
Conditional Oblivious Cast ?

Cheng-Kang Chu and Wen-Guey Tzeng
Department of Computer Science,
National Chiao Tung University,

Hsinchu, Taiwan 30050
Email:{ckchu,tzeng}@cis.nctu.edu.tw

Abstract. We introduce a new notion of conditional oblivious cast (COC),
which involves three parties: a sender S and two receivers A and B. Re-
ceivers A and B own their secrets x and y, respectively, and the sender S
holds the message m. In a COC scheme for the predicate Q (Q-COC), A
and B send x and y in a masked form to S, and then S sends m to A and
B such that they get m if and only if Q(x, y) = 1. Besides, the secrets
x and y can not be revealed to another receiver nor the sender. We also
extend COC to 1-out-of-2 COC (COC1

2) in which S holds two messages
m0 and m1, and A and B get m1 if Q(x, y) = 1 and m0 otherwise. We
give the definitions for COC and COC1

2, and propose several COC and
COC1

2 schemes for “equality”, “inequality”, and “greater than” predi-
cates. These are fundamental schemes that are useful in constructing
more complex secure interactive protocols. Our schemes are efficiently
constructed via homomorphic encryption schemes and proved secure un-
der the security of these encryption schemes.

Keywords: oblivious cast, conditional oblivious transfer, secure computation.

1 Introduction

Oblivious transfer (OT) is an important cryptographic primitive proposed by
Rabin [18]. It involves two parties: the sender S and the receiver R, where S
sends a bit of which R gets it with probability 1

2 . After Rabin’s work, OT was
developed in several types, such as 1-out-of-2 OT [11], 1-out-of-n OT [5, 16, 21],
k-out-of-n OT [8, 14, 15], conditional OT (COT) [3, 10], etc. In Q-COT, S owns
a secret x and a message m, and R owns a secret y such that R gets m from S
if and only if the condition Q(x, y) is evaluated as true.

Oblivious cast (OC) [12] is a generalization of OT to the three-party case:
one sender S and two receivers A and B. The bit is received by exactly one of A
and B, each with probability 1

2 . We generalize OC and introduce a new notion
of conditional oblivious cast (COC), where A and B own their secrets x and
y, respectively, and the sender S holds the message m. In a COC scheme for
the predicate Q (Q-COC), A and B send x and y in a masked form to S, and

? Research supported in part by National Science Council grants NSC-94-2213-E-009-
116, Taiwan, ROC.

then S sends m to A and B such that they get m if and only if Q(x, y) = 1.
Furthermore, the secrets x and y can not be revealed to another receiver nor the
sender. We also extend COC to 1-out-of-2 COC (COC1

2) in which S holds two
messages m0 and m1, and A and B get m1 if Q(x, y) = 1 and m0 otherwise.

There are two cases for the message receiving: A and B both get m, or only
one of them gets m. The schemes we propose in this paper are all designed for
the first case. However, in some applications only one receiver, determined by
the condition, is allowed to get the message, and S can not know who gets the
message. We have a general transformation of our COC1

2 schemes to suit this
kind of model (Section 4.3).

In this paper, we give the definitions for COC and COC1
2, and propose sev-

eral COC and COC1
2 schemes for “equality”, “inequality”, and “greater than”

predicates. These are fundamental schemes that are useful in constructing more
complex secure interactive protocols. Our schemes are efficiently constructed via
homomorphic encryption schemes and proved secure.

COC not only covers all functionalities of COT, but also broadens the range
of its applications. We provide three examples:

– Priced oblivious transfer: Aiello et al. [1] introduced the notion of “priced
oblivious transfer”, which protects the privacy of a customer’s purchase from
a vendor. In their setting, the buyer needs to deposit an amount in each ven-
dor. This is not very practical if a buyer wants to purchase various goods
from many vendors. By using our COC schemes, we can construct a gener-
alized priced OT such that the buyer can deposit the money in one bank
only. When the buyer wants to buy an item from a vendor, he sends the
corresponding price and the bank sends the buyer’s current balance in the
encryption form to the vendor. The vendor then sends the item such that
the buyer can get it if the price does not exceed his balance.

– Oblivious two-bidder system: A party S has a secret for selling, and A and
B are two bidders. The winner can obtain the secret from S directly. At the
end, S has no idea who the winner is. This system can be constructed from
COC for the “greater than” predicate (in the second message-receiving case)
immediately.

– Oblivious authenticated information retrieval: A can get some information
from S if he passes the authentication procedure provided by B. For instance,
consider a mobile news subscription service provided by an independent
agent. We assume that a mobile phone has no extra memory to store the
subscription information but only an IMSI (International Mobile Subscriber
Identity) in the SIM card. Users can pay the subscription fee to their mobile
phone company, and the company provides an encrypted subscription list of
IMSIs to the news provider. When a user wants to read news on the bus,
his mobile phone sends the encrypted IMSI to the news provider. The news
provider then sends news to the user if the IMSI is in the subscription list.
In this case, the user’s identity (IMSI) is anonymous to the news provider.
The scheme can be constructed by COC for the “membership” predicate
discussed in Section 5.2.

2

Related works. COT was first proposed by Di Crescenzo et al. [10]. In
their definition of COT, the focus is to provide “all-or-nothing” transfer of the
message from S to R by the condition. Blake et al. [3] strengthened COT to
strong COT (SCOT), which provides “1-out-of-2” message transfer from S to R
by the condition and adds more security requirements for S.

The notion of our COC is to separate the role of the secret holder from S.
The main difference in design techniques is that, in COT and SCOT, the secure
computation is done by S with a masked input and a plain input, whereas
the secure computation in our COC and COC1

2 is done by S with two masked
inputs. A COC scheme that meets the requirements of our definitions can be
easily transferred to a COT or SCOT scheme.

2 Definitions and Preliminaries

In this section we give formal definitions for COC and COC1
2 and introduce

useful tools and notations.

2.1 Conditional Oblivious Cast

Informally speaking, a COC scheme for predicate Q (Q-COC) has the following
three properties:

– Correctness: both of A and B get m from S if Q(x, y) = 1.
– Sender’s security: A and B cannot get any information about m if Q(x, y) =

0.
– Receiver’s security: after running the protocol, x is kept secret from B and

S, and y is kept secret from A and S.

The definition for Q-COC is as follows:

Definition 1 (Q-COC). Let k be the security parameter, and A,B and S be all
polynomial-time probabilistic Turing machines (PPTMs). Let 〈A,B, S〉(·) denote
the communication transcript. We say that a three-party interactive system Π =
(A,B, S) is a secure Q-COC scheme if it satisfies the following requirements for
some constant c:

1. Correctness: For any x, y, m ∈ {0, 1}kc

with Q(x, y) = 1,
Pr[µ← {0, 1}kc

; tr ← 〈A(x), B(y), S(m)〉(µ) :
“A(x, µ, tr) = m” ∧ “B(y, µ, tr) = m”] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y, m,m′ ∈ {0, 1}kc

with
Q(x, y) = 0, A′ and B′ cannot distinguish the following probability ensembles
with non-negligible advantage, respectively:
– V Π

A′B′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m)〉(µ)),
– RΠ

A′B′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m′)〉(µ)),
and
– V Π

B′A′ = (y, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m)〉(µ)),
– RΠ

B′A′ = (y, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m′)〉(µ)).

3

3. Receiver’s security:
(a) For any PPTM A′, B′, S′ and any x, x′, y, y′,m ∈ {0, 1}kc

with Q(x, y) =
Q(x, y′) = Q(x′, y), S′ cannot distinguish the following probability en-
sembles with non-negligible advantage:
– V Π

S′A′ = (m,µ← {0, 1}kc

, tr ← 〈A′(x), B(y), S′(m)〉(µ)),
– SΠ

S′A′ = (m,µ← {0, 1}kc

, tr ← 〈A′(x), B(y′), S′(m)〉(µ)),
and
– V Π

S′B′ = (m,µ← {0, 1}kc

, tr ← 〈A(x), B′(y), S′(m)〉(µ)),
– SΠ

S′B′ = (m,µ← {0, 1}kc

, tr ← 〈A(x′), B′(y), S′(m)〉(µ)).
(b) For any PPTM A′, B′, S′ and any x, x′, y, y′,m ∈ {0, 1}kc

with Q(x, y) =
Q(x, y′) = Q(x′, y), A′ and B′ cannot distinguish the following probabil-
ity ensembles with non-negligible advantage, respectively:
– V Π

A′S′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B(y), S′(m)〉(µ)),
– SΠ

A′S′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B(y′), S′(m)〉(µ)),
and
– V Π

B′S′ = (y, µ← {0, 1}kc

, tr ← 〈A(x), B′(y), S′(m)〉(µ)),
– SΠ

B′S′ = (y, µ← {0, 1}kc

, tr ← 〈A(x′), B′(y), S′(m)〉(µ)).

2.2 1-out-of-2 Conditional Oblivious Cast

In COC1
2, the message sender S holds two messages m0 and m1. A Q-COC1

2

scheme must satisfy the following three properties:

– Correctness: both of A and B get m1 from S if Q(x, y) = 1, and m0 if
Q(x, y) = 0.

– Sender’s security: A and B get exactly one message from S.
– Receiver’s security: after running the protocol, x is kept secret from B and

S, and y is kept secret from A and S.

The definition for Q-COC1
2 is as follows.

Definition 2 (Q-COC1
2). Let k be the security parameter, and A,B and S be

all PPTMs. Let 〈A,B, S〉(·) denote the communication transcript. We say that
a three-party interactive system Π = (A,B, S) is a secure Q-COC1

2 scheme if it
satisfies the following requirements for some constant c:

1. Correctness:
(a) For any x, y, m0,m1 ∈ {0, 1}kc

with Q(x, y) = 0,
Pr[µ← {0, 1}kc

; tr ← 〈A(x), B(y), S(m0,m1)〉(µ) :
“A(x, µ, tr) = m0” ∧ “B(y, µ, tr) = m0”] = 1.

(b) For any x, y, m0,m1 ∈ {0, 1}kc

with Q(x, y) = 1,
Pr[µ← {0, 1}kc

; tr ← 〈A(x), B(y), S(m0,m1)〉(µ) :
“A(x, µ, tr) = m1” ∧ “B(y, µ, tr) = m1”] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y, m0,m1,m
′
1 ∈ {0, 1}kc

with Q(x, y) = 0, A′ and B′ cannot distinguish the following probability
ensembles with non-negligible advantage, respectively:
– V Π

A′B′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m0,m1)〉(µ)),

4

– RΠ
A′B′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m0,m
′
1)〉(µ)),

and
– V Π

B′A′ = (y, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m0,m1)〉(µ)),
– RΠ

B′A′ = (y, µ← {0, 1}kc

, tr ← 〈A′(x), B′(y), S(m0,m
′
1)〉(µ)).

The similar requirements is met Q(x, y) = 1.
3. Receiver’s security:

(a) For any PPTM A′, B′, S′ and any x, x′, y, y′,m0,m1 ∈ {0, 1}kc

with
Q(x, y) = Q(x, y′) = Q(x′, y), S′ cannot distinguish the following proba-
bility ensembles with non-negligible advantage:
– V Π

S′A′ = (m0,m1, µ← {0, 1}kc

, tr ← 〈A′(x), B(y), S′(m0,m1)〉(µ)),
– SΠ

S′A′ = (m0,m1, µ← {0, 1}kc

, tr ← 〈A′(x), B(y′), S′(m0,m1)〉(µ)),
and
– V Π

S′B′ = (m0,m1, µ← {0, 1}kc

, tr ← 〈A(x), B′(y), S′(m0,m1)〉(µ)),
– SΠ

S′B′ = (m0,m1, µ← {0, 1}kc

, tr ← 〈A(x′), B′(y), S′(m0,m1)〉(µ)).
(b) For any PPTM A′, B′, S′ and any x, x′, y, y′,m0,m1 ∈ {0, 1}kc

with
Q(x, y) = Q(x, y′) = Q(x′, y), A′ and B′ cannot distinguish the following
probability ensembles with non-negligible advantage, respectively:
– V Π

A′S′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B(y), S′(m0,m1)〉(µ)),
– SΠ

A′S′ = (x, µ← {0, 1}kc

, tr ← 〈A′(x), B(y′), S′(m0,m1)〉(µ)),
and
– V Π

B′S′ = (y, µ← {0, 1}kc

, tr ← 〈A(x), B′(y), S′(m0,m1)〉(µ)),
– SΠ

B′S′ = (y, µ← {0, 1}kc

, tr ← 〈A(x′), B′(y), S′(m0,m1)〉(µ)).

Remark. For clarity and simplicity, we will first assume that all parties in our
COC and COC1

2 schemes are semi-honest (honest-but-curious), that is, they
follow the procedure step by step, but try to get extra information about the
secrets or messages by extra computation. We also assume that A, B and S
operates independently. No two parties will collude against the third one. Then
we provide some techniques to transform the schemes into ones that are secure
against malicious parties and their collusion in Section 5.1.

2.3 Homomorphic Encryption Schemes

Multiplicatively homomorphic encryption scheme. An encryption scheme (G, E,D)
is multiplicatively homomorphic if for any m0 and m1, D(E(m0) ⊗ E(m1)) =
D(E(m0 ·m1)), where ⊗ is an operation defined on the image of E.

The ElGamal encryption scheme as follows is multiplicatively homomorphic.

– G(1k) = (p, q, g, α, β), where p is a k-bit prime, and q = p−1
2 is also a

prime, Gq is the subgroup of Z∗
p with order q, g is a generator of Gq, and

β = gα mod p for α ∈ Gq. Let PK = (p, q, g, β), SK = (p, q, g, α). All
relevant computations are under group Gq.

– E(m) = (gr,mβr), where m ∈ Gq, r ∈R Zq.
– D(c) = c2/cα

1 , where c = (c1, c2).

5

For E(m0) = (gr0 ,m0β
r0) and E(m1) = (gr1 ,m1β

r1), the operation E(m0) ×
E(m1) = (gr0 · gr1 ,m0β

r0 ·m1β
r1) is multiplicatively homomorphic since

D(E(m0)× E(m1)) = D(gr0 · gr1 ,m0β
r0 ·m1β

r1)
= D(gr0+r1 ,m0m1β

r0+r1)
= D(E(m0 ·m1)).

We can compute E(mc) from E(m) via repeated multiplication for a constant c.
Additively homomorphic encryption scheme. An encryption scheme (G, E,D)

is additively homomorphic if for any m0 and m1, D(E(m0)⊕E(m1)) = D(E(m0+
m1)), where ⊕ is an operation defined on the image of E.

The Paillier encryption scheme [17] as follows is additively homomorphic.

– G(1k) = (p, q,N, α, g), where N = pq is a k-bit number, p and q are two
large primes, g is an integer of order αN mod N2 for some integer α. Let
PK = (g,N), SK = λ(N) = lcm(p− 1, q − 1).

– E(m) = gmrN mod N2, where m ∈ ZN , r ∈R ZN .
– D(c) = L(cλ(N) mod N2,N)

L(gλ(N) mod N2,N)
mod N , where L(u, N) = u−1

N .

For E(m0) = gm0rN
0 mod N2, E(m1) = gm1rN

1 mod N2, the operation E(m0) ·
E(m1) = (gm0rN

0) · (gm1rN
1) is additively homomorphic since

D(E(m0) · E(m1)) = D((gm0rN
0) · (gm1rN

1))
= D((gm0+m1(r0r1)N))
= D(E(m0 + m1)).

We can compute E(cm) from E(m) via repeated addition for a constant c.
Note that ElGamal and Paillier encryption schemes are proved semantically

secure if and only if the Decisional Diffie-Hellman and the Computational Com-
posite Residuosity assumptions hold, respectively [20, 17].

2.4 0-encoding and 1-encoding

In our COC scheme for “greater than” predicate, we use two types of encoding
to reduce the “greater than” problem to the set intersection problem [13]. Let
s = snsn−1 . . . s1 ∈ {0, 1}n be a binary string of length n. The 0-encoding of s is

Ŝ0
s = {snsn−1 . . . si+11|si = 0, 1 ≤ i ≤ n}.

and 1-coding of s is

Ŝ1
s = {snsn−1 . . . si|si = 1, 1 ≤ i ≤ n}.

For two binary strings x, y of the same length, we have that x > y if and only if
there is exact one common element in Ŝ1

x and Ŝ0
y .

If we compare strings in Ŝ1
x and Ŝ0

y one against one, it would be quite ineffi-
cient since we need O(n2) comparisons. Because each element in Ŝ0

s (or Ŝ1
s) has

6

a different length, we compare the elements of the same length in the two sets
only. We define the ordered sets for b ∈ {0, 1}, 1 ≤ i ≤ n:

Sb
s[i] =

{
zi if ∃zi ∈ Ŝb

s and |zi| = i;
rb
i otherwise,

where Sb
s[i] denotes the i-th element in Sb

s, and rb
i is an arbitrary binary string

with length i+1+b. Therefore, because of different lengths, rb
i must not be equal

to the string S1−b
s [i]. Thus we just need to test if S1

x[i] = S0
y [i] for each i ∈

{1, 2, . . . , n}.

2.5 Setup and Notations

In the setup phase of our schemes for semi-honest adversary, A and B need
to agree on a public/secret key pair (PK, SK) of the homomorphic encryption
scheme privately. There are several ways to accomplish this work. For example, if
A and B have their own public/secret key pairs, one party generates (PK, SK)
first, and securely sends it to the other party. This common key pair allows S to
compute the predicate on their secrets by the homomorphic encryption scheme.
Also, S need choose a key pair (PKS , SKS) (for any semantically secure public
key encryption scheme) such that A and B can send their secrets to S privately
(against the other party).

Let Gq be the group of the multiplicatively homomorphic encryption scheme
and ZN be the group of the additively homomorphic encryption scheme. For
key pair (PK, SK), EPK and DSK represent encryption and decryption for the
underlying encryption scheme.

We use xi to denote the i-th bit of the value x = xnxn−1 · · ·x1. Let X[i]
denote the i-th element of the ordered set X. Let x ∈R X mean that x is chosen
from X uniformly and independently. Let |x| be the length (in bits) of x. To
encrypt a vector v = 〈v1, v2, . . . , vn〉, we write E(v) = 〈E(v1), E(v2), . . . , E(vn)〉.

In some schemes, A and B need to “identify” the correct message from a
set of decrypted ciphertexts. This can be achieved by some padding technique
(e.g. OAEP [2]) such that receivers can check the integrity of a message. If a de-
cryption contains the valid padding, it is the correct message with overwhelming
probability.

3 Conditional Oblivious Cast

We provide COC schemes for three basic predicates: “equality”, “inequality”,
and “greater than”.

3.1 COC for “Equality” Predicate

To determine if x = y, we compute x/y via the multiplicatively homomorphic
encryption scheme. If x/y = 1, A and B get the message m; otherwise, they get
nothing. The scheme EQ-COC is described in Figure 1.

7

– System parameters: (p, q, g).
– Message sender S has a message m and a key pair (PKS , SKS).
– Receiver A has a secret x, and receiver B has a secret y, where x, y ∈ Gq.
– Receiver A and B have a common key pair (PK, SK)

1. A and B send EPKS (EPK(x)) and EPKS (EPK(y)) to S respectively.
2. S decrypts the received messages to get EPK(x) and EPK(y). S computes

e = EPK(m)⊗ (EPK(x)⊗ EPK(y)−1)r

and sends it to A and B, where r ∈R Zq.
3. A and B compute m̂ = DSK(e) and identify whether m̂ is valid.

Fig. 1. COC scheme for “Equality” predicate: EQ-COC

Theorem 1. The EQ-COC scheme has the correctness property, unconditional
sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. For correctness, if x = y, A and B compute m by

DSK(e) = DSK(EPK(m)⊗ (EPK(x)⊗ EPK(y)−1)r)
= DSK(EPK(m)⊗ (EPK(1)r))
= DSK(EPK(m))
= m.

For sender’s security, we show that if x 6= y, m is unconditionally secure to A
and B. Since e = EPK(m)⊗ (EPK(x)⊗EPK(y)−1)r) = EPK(m · (x/y)r), r ∈R

Zq, for any possible m′, there is another r′ ∈ Zq such that e = EPK(m′ ·(x/y)r′
).

As long as x 6= y, e can be decrypted to any possible message in Gq. This ensures
unconditional security of S’s message m.

For receiver’s security, it is easy to see that S gets no information about x
and y due to semantic security of the encryption scheme. Since A and B are
symmetric, we only prove the security of B against A. We construct a simulator
SA for A’s real view

VA(PK, SK,PKS , x) = (PK, SK,PKS , x, EPKS
(EPK(x)), EPKS

(EPK(y)), e).

The simulator SA on input (PK, SK,PKS , x, m̂) is as follows, where m̂ (may
be a valid message or a random value) is the output of a real execution:

1. Choose a random value y∗ ∈ Gq.
2. Compute e∗ = EPK(m̂).
3. Output (PK, SK,PKS , x, EPKS

(EPK(x)), EPKS
(EPK(y∗)), e∗).

By semantic security of the encryption scheme, A cannot distinguish the cipher-
texts EPKS

(EPK(y∗)) and EPKS
(EPK(y)). Furthermore, since e∗ is identically

distributed as e, the output of SA is indistinguishable from VA. Therefore, A
gets no information about y except those computed from x and m̂. 2

8

– System parameters: n.
– Message sender S has a message m and a key pair (PKS , SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d′i = xi + yi − 1.
(b) ei = 2ei+1 + di, where en+1 = 0.
(c) ci = m + ri(ei − di + d′i), where ri ∈R ZN

3. S sends EPK(c) in a random order to A and B, where c = 〈c1, c2, . . . , cn〉.
4. A and B decrypt the received messages and identify the correct message if exis-

tent.

Fig. 2. COC scheme for “Inequality” predicate: INE-COC

In the scheme, we assume x, y ∈ Gq. If the length of x (or y) is longer than |p|,
A and B compare h(x) and h(y), where h is a collision-resistant hash function.
This technique is applied to later schemes whenever necessary.

3.2 COC for “Inequality” Predicate

COC for the “inequality” predicate is more complicated than that for the “equal-
ity” predicate. A and B need to send the ciphertexts of their secrets bit by bit.
We use additively homomorphic encryption schemes in this scheme, which is
depicted in Figure 2.

In the scheme, di = xi − yi and d′i = xi − ȳi are 0, 1 or -1. If xi = yi, di = 0;
otherwise, d′i = 0. Let l be the leftmost different bit between x and y, i.e. the
largest i such that di 6= 0. We have ei = 0 if i > l, ei 6= 0 if i < l, and ei = di if
i = l.

If x 6= y, the message m is embedded into the index i at which xi and yi

are distinct. However, we have to avoid leaking information of the number of
distinct bits. So S masks m with random values on all indices except the index
l. It leaves only one copy of m in ci’s:

– For i = l, since el = dl and d′l = xl − ȳl = 0, (el − dl + d′l) = 0. Therefore,
cl = m.

– For 1 ≤ i < l, ci would be a random value because ei−di+d′i = 2ei+1+d′i 6= 0
and ri ∈R ZN .

– For l < i ≤ n, ci is also a random value because ei = di = 0, d′i 6= 0 and
ri ∈R ZN .

Theorem 2. The INE-COC scheme has the correctness property, unconditional
sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

9

– System parameters: (p, q, g).
– Message sender S has a message m and a key pair (PKS , SKS).
– Receiver A has a secret x, and receiver B has a secret y, where x, y ∈ Gq, |x| =
|y| = n.

– Receiver A and B have a common key pair (PK, SK)

1. A encodes x as S1
x, and sends EPKS (EPK(S1

x[i])) to S, 1 ≤ i ≤ n.
2. B encodes y as S0

y , and sends EPKS (EPK(S0
y [i])) to S, 1 ≤ i ≤ n.

3. S decrypts the received messages and computes

ei = EPK(m)⊗ (EPK(S1
x[i])⊗ EPK(S0

y [i])−1)ri ,

where ri ∈R Gq, 1 ≤ i ≤ n. S sends ei’s to A and B in a random order.
4. A and B search m̂i = DSK(ei), 1 ≤ i ≤ n, to identify the correct m if existent.

Fig. 3. COC scheme for “Greater Than” predicate: GT-COC

Proof. (sketch) Let l be the index of the first different bit of x and y (from the
most significant bit). We see that dl = el = xl−yl = 1 or −1, and d′l = xj− ȳj =
0. Therefore, cl = m + rl(el − dl + d′l) = m + rl · 0 = m. Thus, A and B get m
from the permutation of the encryptions.

For sender’s security, we see that if x = y, all di’s and ei’s are 0, and all d′i’s are
not 0 (in fact, +1 or −1). Thus, for each index i, ci = m+ri(0±1) = m±ri. Since
for any possible m̃, there exists an r̃i such that ci = m̃+ r̃i, m is unconditionally
secure to A and B.

For receiver’s security, S gets no information about x and y by the semantic
security of the encryption scheme. As in the proof of EQ-COC, for each of A
and B, we can construct a simulator such that the adversary cannot distinguish
the real view and the simulated view. Therefore the receiver’s security holds. 2

3.3 COC for “Greater Than” Predicate

For the “greater than” predicate, we use the encoding methods mentioned in
Section 2.4. A encodes x via 1-encoding and B encodes y via 0-encoding. The
problem is then reduced to the “equality” problem immediately. When S receives
encrypted S1

x and S0
y , he checks equality for corresponding strings. The scheme

is presented in Figure 3. The security argument is the same as the proof of the
EQ-COC scheme. This method is more efficient than the GT-COC1

2 scheme (in
the next section, by setting m0 as a random number).

4 1-out-of-2 Conditional Oblivious Cast

In this section, we present COC1
2 schemes for the “equality” (“inequality”) and

“greater than” predicates.

10

– System parameters: n.
– Message sender S has messages: (m0, m1) and a key pair (PKS , SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d

′
i = xi + yi − 1.

(b) ei = 2ei+1 + di, where en+1 = 0.
(c) ceq = m1 +

Pn
i=1 ridi, c′i = m0 + r′i(ei − di + d′i), where ri, r

′
i ∈R ZN

3. S sends EPK(ceq), EPK(c′) to A and B in a random order, where c′ =
〈c′1, c′2, . . . , c′n〉.

4. A and B decrypt the received messages and identify the correct message

Fig. 4. 1-out-of-2 COC scheme for “Equality” predicate: EQ-COC1
2

4.1 COC1
2 for “Equality” Predicate

Our COC1
2 scheme for the equality predicate is naturally extended from the EQ-

COC and INE-COC schemes. Intuitively, if x = y, A and B get m1 by the EQ-
COC scheme and, otherwise, they get m0 by the INE-COC scheme. For better
integration, we modify the EQ-COC scheme to use additively homomorphic
encryption schemes. The scheme is shown in Figure 4. It is almost the same as
the INE-COC scheme except that S sends an extra ciphertext ceq to A and B.

Theorem 3. The EQ-COC1
2 scheme has the correctness property, unconditional

sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. (sketch) We see that if x = y, all di’s are equal to 0, and ceq is equal to
m1. The opposite case holds by the same arguments in the proof of Theorem 2.
This ensures the correctness property.

For sender’s security, let r =
∑n

i=1 ridi. Since ri ∈R ZN , if x 6= y, there is
a di 6= 0 such that r is uniformly distributed, and thus m1 is unconditionally
secure to A and B. If x = y, by the proof of Theorem 2, m0 is unconditionally
secure to A and B.

For receiver’s security, S gets no information about x and y by the seman-
tic security of the encryption scheme. For each of A and B, we can construct
a simulator such that the adversary cannot distinguish the real view and the
simulated view. The receiver’s security holds. 2

4.2 COC1
2 for “Greater Than” Predicate

It is obvious that we can apply the GT-COC scheme twice to achieve a GT-COC1
2

scheme. One invocation is for testing x > y and the other one is for testing x ≤ y.
But, this approach costs twice as much as the GT-COC scheme. Our scheme for

11

– System parameters: n.
– Message sender S has messages: (m0, m1) and a key pair (PKS , SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d′i = xi + yi − 1
(b) ei = riei+1 + di, e′i = r′id

′
i, where en+1 = 0, ri, r

′
i ∈R ZN

(c) fi = ei + e′i
(d) ci = m1−m0

2
fi + m1+m0

2
, ceq = m0 +

Pn
i=1 r′′i di, where r′′i ∈R ZN .

3. S sends EPK(c), EPK(ceq) in a random order to A and B, where c =
〈c1, c2, . . . , cn〉.

4. A and B decrypt the received messages and identify the correct message.

Fig. 5. 1-out-of-2 COC scheme for “Greater Than” predicate: GT-COC1
2

GT-COC1
2 in Figure 5 is more efficient. It costs an extra ciphertext (for the case

x = y) from S to A and B only.
Let l be the leftmost different bit between x and y. For i < l and i > l, ei

and e′i would be random values in ZN , respectively. When i = l, we have ei = di

and e′i = 0. Therefore, fi is a random value when i 6= l and fl = dl. If x > y,
fl = 1 and thus cl = m1; if x < y, fl = −1 and thus cl = m0. For the case x = y,
we use an extra value ceq to embed m0 like scheme EQ-COC1

2.

Theorem 4. The GT-COC1
2 scheme has the correctness property, unconditional

sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. (sketch) For correctness, consider the following three cases:

– x > y: let l be the index of the first different bit of x and y (from the most
significant bit), we have el = dl = 1, e′l = d′l = 0, and thus fl = el + e′l = 1.
Therefore cl = m1−m0

2 · 1 + m1+m0
2 = m1.

– x < y: similarly, since fl = el = dl = −1 in this case, we have cl = m1−m0
2 ·

(−1) + m1+m0
2 = m0.

– x = y: by the same argument in the proof of Theorem 3, A and B get m0

from ceq.

For sender’s security, we see that if x 6= y, then for all i 6= l, fi is uniformly
distributed in ZN . That is, all ci’s except cl are uniformly distributed in ZN .
For index l, according to the above argument, cl = m0 if x < y and cl = m1

if x > y. Moreover, by the proof of Theorem 3, ceq = m0 if x = y, and ceq is
uniformly distributed if x 6= y. Therefore, m0 is unconditionally secure to A and
B if x > y, and m1 is unconditionally secure to A and B if x ≤ y.

For receiver’s security, S gets no information about x and y by the semantic
security of the encryption scheme. As in the previous proofs, for each of A and

12

B, we can construct a simulator such that the adversary cannot distinguish the
real view and the simulated view. Therefore, the receiver’s security holds. 2

4.3 A General Transformation

We provide a general transformation from COC1
2 to the second case mentioned in

Section 1 for COC. We use the GT-COC1
2 scheme as an example. The alternative

model for COC is that when x > y, only A gets the message m and when
x ≤ y, only B gets the message. We modify our GT-COC1

2 scheme to meet
this requirement. In the beginning, A and B choose their own public/secret key
pairs, namely, (PKA, SKA) and (PKB , SKB). Then S lets m1 = EPKA

(m) and
m0 = EPKB

(m), and performs the scheme as usual. We see that if x > y, both
A and B get m1 = EPKA

(m). But, only A can decrypt it to get the message m.
Similarly, if x ≤ y, only B gets the message.

5 Extensions

In this section we introduce how to modify our COC schemes against malicious
parties and collusion. We also discuss the construction of other predicates. The
details of these modifications and extensions are left to the full version of this
paper.

5.1 Schemes Secure Against Malicious Parties and Collusion

We can make our COC schemes secure against malicious parties and their col-
lusion by using the threshold version of homomorphic cryptosystems. At the
initial stage, each party gets a secret key share (from a dealer or a distributed
key generation protocol). If the number of collusive parties does not exceed the
threshold, they get nothing about the message. Since all parties (including the
sender) exchange messages in encrypted form, all computation can be publicly
verified. After the final result in encrypted form is obtained, all parties perform
the threshold decryption for the result.

We need some non-interactive zero-knowledge proof systems for verification
in the corresponding schemes (assuming PK is the common public key):

– Proof of plaintext knowledge. The prover proves that he knows the plaintext
x for the encryption EPK(x) he created.

– Proof of one-bit plaintext. The prover proves that x is 0 or 1 for the encryption
EPK(x) he created.

– Proof of correct exponentiation. Given (multiplicatively homomorphic) EPK(x),
the prover outputs EPK(a) and EPK(xa), and proves that EPK(xa) is indeed
the encryption of xa.

– Proof of correct multiplication. Given (additively homomorphic) EPK(x), the
prover outputs EPK(a) and EPK(ax), and proves that EPK(ax) is indeed
the encryption of ax.

13

We can find such proof systems for the ElGamal and Paillier homomorphic
encryption schemes [7, 19, 6, 9]. For the schemes INE-COC, EQ-COC1

2 and GT-
COC1

2, the receivers need to prove that the encrypted messages they send are
indeed the encryptions of 0 or 1. Boneh et al. [4] provide a verification gadget
for this type of checking. Thus we can avoid using the proof system of one-bit
plaintext.

5.2 Other Predicates

In addition to the basic predicates, we can design COC (COC1
2) schemes for

many other interesting predicates. For these predicates, the sender may need per-
form multiplication on two messages encrypted by an additively homomorphic
encryption scheme. However, there is no known encryption scheme with both
additive and multiplicative homomorphism properties. Fortunately, Boneh et
al. [4] introduced an additively homomorphic encryption scheme which can per-
form multiplication on two ciphertexts one time. In the setting of using threshold
cryptosystem, the sender can even perform multiplication on two ciphertexts ar-
bitrary times via some interactions [9].

In fact, our COC can be designed for any predicate based on the evaluation
of bivariable polynomial f(x, y). For example, to compute a public polynomial
f(x, y) = a2x

2y2 + a1x
2y + a0y, the receivers send the encryptions of x, x2 and

y, y2 to the sender respectively. The sender then computes the polynomial by
the following steps.

1. Perform the multiplication on the encrypted messages [4] such that z2 = x2y2

and z1 = x2y.
2. Perform the constant multiplication: a2z2, a1z1 and a0y.
3. Perform f(x, y) = a2z2 + a1z1 + a0y.

After computing f(x, y), the sender can embed messages into the result.
Alternatively, we can assume that one receiver holds the polynomial f and

the other holds the secret x, and the sender embeds messages into the result of
f(x). For example, for the “membership” predicate, one receiver first encodes
his set of secrets as a k-degree polynomial such that f(x) = 0 iff x belongs to the
set, and the other receiver computes x, x2, . . . , xk for his secret x. The sender
then sends the message to the receivers such that they get it iff f(x) = 0. This
“membership” predicate can be used in our oblivious authenticated information
retrieval application described in Section 1.

6 Conclusion

We introduce a new notion of conditional oblivious cast, which extends condi-
tional oblivious transfer to the three-party case. The definitions of this notion
are given. We also provide some implementations for some basic predicates such
as “equality”, “inequality”, and “greater than” predicates. We believe this new
notion will be an useful primitive of cryptographic protocols.

14

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Proceedings of Advances in Cryptology - EUROCRYPT ’01,
volume 2045 of LNCS, pages 119–135. Springer-Verlag, 2001.

2. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Proceedings
of Advances in Cryptology - EUROCRYPT ’94, volume 950 of LNCS, pages 92–111.
Springer-Verlag, 1994.

3. Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and
computing on intervals. In Proceedings of Advances in Cryptology - ASIACRYPT
’04, volume 3329 of LNCS, pages 515–529. Springer-Verlag, 2004.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In Proceedings of the 2nd Theory of Cryptography Conference (TCC 2005),
volume 3378 of LNCS, pages 325–341. Springer-Verlag, 2005.

5. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In Proceedings of Advances in Cryptology - CRYPTO ’86, volume 263
of LNCS, pages 234–238. Springer-Verlag, 1986.

6. Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical Report 260, Institute for Theoretical Computer
Science, ETH Zurich, Mar 1997.

7. David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and Rene Peralta.
Demonstrating possession of a discrete logarithm without revealing it. In Pro-
ceedings of Advances in Cryptology - CRYPTO ’86, volume 263 of LNCS, pages
200–212. Springer-Verlag, 1986.

8. Cheng-Kang Chu and Wen-Guey Tzeng. Efficient k-out-of-n oblivious transfer
schemes with adaptive and non-adaptive queries. In Proceedings of the Public Key
Cryptography (PKC ’05), volume 3386 of LNCS, pages 172–183. Springer-Verlag,
2005.

9. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In Proceedings of Advances in Cryptology
- EUROCRYPT ’01, volume 2045 of LNCS, pages 280–299. Springer-Verlag, 2001.

10. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.
Conditional oblivious transfer and timed-release encryption. In Proceedings of
Advances in Cryptology - EUROCRYPT ’99, volume 1592 of LNCS, pages 74–89.
Springer-Verlag, 1999.

11. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

12. Matthias Fitzi, Juan A. Garay, Ueli Maurer, and Rafail Ostrovsky. Minimal com-
plete primitives for secure multi-party computation. In Proceedings of Advances in
Cryptology - CRYPTO ’01, volume 2139 of LNCS, pages 80–100. Springer-Verlag,
2001.

13. Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’
problem based on homomorphic encryption. In Proceedings of Applied Cryptogra-
phy and Network Security 2005 (ACNS ’05), volume 3531 of LNCS, pages 456–466.
Springer-Verlag, 2005.

14. Yi Mu, Junqi Zhang, and Vijay Varadharajan. m out of n oblivious transfer.
In Proceedings of the 7th Australasian Conference on Information Security and
Privacy (ACISP ’02), volume 2384 of LNCS, pages 395–405. Springer-Verlag, 2002.

15. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proceedings of the 31st Annual ACM Symposium on the Theory of Computing
(STOC ’99), pages 245–254. ACM, 1999.

15

16. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings
of the 12th Annual Symposium on Discrete Algorithms (SODA ’01), pages 448–457.
ACM/SIAM, 2001.

17. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of Advances in Cryptology - EUROCRYPT ’99, volume
1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

18. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

19. Claus Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

20. Yiannis Tsiounis and Moti Yung. On the security of ElGamal based encryption.
In Proceedings of the Public-Key Cryptography (PKC ’98), volume 1431 of LNCS,
pages 117–134. Springer-Verlag, 1998.

21. Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Proceedings of
the Public-Key Cryptography (PKC ’02), pages 159–171. Springer-Verlag, 2002.

16

