prints the result.

In this scheme, the probability that Bob sends the wrong circuit and does not
get caught is 1

m . However, Alice is still vulnerable to a different type of malicious
behavior from Bob. We will describe this vulnerability in the following section.

3 Preventing Malicious Behavior in Yao’s Protocol

A vulnerability in Fairplay, and how to correct it

In step 4 of the Fairplay protocol, parties engage in oblivious transfers in order
for Alice to get the garbled form of her inputs. In any of the oblivious transfers,
Bob can change the order of two random strings corresponding to 0 and 1. Note
that changing the order of strings is not a malicious behavior in an oblivious
transfer, but becomes a malicious behavior in the above protocol.

To state the vulnerability more formally, note that Bob can flip any of Al-
ice’s input bits without Alice’s detection. Let x1, x2, . . . , xn be the bit values
associated with input wires. Let WA be the input wires owned by Alice, and let
WB be the input wires owned by Bob: WA ∪ WB = [1..n] while WA ∩ WB = φ.
For any S ⊆ [1..n], let flipS(x1, . . . , xn) = (y1, y2, . . . , yn), where yi = 1 − xi

for all i ∈ S, and yi = xi for all i /∈ S. Then Bob can fool Alice into computing
f(flipS(x1, . . . , xn)) for any S ⊆ WA. It is important to note that this behavior
is not allowed in the ideal model.

There is a simple solution to this problem. We will require Bob to include

a commitment zj,i,b of the tuple (j, i, b,K
(j)
i,b) for every circuit copy j ∈ [1..m],

and every input wire i ∈ WA, and every input value b ∈ {0, 1}, where K
(j)
i,b

denotes the random string corresponding to bit value b of wire i in circuit j
(let wj,i,b be the corresponding witnesses for decomittal). The purpose of these
commitments is to bind the random key strings with their corresponding bit
values (0 or 1). Bob reveals the witnesses for all of the commitments except for
those corresponding to the one circuit copy chosen by Alice. Alice can verify that
the exposed commitments are correctly computed. For the remaining circuit s,

Bob will obliviously transfer (K
(s)
i,0 , ws,i,0) or (K

(s)
i,1 , ws,i,1) for all i ∈ WA. Alice

can use the witnesses to verify that she has received the correct key string. Bob
can only cheat with probability 1

m .
Now, we want to make the cheating probability exponentially small in m. The

idea mentioned in [Pin03] is that Alice chooses a fraction of circuits randomly.
Bob exposes the secrets of those circuits. Alice evaluates the rest of the circuits
and accepts the majority output as the correct output of the protocol. For the
cut-and-choose protocols to work properly, Bob must be forced to give the same
input to most of the circuits evaluated by Alice. Pinkas [Pin03] suggests the use
of proofs of partial knowledge to achieve this goal, but defers the detail of the
actual construction.

Next, we design two schemes for making the cheating probability exponen-
tially small in m. In the following two protocols, we assume that only Alice needs
to see the output of the protocol. Based on this assumption, both schemes are
secure in presence of malicious adversaries.

3.1 Committed-input Scheme

In this scheme, we will use proof of equality of discrete-log commitments [Ped91].
To commit to a value x, one generates a random value r and calculates gxhr,
where g is a generator of group G and h is a random element of G. The commiter
should not know the discrete-log of h base g. To prove that gxhr1 and gyhr2 are
commitments to the same value, the commiter sends r2 − r1 to the verifier. The
verifier can calculate gyhr2

gxhr1
and verify that the result of division is in fact hr2−r1 .

Please refer to [Ped91] for more detail. Note that any commitment scheme with
an efficient proof-of-equality can be used in our construction. We focus on the
Pedersen commitments for simplicity, and to help with our concrete complexity
analysis in Section 3.3.

In the Committed-input scheme, Bob computes K
(j)
i,b = gbhr

(j)

i,b for random

r
(j)
i,b , for every j ∈ [1..m], for every input wire i ∈ WB owned by Bob, and for

every input value b ∈ {0, 1}.1 Bob chooses random keys for all of the other wires,
including Alice’s input wires. He also includes the commitment zj,i,b of the tuple

(j, i, b,K
(j)
i,b) for all of Alice’s input wire keys (let wj,i,b be the corresponding

witness for decommittal). The protocol follows:

1. Bob and Alice agree on a group G, and a generator g. Alice sends a random
element h ∈ G to Bob.

2. Bob sends the garbled circuits C(j) for every j ∈ [1..m] (including the
translation tables of output wires.) He also sends (j, i, zj,i,0, zj,i,1) for ev-
ery j ∈ [1..m] and every input wire i ∈ WA (commitments in random order).

3. Alice randomly chooses a subset S ⊂ [1..m], where |S| = m
2 .

4. Bob exposes all the secrets of circuit C(j) for all j ∈ S. Then, he sends

witnesses r
(j)
i,0 , r

(j)
i,1 for every j ∈ S, and i ∈ WB . He also sends witnesses

wj,i,0, wj,i,1 for every j ∈ S and every i ∈ WA.
5. Alice verifies that all the exposed garbled circuits and commitments were

computed correctly. In addition, she verifies that the commitments to 0’s
were used in the circuit as garbled forms of 0 and commitments to 1 were
used as garbled forms of 1.

6. Renumber the remaining garbled circuits as C(1), . . . , C(m
2). Bob sends to

Alice K
(j)
i,bi

for every j ∈ [1..(m/2)] and every i ∈ WB . He also sends δ
(j+1)
i =

r
(j+1)
i,bi

−r
(j)
i,bi

for every j ∈ [1..(m/2)−1] and every i ∈ WB , where bi is Bob’s
input for wire i.

1 If the length of these commitments does not match the length chosen for the random
strings, we can use a hash function to map the commitments to strings of the required
length.

7. Alice verifies that K
(1)
i,bi

, . . . ,K
(m/2)
i,bi

are all commitments to the same value:

K
(j+1)
i,bi

/K
(j)
i,bi

= hδj+1
i for all j ∈ [1..(m/2) − 1]. She does so for all i ∈ WB .

8. Alice specifies her input. Alice and Bob engage in oblivious transfers in order
for Alice to receive her input bits in garbled form. Bob uses a single oblivious
transfer to give Alice one of the two tuples

(K
(1)
i,0 , w1,i,0,K

(2)
i,0 , w2,i,0, . . . ,K

(m/2)
i,0 , wm/2,i,0) or

(K
(1)
i,1 , w1,i,1,K

(2)
i,1 , w2,i,1, . . . ,K

(m/2)
i,1 , wm/2,i,1)

depending on whether her value for input wire i is 0 or 1. This Oblivious
Transfer is done for every i ∈ WA.

9. Alice verifies that these received input wire values and witnesses are consis-
tent. Then, Alice executes all m/2 garbled circuits and outputs the majority
value of the outputs.

Proof of Security

We assume the basic building blocks for Yao’s garbled circuit protocol: secure
1-out-of-2 oblivious transfer and secure symmetric encryption. In addition, we
assume the security of Pedersen commitments (discrete log assumption).

Lemma 1. With probability more than 1− (1
2)

m
4 , the majority of evaluated cir-

cuits are correct and have the same input, or Bob will get caught.

Proof of lemma: The probability that more than half of the remaining m
2 circuits

were wrong, and were not detected by Alice, is less than
(

3m/4
m/2

)

/
(

m
m/2

)

< (1
2)

m
4 .

Therefore, the majority of circuits are correct with high probability, which means
that the disc-log commitments corresponding to those circuits are also correct.
Hence, Bob has to give the same input for those circuits or he will get caught
during the verification (step 7).

The following two claims complete the security argument. Due to lack of
space, proofs of the following two claims are not included in this extended ab-
stract.

Claim 1 The Committed-input scheme is secure when Bob (circuit garbler) is
malicious (inverse exponential probability of undetected cheating).

Claim 2 The Committed-input scheme is secure when Alice (circuit evaluator)
is malicious.

3.2 Equality-checker Scheme

In this scheme, we will avoid any exponentiation other than the ones computed
for OTs. Before describing the scheme, lets define the equality-checkers used in

the scheme. Let zj,j′,i,b be Bob’s commitment to the tuple (j, j′,K
(j)
i,b ,K

(j′)
i,b) and

let wj,j′,i,b be the corresponding witness for decommittal. Bob computes these
commitments for every j, j′ such that 1 ≤ j < j′ ≤ m, for every i ∈ WB , and for
every b ∈ {0, 1}. The idea is that a correctly built commitment binds the two

random key strings that correspond to the same bit value for the same input wire,
but in two different circuits. Alice can verify that Bob’s input to two circuits C(j)

and C(j
′

) are equal if she is given the witnesses to the commitments zj,j′,i,bi
for

every i ∈ WB , where bi is Bob’s input bit for wire i. An equality-checker between
circuits C(j) and C(j′) is the collection of zj,j′,i,b for all i ∈ WB and b ∈ {0, 1}.
Working with equality-checkers instead of individual commitments makes the
proofs simpler.

1. Bob constructs m garbled/encrypted circuits and sends them to Alice. He
also sends the zj,i,b commitments and the m(m − 1)/2 equality-checkers
described above.

2. Alice randomly chooses a subset S ⊂ [1..m], where |S| = m
2 and sends S to

Bob.
3. Bob exposes the secrets of circuits C(j) for all j ∈ S. Then, he sends wit-

nesses wj,i,b for all j ∈ S, all i ∈ WA, and all b ∈ {0, 1}. He also sends
witnesses wj,j′,i,b for all j, j′ ∈ S, all i ∈ WB , and all b ∈ {0, 1} (these
are the (m

2)(m
2 − 1)/2 equality-checkers corresponding to pairs of revealed

circuits). Alice verifies that the garbled circuits and commitments were com-
puted correctly.

4. Renumber the remaining garbled circuits as C(1), . . . , C(m/2). Bob sends the

keys K
(j)
i,bi

for every j ∈ [1..m
2] and i ∈ WB . He also sends witnesses wj,j′,i,bi

for every 1 ≤ j < j′ ≤ m
2 , and every i ∈ WB , where bi is his input for wire i.

5. Alice uses the witnesses wj,j′,i,bi
to verify that Bob’s input to all the circuits

are the same.
6. Alice and Bob engage in oblivious transfers in order for Alice to receive her

input bits in garbled form. Bob uses a single oblivious transfer to give Alice

one of the two tuples (K
(1)
i,0 ,K

(2)
i,0 , . . . ,K

(m/2)
i,0) or (K

(1)
i,1 ,K

(2)
i,1 , . . . ,K

(m/2)
i,1)

(depending on whether her value for input wire i is 0 or 1). This Oblivious
Transfer is done for every i ∈ WA.

7. Alice will evaluate the m
2 garbled circuits and print the majority output as

the correct output.

Proof of Security

We assume the basic building blocks for Yao’s garbled circuit protocol: secure 1-
out-of-2 oblivious transfer and secure symmetric encryption. We also assume the
security of the commitment scheme (which can be built from one way functions).

Lemma 2. With probability more than 1−(1/2)
m
6 , more than 2

3 of the m
2 circuits

are correct, or Bob will get caught.

Proof of Lemma: (by contradiction) Let’s assume that at most 2
3 of the m

2
circuits are correct. This means that at least m

6 of the circuits are wrong. The

probability that Alice doesn’t detect those m
6 is less than

(

5m/6
m/2

)

/
(

m
m/2

)

< (1
2)

m
6 .

Lemma 3. With probability more than 1−(1/2)
m
6 , at least 5

6 of Bob’s m
2 inputs

are the same, or Bob will get caught.

Proof: See Appendix for the proof.

Claim 3 The Equality-checker scheme is secure when Bob (circuit garbler) is
malicious (inverse exponential probability of undetected cheating).

Proof sketch: Now we know that Lemmas 2 and 3 are correct. In other words,
at least 5

6 of inputs are the same, and more than 2
3 of circuits are correct with

high probability. This implies that more than 2
3 − 1

6 = 1
2 of the circuits are

correct and have the same inputs, and hence, the majority output is the correct
output. according to the union-bound this will happen with probability greater
than 1 − (1/2)

m
6 + 1 − (1/2)

m
6 − 1 = 1 − 2(1/2)

m
6 .

Consider a strategy B for Bob in the real model. If Alice aborts the protocol,
we are done (Bob is caught and he doesn’t learn anything). But if Alice doesn’t
abort, she will respond with the majority output O which is equal to f(xa, xmaj)
with high probability. Here, xa is Alice’s input to the circuit, and xmaj is Bob’s
input to majority of the circuits. Bob’s view of the protocol includes the OTs,
and output O. Since he doesn’t learn anything about Alice’s input during the
OTs, he can simulate them on his own using a simulator S1.

The adversary B
′

in the ideal model will send the input xmaj to the trusted-
party and get back f(xa, xmaj) as the output. He can use the simulator S1 to
simulate the OTs, and emulate B’s strategy step by step, and the view of the
protocol will be indistinguishable.

The following claim completes the security argument (Proof is omitted due
to lack of space).

Claim 4 The Equality-checker scheme is secure when Alice (circuit evaluator)
is malicious.

3.3 Communication and Computation Analysis

To measure the communication and computation complexity of the schemes, we
introduce the parameters m, I, O and g. m is number of garbled/encrypted cir-
cuits sent to Alice. I and O are the number of input and output bits respectively
(Bob and Alice combined). g denotes the number of gates in the circuit. When-
ever we want to consider one party’s input or output, we will use the proper
subscript.

Asymptotic Analysis

We will measure the communication and computation cost where the goal is to
achieve an error probability as small as ǫ. To measure the computation cost, we
split the computation into two types of operations: (1) exponentiations, and (2)
everything else. In our protocols, OTs and disc-log commitments are from the
first category, while the symmetric encryptions and other commitments used in
the protocol are in the second category.

In the Fairplay scheme (with the vulnerability fixed as suggested), to achieve
the required error probability, we need m = 1

ǫ circuits. But for the Committed-
input scheme and Equality-checker scheme, m = O(ln(1

ǫ)). We summarize the
communication and computation complexities in table 1. Note that t = O(ln(1

ǫ))
is the security parameter (for a successful cheating probability of ǫ).

Scheme Symmetric Enc. Exponentiations Communication Complexity

Fairplay O(1

ǫ
g) O(I) O(2tg)

Committed-input O(ln(1

ǫ
)g) O(ln(1

ǫ
)I) O(tg)

Equality-checker O(ln(1

ǫ
)g + ln(1

ǫ
)2I) O(I) O(tg + t2I)

Table 1. Computation and Communication complexities

More Concrete Analysis

We will try to measure the computational cost of all three constructions more
precisely. We take into account all the encryptions, commitments and exponenti-
ations, and include even the constant factors. We will measure the computational
cost for 4 different circuits (AND2, Billionaires3, PIR4, Median5). We borrow the
circuits and their sizes from [MNPS04].

Fairplay : In the Fairplay scheme, to achieve an error probability ǫ, the total
number of cryptographic operations are: 1

ǫ (4g+2O+2IA) symmetric encryptions
and 2IA exponentiations.

Committed-input : To achieve an error probability of ǫ, the total number of
cryptographic operations are: 4

ln(2) ln(1
ǫ)(4g + 2O + 2IA) symmetric encryptions

and 2IA + 8
ln(2) ln(1

ǫ)IB exponentiations.

Equality-checker : We have 6
ln(2) ln(1

ǫ)(4g+2O+2IA)+ 72
ln(2)2 (ln(1

ǫ))2IB sym-

metric encryptions, and 2IA exponentiations.
Tables 2, 3 and 4 give the computational costs for the four mentioned circuits,

for four different error probabilities. Each entry includes two integers, represent-
ing the number of symmetric encryptions and exponentiations, respectively.

Since Equality-checker and Fairplay have the same number of exponentia-
tions, it is easy to compare their computational cost. You can see that for all
four circuits, if we require an error probability of 1

1000 or smaller, the computa-
tional cost of Equality-checker scheme is lower. However, if an error probability
of 1

100 or larger is enough, Fairplay is a better choice. Therefore, the choice of
efficient construction seems to depend on the likelihood of malicious behavior

2 Performs bit-wise AND on two inputs of size 8. The circuit has 32 gates.
3 Compares two 32-bit integers. The circuit has 256 gates.
4 Bob’s input size is 480 bits and Alice’s input size is 6 bit. The circuit has 1229 gates.
5 finds the median of two sorted arrays. The input for both Alice and Bob are ten

16-bit numbers. The circuit size is 4383 gates.

Error probability And Billionaires PIR Median
1

100
(176 ∗ 102, 16) (1092 ∗ 102, 64) (4976 ∗ 102, 12) (17916 ∗ 102, 320)

1

1000
(176 ∗ 103, 16) (1092 ∗ 103, 64) (4976 ∗ 103, 12) (17916 ∗ 103, 320)

1

10000
(176 ∗ 104, 16) (1092 ∗ 104, 64) (4976 ∗ 104, 12) (17916 ∗ 104, 320)

1

1000000
(176 ∗ 106, 16) (1092 ∗ 106, 64) (4976 ∗ 106, 12) (17916 ∗ 106, 320)

Table 2. computational cost for Fariplay scheme

Error probability And Billionaires PIR Median
1

100
(4677, 441) (29020, 1764) (132239, 25524) (476125, 8824)

1

1000
(7015, 653) (43530, 2615) (198358, 38280) (714187, 13076)

1

10000
(9354, 866) (58040, 3465) (264478, 51036) (952250, 17328)

1

1000000
(14031, 1291) (87061, 5166) (396717, 76549) (1428375, 25832)

Table 3. Computational cost for Committed-input scheme

and the magnitude of damage it can have in the environment the protocol is
being employed.

David Woodruff [Woo06] has proposed a modification to the Equality-checker
scheme using expander graphs. Bob associates his m circuits with the vertices
of an expander graph, and then commits only to those pairs of circuits that
correspond to edges of this graph. There are explicit constructions of expander
graphs for which this saves a factor of Θ(m) in the communication complexity,
while preserving the security properties of the protocol. This is a nice asymptotic
improvement, although it is unclear what the savings would be for the small
values of m that might be used in practice.

4 How to Leak Information

The idea explored in this section is to weaken the notion of security by allowing
a malicious party to learn k bits of information about the other party’s input, in
addition to the output of protocol. A semi-honest party should still only learn
the output of the protocol.

Loosely speaking, a two-party protocol π between two parties A and B for
computing f(xa, xb), leaks only k bits of information if all the malicious party A
(symmetrically, B) can learn from protocol π, it can also learn given the output
f(xa, xb) and an additional value g(xb) for a g of her choice in G, where G is a
family of functions and G ⊆ {g|g : {0, 1}∗ → {0, 1}k}.

The definition of security of a two-party protocol (refer to [Gol04]), compares
the execution of admissible adversaries in the real-model and ideal-model. In
order to formally incorporate the leakage of information in our definition of
security, we need to change the definition of ideal-model. We call this new model
the k-leaked model.

Error probability And Billionaires PIR Median
1

100
(19700, 16) (94380, 64) (961112, 12) (968439, 320)

1

1000
(39100, 16) (179708, 64) (2013733, 12) (1643347, 320)

1

10000
(64882, 16) (290462, 64) (3447731, 12) (2445380, 320)

1

1000000
(135460, 16) (588243, 64) (7459858, 12) (4430824, 320)

Table 4. Computational cost for Equality-checker scheme

k-leaked model

In this model of computation, parties have a semi-trusted party at their disposal.
Execution in the k-leaked model proceeds as follows:

– Inputs: Each party obtains an input denoted u.

– Sending inputs to the semi-trusted party: An honest party always sends
u to the semi-trusted party. A malicious party may, depending on u (as well
as an auxiliary input and its coin tosses), either abort or send some other
u

′

∈ {0, 1}|u| to the semi-trusted party.

– Malicious party asks for k bits of information: In case either party
has aborted, the semi-trusted party replies to both parties with a special
symbol, denoted ⊥. Otherwise, the semi-trusted party has an input pair
(x, y). A malicious party can choose a function g ∈ G, where G ⊆ {g|g :
{0, 1}∗ → {0, 1}k}, and ask the semi-trusted party for the value of g at the
other party’s input. The semi-trusted party answers accordingly.

– The semi-trusted party answers the first party: The semi-trusted
party answers the first party with f1(x, y).

– The semi-trusted party answers the second party: In case the first
party is malicious, it may, depending on its input and the answer it received,
decide to stop the semi-trusted party. In this case the semi-trusted party
sends ⊥ to the second party. Otherwise (i.e. if not stopped), the semi-trusted
party sends f2(x, y) to the second party.

– Outputs: An honest party always outputs the message it has obtained from
the semi-trusted party. A malicious party may output an arbitrary function
of its initial input and the message it has obtained from the semi-trusted
party.

Note that we borrowed the definition of ideal-model from [Gol04] and made
the necessary adjustments to obtain a definition for k-leaked model. Now, we can
easily obtain a definition for our weakened notion of security by replacing the
ideal-model by the k-leaked model in the security definition of [Gol04].

Loosely speaking, for any admissible pair of parties (A,B) in the real-model,
there is an admissible pair of parties (A

′

, B
′

) in the k-leaked model where the
outputs of the two executions are indistinguishable. A pair is admissible if at
least one of the parties in the pair is honest. We will take advantage of this fact
when designing our protocols.

4.1 How to use the new definition

In this section, we will describe a method for making Yao’s garbled-circuit pro-
tocol secure against malicious behavior in the 1-leaked model, where G = {g|g :
{0, 1}∗ → {0, 1}}. Note that we have already designed two protocols for making
Yao’s protocol secure against malicious behavior. Our new construction is inter-
esting because it is simple, generic, and more efficient. Particularly, it has the
same communication and computation complexity as Yao’s garbled-circuit pro-
tocol for semi-honest parties (Proof of security in the 1-leaked model is omitted
from this extended abstract).

The protocol

The protocol takes place between Alice and Bob who want to compute f(xa, xb)
where xa is Alice’s input and xb is Bob’s.6

1. Alice creates a garbled circuit for computing f . She sends the garbled circuit,
her garbled input, and a translation table for output wires to Bob.

2. Alice and Bob engage in a series of oblivious transfer protocols so that Bob
learns the garbled form of his inputs.

3. Bob computes the circuit and translates the output strings to their actual
value using the translation table. Lets call this output O1.

4. Bob creates a garbled circuit for computing f . He sends the garbled circuit,
his garbled input, and a translation table for output wires to Alice.

5. Alice and Bob engage in a series of oblivious transfer protocols so that Alice
learns the garbled form of her inputs.

6. Alice computes the circuit and translates the output strings to their actual
value, using the translation table. Lets call this value O2.

7. Alice and Bob engage in a secure protocol (against malicious behavior) that
returns 1 if O1 = O2 and 0 otherwise (This is where a malicious party can
learn one extra bit). Bob and Alice need to prove to each other that they
actually use O1 and O2 as their input to this sub-protocol.

8. If the answer is 0, parties output ⊥, and abort.
9. Bob and Alice output O1 and O2 respectively.

Instantiating step 7 of the protocol

The sub-protocol in step 7 needs to return 0 if the inputs are not the same. In
addition, any party using an input different from O1 or O2 should get caught.
It is in fact easy to achieve the latter by requiring the parties to incorporate
in the sub-protocol, the garbled form of the output they received. Note that if
the translation tables are carefully constructed, a party computing a garbled

6 Please note that the following protocol only considers the case where both parties
share the same output. This doesn’t effect the generality of the protocol since any
two-party computation in which parties have different outputs can be solved using
protocols in which both parties share the same output (please refer to [LP04]).

circuit can only learn the garbled strings corresponding to its own output bits
and not the complements. Hence, it is easy for the other party, who created the
garbled circuit in first place, to verify the correctness of it. We need a conditional
disclosure protocol as described in [AIR01].

In the following protocol, O1 is the output received by Bob (in binary) and
Wb = w1||w2 . . . ||wn is the garbled form of O1. Furthermore, the output received
by Alice is O2 with the garbled form Wa = w1||w2 . . . ||wn. Then, the protocol,
at a high level, is as follows:

1. Alice discloses Wa to Bob if O1 = O2, and a random value ra ∈ {0, 1}|Wa|

otherwise.
2. Bob calculates his own version of Wa using O1 and the garbled strings cor-

responding to the output wires (Bob created the garbled circuit). He verifies
that his calculated version is equal to the value he received from Alice. If
not, he aborts.

3. Bob discloses Wb to Alice if O1 = O2, and a random value rb ∈ {0, 1}|Wb|

otherwise.
4. Alice verifies the equality in a way similar to (step 2).

Computational-cost Note that by leaking one extra bit, we made the protocol
much more efficient. We decreased the communication cost to only twice that of
Yao’s garbled circuit for semi-honest parties. The same is true regarding the cost
of computation. Below is a measure of how the protocol performs, both asymp-
totically and in more concrete terms. As before, for the concrete measurements,
the first component shows number of symmetric encryptions while the second
component counts number of exponentiations performed. Comparing this table
with Tables 2, 3,and 4 shows the dramatic improvement in the computation cost.

symmetric Enc. exponentiations And Billionaires PIR Median

O(g) O(I) (352, 34) (2184, 130) (9952, 26) (35832, 642)
Table 5. Computational-cost of the scheme

Non-interactive Computations

The protocol we used above to make Yao’s garbled-circuit protocol secure against
malicious behavior is generic enough that it can be used in different contexts
as well. Particularly, any non-interactive7 two-party protocol which is secure

7 We call a protocol non-interactive if one party sends his input (in some form) to
the second party. Then, the second party computes the functionality on his own (no
interaction here).

against semi-honest adversaries can use our scheme to make the protocol se-
cure against malicious behavior in the 1-leaked model. More generally, any non-
interactive two-party protocol that is secure in the semi-honest version of the
k-leaked model, can be made secure in the malicious version of (k+1)-leaked
model. It is important to note that step 7 of the protocol should be instantiated
appropriately.

Acknowledgements

We would like to thank David Woodruff and the anonymous reviewers for their
helpful suggestions.

References

[AFK87] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an
oracle. In STOC ’87: Proceedings of the nineteenth annual ACM confer-

ence on Theory of computing, pages 195–203. ACM Press, 1987.
[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to

sell digital goods. Eurocrypt, 2001.
[BYCKO93] R. Bar-Yehuda, B. Chor, E. Kushilevitz, and A. Orlitsky. Privacy, addi-

tional information, and communication. IEEE Transactions on Informa-

tion Theory, 1993.
[Cle89] R. Cleve. Controlled gradual disclosure schemes for random bits and their

applications. In CRYPTO ’89: Proceedings on Advances in cryptology,
pages 573–588. Springer-Verlag, 1989.

[FNW96] R. Fagin, M. Naor, and P. Winkler. Comparing information without leak-
ing it. Commun. ACM, 39(5):77–85, 1996.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proofs. Proceed-

ings of of the 27th FOCS, pages 174-187, 1986.
[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental

game or a completeness theorem for protocols with honest majority. In

proceedings of 19th Annual ACM Symposium on Theory of Computing,

pages 218-229, 1987.
[Gol04] O. Goldreich. Foundations of cryptography - volume 2, ch. 7. 2004.
[GP99] O. Goldreich and E. Petrank. Quantifying knowledge complexity. Com-

putational Complexity, 8:50–98, 1999.
[lMR83] M. luby, S. Micali, and C. Rackoff. How to simultaneously exchange a

secret bit by flipping a symmetrically-biased coin. FOCS, 1983.
[LP04] Y. Lindell and B. Pinkas. A proof of yao’s protocol for secure two-party

computation. eprint archive, 2004.
[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay– a secure two-party

computation system. Proceedings of Usenix security, 2004.
[Ped91] T. P. Pederson. Non-interactive and information-theoritic secure verifiable

secret-sharing. 1991.

[Pin03] Benny Pinkas. Fair secure two-party computation. Eurocrypt, LNCS 2656,

Springer-Verlag, pp. 87-105, 2003.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report

Tech., Memo. TR-81, Aiken Computation Labratory, Harvard University,
1981.

[Woo06] D. Woodruff. unpublished manuscript, 2006.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of the

27th IEEE symposioum on Foundations of Computer science,pages 162-

167, 1986.

A Proof of Lemma 3

Bob sends m
2 garbled inputs for the m

2 circuits that Alice will evaluate. Lets
denote the set of these inputs IB, where |IB | = m

2 . Let L be the largest subset
of IB with equal inputs, where |L| = k. In other words, all other subsets of
equal inputs have sizes smaller or equal to k. We want to prove that, with high
probability, k is greater than 5

6 .m
2 = 5m

12 .

Note that Alice has (m
2)(m

2 − 1)/2 equality-checkers that compare the m
2

inputs with each other. Some of these equality-checkers might be wrong (mali-
cious Bob), and therefore verify the equality of two inputs that are not equal. We
call two equality-checkers distinct if they compare the inputs to four different
circuits. The next two Claims imply Lemma 3:

Claim A: If k ≤ 5m
12 , at least m

12 of the distinct equality-checkers used by
Alice for verification were wrong.

Claim B: If Bob sends m
12 wrong distinct equality-checkers to Alice, the prob-

ability that they are not detected by Alice, and are used by her to verify that
Bob’s inputs are the same, is less than (1/2)

m
6 .

Proof of Claim A: We know that |L| = k ≤ 5m
12 . We consider the following

two case:

Fig. 1. Nodes represent inputs and edges represent equality-checkers

Case 1: (m
6 ≤ k ≤ 5m

12) This implies that min(|L|, |IB−L|) = min(k, m
2 −k) ≥

m
2 − 5m

12 = m
12 . Therefore, there are at least m

12 distinct equality-checkers among
those that compare the inputs in (IB − L) with those in L. These m

12 equality-
checkers must have been wrong not to detect that the compared inputs are not
the same.

Case 2: (k ≤ m
6) Consider the partition (S1, S2, ..., Sl, L) of the set IB where

each subset Si and L only contain equal inputs (Fig 1.).Note that S1 ∪ S2 . . . ∪
Sl ∪ L = IB, and all the subsets are pairwise disjoint. Lets denote |Si| = ki for
all 1 ≤ i ≤ l. The fact that k1 + ... + kl + k = m

2 , and (k ≤ m
6) implies that

k1 + k2 + ...+ kl ≥ k. Hence, there are k distinct equality-checkers that compare
the k inputs in L with inputs in S1, S2, ..., Sj for some 1 ≤ j < l (Fig 1.). This
might only cover portions of set Sj . These k equality-checkers must have been
wrong not to detect that their two inputs weren’t equal. But there is more.

We insert the remaining portion of Sj and all of Sj+1, ..., Sl in a list (in the
same order). We cut the list in half, and pair up each input on the right side
of the cut with its counterpart on the left (Fig. 1). In worst case, the cut is in
the middle of a subset St (j + 1 ≤ t ≤ l). This means that at most kt

2 < k
2

of these pairs might include equal inputs (in the same subset). The equality-
checkers corresponding to the rest of the pairs compare unequal inputs and must
have been wrong not to detect the inequalities. Therefore, there is an additional
(m

2 − k − k − kt)/2 > (m
2 − 3k)/2 wrong equality-checkers. This makes the total

number of wrong distinct equality-checkers at least k+(m
2 −3k)/2 = m

4 − k
2 > m

12 .
Based on Case 1 and Case 2, if less than 5

6 of the inputs are the same, and all
the equality-checkers confirm the equality of inputs, there are at least m

12 wrong
distinct equality-checkers among them.

Proof of Claim B: Lets assume that m
12 distinct equality-checkers are wrong

and are used by Alice for verification. The probability that no two endpoints of
any of the m/12 equality-checkers was exposed in the previous step is less than
(1
2)

m
6 .

