
SAS-Based Authenticated Key Agreement

Sylvain Pasini and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.ep¤.ch

Abstract. Key agreement protocols are frequently based on the Dif£e-Hellman
protocol but require authenticating the protocol messages in two ways. This can
be made by a cross-authentication protocol. Such protocols, based on the assump-
tion that a channel which can authenticate short strings is available (SAS-based),
have been proposed by Vaudenay. In this paper, we survey existing protocols and
we propose a new one. Our proposed protocol requires three moves and a single
SAS to be authenticated in two ways. It is provably secure in the random oracle
model. We can further achieve security with a generic construction (e.g. in the
standard model) at the price of an extra move. We discuss applications such as
secure peer-to-peer VoIP.

1 The SAS-Based Authenticated Key Agreement Problem

Secure communication channels are usually set up by authenticated key agree-
ment protocols. This can be performed by relying on a public-key infrastructure,
e.g. based on RSA [?] or the Dif£e-Hellman protocol [?]. Clearly, this is not
well suited to the advent of mobile ad-hoc communications where ephemeral
or bootstrap connections are needed “at once”: we certainly would not like to
register a certi£cate to connect a PDA to a cell phone or to print to the neighbor
available printer device. Secure communications can also be manually set up.
For instance, peer-to-peer links using PGP can be set up by checking the digest
of a public key over the telephone. Wireless devices can be securely connected
by having the user to manually check a hashed value as well. To save the human
user load, the string to be manually checked must be as short as possible. Re-
cently, protocols based on Short Authenticated Strings (SAS) have been studied
by Vaudenay [?]. It was shown how to design and analyze a protocol to authen-
ticate an arbitrary string assuming that we can authenticate a short one over a
dedicated secure channel. Those protocols are based on commitment schemes.
It was also brie¤y proposed how to design message cross-authentication proto-
cols, namely protocols to authenticate arbitrary strings in two ways.

A SAS-based Authenticated Key Agreement (AKA) protocol can be easily
designed by running the Dif£e-Hellman protocol over an insecure channel, then



by authenticating the digest of the protocol transcript using a SAS-based mes-
sage cross-authentication protocol. This typically results in a 5-move protocol
in addition to the bidirectional SAS transmission. In the present work, we show
how to decrease the interaction cost. Namely, we design a generic construction
which can use a 4-move protocol in addition to the bidirectional SAS exchange.
This construction can rely on the standard model (without random oracles). We
also design an optimal 3-move protocol which is provably secure (with tight
reduction) in the random oracle model.1

2 Preliminaries

We adopt the security model from [?,?,?] based on the one from Bellare-Rogaway [?].
We consider a network of participants which are located at some nodes. A par-
ticipant at node n is associated to a given identity IDn. He locally maintains a
database of (K j, ID j) pairs meaning that he can use the symmetric key K j to
securely communicate with ID j in a private and authenticated way. Participants
can run concurrent protocols. A protocol speci£es a sequence of steps which
consist of receiving a message and sending a response. An internal short-term
state keeps track on previously completed steps. Once the protocol is completed,
the short-term state is removed. A protocol starts with some speci£ed inputs and
an initial state (in terms of database content). It ends with some speci£ed outputs
(or an error message) and a £nal state. The difference between an input (resp.
output) and an initial (resp. £nal) state is that the adversary has control on the
£rst one but not on the second one, except if the node was corrupted or some
information leaked. Protocol instances on a node n are denoted by a unique tag
πi

n. (Note that the state of a protocol related to a given tag changes with time as
new steps are made.)

Nodes can communicate through an insecure broadband channel. In addi-
tion, they have access to peer-to-peer narrowband channels which can be used
to authenticate short messages. A node receiving a message from one of these
channels is ensured that this message was sent at some time in the past by a node
whose identity is speci£ed by the channel itself. In this paper, we concentrate
on key agreement and cross-authentication protocols, so we assume that nodes
share no prior exchanged keys.

1 After the present paper was submitted, a preprint was posted by Laur, Asokan, and Nyberg [?].
This paper includes another 3-move protocol which is provably secure based on a generic
commitment (e.g. in the standard model) but not optimal.

2



2.1 Adversarial Model

By default, the adversary is assumed to have a full control on which node makes
a new step of a given protocol instance, on the insecure channel, can in¤uence
the delivery of messages (without modifying them) over the authenticated chan-
nels, can choose the inputs of the protocols, and has access to the outputs. Oc-
casionally, the adversary can violate the privacy of the internal state of a given
node or even corrupt the node so that his behavior with respect to future runs of
any protocol is no longer guaranteed. More formally, the adversary has access
to the following oracles.

Launch. launch(n, role,x) launches a new protocol instance on node n playing
role (e.g. either Alice or Bob) with input x. It returns a new instance tag πi

n.
Note that the instance inherits of the current node state as its input state.

Send. send(π,y) sends an incoming message y to the instance π. It returns an
outgoing message z, or the £nal output of the protocol if it completed.

Test. test(n,k, ID) tells whether (k, ID) is an entry of the database of node n.
In practice, this oracle may be implemented by an active adversary trying
to impersonate node n to communicate with ID. If the attempt succeeds, it
means that k was the right key to use.

Remove. remove(n, ID) removes any (k, ID) entry in the database of node n. In
practice, this oracle may be implemented by an adversary making denial-
of-services attacks in the communication link between n and ID so that n
decides not to trust this connection anymore and to remove it.

Reveal. reveal(n) reveals the full current state of node n. This models side chan-
nels or careless uses.

Corrupt. corrupt(n) injects a malicious code in node n so that its behavior is
no longer guaranteed.

The attack cost is measured by

– the number Q of launched instances of Alice or Bob, i.e. the online com-
plexity.

– the additional complexity C, i.e. the of¤ine complexity.
– the probability of success p.

We call one-shot attacks the attacks which launch only two instances in total,
i.e. Q = 2.

By convention, we describe protocols by putting a hat on the notation for
messages received by a node (i.e. inputs of the send oracle) which are not au-
thenticated since they can differ from messages which were sent (i.e. outputs of
the receive oracle) in the case of an active attack. A message m from a node of
identity ID over an authenticated channel is denoted authenticateID(m).

3



2.2 Key Agreement, Cross-Authentication, and Mutual Authentication

Authenticated key agreement. An Authenticated Key Agreement (AKA) proto-
col between Alice and Bob starts with no input, is independent from the current
state, and ends with no output but a £nal state specifying an entry (k, ID) to be
inserted in the database: Alice of identity IDA ends with (k, IDB) and Bob of
identity IDB ends with (k, IDA). An attack is successful if a test(n,k, ID) query
positively answered where n and ID correspond to nodes on which no reveal

nor corrupt query was made. For simplicity, we do not consider attacks making
Alice and Bob end on some inconsistent states. Namely, mutual authentication
is assumed to be (implicitly or explicitely) made by further communications.

To construct AKA protocols, we use the following building blocks.

Message cross-authentication. A Message Cross-Authentication (MCA) proto-
col between Alice and Bob of identity IDA and IDB starts with inputs mA and
mB and ends with outputs (mB, IDB) and (mA, IDA), respectively. An adversary
is successful if some instance ended on an incorrupted node with a pair (m, ID)
but no instance on the node of identity ID with input m was launched. Note that
test, remove, and reveal oracles are not relevant in this case.

Message mutual-authentication. A Message Mutual-Authentication (MMA)
protocol between Alice and Bob of identity IDA and IDB starts with inputs mA

and mB and ends with outputs IDB and IDA, respectively. A honest run of an
MMA protocol must have mA = mB. An adversary is successful if some instance
on an incorrupted node started with any m and ended with any ID such that no
instance on the node of identity ID with input m was launched. As for MCA
protocols, test, remove, and reveal oracles are not relevant. Obviously, we can
transform an MCA protocol into an MMA protocol by just checking that the
output message is equal to the input one on both sides.

MCA from MMA. We can also transform an MMA protocol with at least one
move over the insecure channel into an MCA protocol at the price of an extra
move: Bob of identity IDB £rst sends his input message mB and Alice of identity
IDA initiates an MMA protocol with input mA||m̂B by sending mA together with
the £rst MMA protocol message. Bob then follows the MMA protocol with
input m̂A||mB. The £nal outputs of Alice and Bob are (m̂B, IDB) and (m̂A, IDA)
respectively.

To compare protocols we focus on the number of message moves over the
insecure channel and on the length of authenticated messages. Furthermore, a
protocol with two equal SAS to be sent in both directions (called symmetric
SAS) will be considered as better than a protocol with two SAS of similar length

4



(but not necessarily equal) to be exchanged. Indeed, some authentication chan-
nels may provide symmetric authentication at no extra cost.

2.3 Equivocable Commitment and Random Oracle Commitment

In this paper, we consider (tag-based) equivocable commitment schemes as de-
£ned by two algorithms commit and open and three oracles setup, simcommit,
and equivocate.

Setup. KP← setup generates a public key KP to be used as a common reference
string and a secret key KS to set up the simcommit and equivocate oracles.
The public key KP is implicitly used by all other algorithms and oracles but
omitted in the notations for simplicity.

Commit. (c,d)← commit(m,r) generates a commit value c and a decommit
value d for a key r with a tag m. We assume that the distribution of the
generated c is independent from r: the commitment is perfectly hiding.

Open. r← open(m,c,d) yields r if (c,d) is a possible output for commit(m,r).
Simcommit. (c, i)← simcommit(m) simulates a commit value c for a tag m and

produces extra information ξ to be used later. The distribution of c should be
the same as for the distribution of c generated by any commit(m,r). It also
creates a unique identi£er i (a nounce) and inserts (i,m,c,ξ) in a database.
This oracle uses the secret key KS and should be secured. Access to the
database must be restricted to this oracle and equivocate.

Equivocate. d ← equivocate(i,r) yields d such that r = open(m,c,d) where
(i,m,c,ξ) is in the database of simcommit. This entry is further removed.
(Namely, a simulated c can be equivocated only once.)

Access to simcommit and equivocate oracles is restricted depending on the ap-
plication. The normal usage of the commitment scheme should be limited to
commit and open but we stress that our security model assumes that the ad-
versary may cheat on some commitments by having access to simcommit and
equivocate oracles. Indeed, our notion of equivocable commitment relates to
the notion of simulation-sound commitment [?].

The hiding game between a challenger C and an adversary A runs as fol-
lows.

1. C runs setup and sends KP to A
2. A sends a tag m to C
3. C commits to a random key with tag m and sends a commit value c to A
4. A computes some r and sends it to C
5. C releases a decommit value d and A wins if r← open(m,c,d)

5



In that case, the adversary has access to the simcommit and equivocate oracles
but cannot query simcommit with the selected tag m. Since the commitment is
perfectly hiding, no adversary can win this game with a probability larger than
2−k where k is the length of the key r.

The binding game between a challenger C and an adversary A runs as fol-
lows.

1. C runs setup and sends KP to A
2. A sends a tag m and a commit value c to C
3. C picks a random r and sends it to A
4. A produces a decommit value d and wins if r← open(m,c,d)

We say that the commitment with k-bit keys r is (T,ε)-secure is any adversary
with complexity limited to T has a wining probability of at most 2−k + ε. In
that case, the adversary has access to the simcommit and equivocate oracles but
cannot query simcommit with the selected tag m.

Secure equivocable commitment schemes can be easily constructed based
on simulation-sound trapdoor commitments by MacKenzie-Yang [?] as detailed
in [?]. Constructions can be in the standard model with a common reference
string, e.g. based on the security of DSA signatures [?] or Cramer-Shoup signa-
tures [?]. We can also build an ef£cient equivocable commitment scheme based
on the random oracle model.

Random oracle commitment scheme. Let `c, `e, and k be three integers. The
setup algorithm is unused, but we assume that we can use three oracles:

H. c ← H(e,r,m) queried with an `e-bit string e and a k-bit string r, looks
whether an entry (e,r,m,c) in a list exist. If not, the oracle creates one with
a random `c-bit string c. In any case, the oracle answers c.

Simcommit. (c, i)← simcommit(m) simply picks a random `c-bit string c and
a nounce i and stores (i,c,m) in a list.

Equivocate. d← equivocate(i,r) gets (i,c,m) and removes it form the list. The
oracle then picks a random `e-bit string e. If (e,r,m, ·) exists in the H list,
the oracle fails. Otherwise, (e,r,m,c) is inserted. Clearly, if the number of
oracle accesses to H and simcommit is limited by q, the probability that the
oracle fails at least once is less than q2×2−`e−1.

The algorithm commit(m,r) simply picks e at random, queries H(e,r,m) and
outputs d = (e,r). The algorithm open(m,c,d) simply checks that H(d,m) = c
and parses d = (e,r) to yield r. Unless equivocate fails, this scheme is clearly an
equivocable commitment scheme as previously de£ned. Since all commit values
c are generated in an independent way, there are no collisions with probability

6



at least 1− q2× 2−`c−1. Clearly, being able to decommit any c to two values
would lead H to a collision. Hence, the scheme is (q,2−k + q2× 2−`e−1 + q2×
2−`c−1)-secure. In practice, simcommit and equivocate are unused. So, we can
just instantiate H by a standard hash function, provided that instantiation of that
kind of random oracle makes sense [?].

3 Previous SAS-Based Key Agreement Protocols

A classical authenticated Dif£e-Hellman [?] protocol over a multiplicative group
spanned by a generator g consists, for Alice (resp. Bob) of picking a random
integer xA (resp. xB), sending the Dif£e-Hellman public keys, yA = gxA (resp.
yB = gxB) over the authenticated channel, computing zA = yxA

B (resp. zB = yxB
A ) and

ending with state (zA, IDB) (resp. (zB, IDA)). In this case, authenticated messages
are pretty long, but authentication is necessary to thwart man-in-the-middle at-
tacks.

We £rst informally present an AKA protocol from Hoepman [?]. It is based
on the Dif£e-Hellman protocol and it uses an authenticated channel for the au-
thentication of each Dif£e-Hellman value. This protocol runs in three steps:
commitment, authentication, and opening. (The original protocol has a fourth
step: the key validation.) Instead of revealing its Dif£e-Hellman public key, each
party £rst commits on it, keeping it hidden. In the next step, each participant
authenticates a piece of its Dif£e-Hellman public key. Finally, they open their
commitments and check their respective commitment and authenticated string
before completing the regular Dif£e-Hellman protocol.

Another AKA protocol, depicted on Fig. 1, was used by Zimmermann for
the PGPfone in 19952. Its advantage is to reduce the number of moves in the
insecure channel and to make both authenticated strings equal. In this proto-
col, only the £rst participant Alice commits to its public key. The commitment
is immediately opened when the other public key is received. Finally, the au-
thenticated string is a piece of the digest (denoted truncH on Fig. 1) of the
Dif£e-Hellman protocol transcript.

For both the Hoepman and the PGPfone protocols, the security is not for-
mally proven ([?] only provides a sketch of argument for the security). Another
approach consists of authenticating the transcript of a classical key agreement
protocol by using an MMA protocol. The MANA protocols by Gehrmann-
Mitchell-Nyberg [?,?,?] illustrates this. Finally, we study in what follows a
generic construction reducing the amount of authenticated bits in AKA pro-
tocols. Using it with the Dif£e-Hellman key agreement protocol and the MCA
protocol of [?], we obtain the DH-SC protocol of ³Cagalj- ³Capkun-Hubaux [?].

2 personal communication.

7



Alice Bob

pick xA, yA← gxA pick xB, yB← gxB

commit to yA
−−−−−−−−−−−−−−−−→

yB
←−−−−−−−−−−−−−−−−

zA← ŷxA
B

open commitment
−−−−−−−−−−−−−−−−→ zB← ŷxB

A

SAS← truncH(yA|| ŷB)
authenticateAlice(SAS)
−−−−−−−−−−−−−−−−→ SAS

?
= truncH( ŷA||yB)

check SAS is the same
authenticateBob(SAS)

←−−−−−−−−−−−−−−−−

£nal state: Bob,zA £nal state: Alice,zB

Fig. 1. PGPfone 1995 Key Agreement Protocol.

Using an optimized MCA protocol we can save one protocol move. In what fol-
lows we describe the generic construction, analyze it, and study 3-move MMA
and MCA protocols with symmetric SAS.

4 Reducing Key Agreement to Message Authentication

We can build an AKA protocol by exchanging Dif£e-Hellman keys through a
message cross-authentication protocol.

We propose a generic SAS-based construction for an AKA protocol that we
call the constructed AKA protocol or simply the AKA protocol. For this, we use
an initial AKA protocol (with longer strings to be authenticated), that we call the
AKA0 protocol, and an MCA protocol with short SAS. Consider that the AKA0

protocol requires nk ≥ 2 moves, the nk−1-th being from Alice to Bob, and the
MCA protocol requires na ≥ 2 moves over the insecure channel, the £rst one be-
ing from Alice to Bob. In the AKA protocol, the nk−2 £rst moves of the AKA0

are performed over the insecure channel. Then, both participants assembles his
view on the protocol transcript τ by concatenating all protocol messages (sent
and received ones). Then, an MCA protocol starts. Alice wishes to authenticate
τ concatenated with her nk−1-th message α in the AKA0 protocol. Bob wishes
to authenticate the same τ||α concatenated with his last message β in the AKA0

protocol. (Note that Bob selects the message to be authenticated after receiving
Alice’s £rst message in the MCA protocol.) At the end, both participants use
the authenticated messages to complete the AKA0 protocol and end with £nal
states as speci£ed in the AKA0 protocol. We have nk +na−2 moves in total.

Note that MCA can have na < 2. (For instance the trivial MMA protocol
exchanging authenticated digests has no move and thus we can build an MCA
with only one move.) In that case, we augment the MCA protocol by virtual

8



moves and we obtain nk moves in total. However, MCA protocols with na < 2
must have pretty large SAS to exchange the messages.

We can make a similar construction based on an n′a-move MMA protocol
instead of an MCA protocol. In that case, we can only encapsulate the last move
β of the AKA0 protocol in the MMA protocol, leading us to max(nk,nk +n′a−1)
moves in total.

Theorem 1. Let us consider an nk-move AKA protocol (the AKA0 protocol) and
an na-move MCA protocol. The generic construction is essentially an AKA pro-
tocol with max(nk,nk + na− 2) moves in which the structure of authenticated
messages is similar as in the MCA protocol. There exists a constant µ such that
for any T , if ε1 resp. ε2 denotes the best success probability of an adversary
bounded by T against the AKA0 protocol resp. the MCA protocol, then any ad-
versary bounded by T × µ against the AKA protocol has probability of success
at most ε1 + ε2.

Using the Dif£e-Hellman protocol and an na-move MCA protocol leads us to
a max(2,na)-move AKA protocol in which the structure of authenticated mes-
sages is similar as in the MCA protocol. With the construction based on an
MMA protocol, we obtain max(2,n′a +1) moves. In the case where we want to
achieve small SAS, we must have na ≥ 2, leading us to na moves using MCA
protocols and n′a + 1 moves using MMA protocols. Since (n′a + 1)-move MCA
protocols can be made from n′a-move protocols, we may decrease the total num-
ber of moves in AKA protocols by starting from MCA protocols directly.

Proof. For each instance of Alice, we let τA be the constructed transcript of the
nk−2 £rst messages in the AKA protocol and we let αA be her last message, i.e.
the nk− 1-th message in the protocol. We further let τ̂B||α̂B||β̂ be the accepted
message from Bob at the end of the MCA protocol. Similarly, for each instance
of Bob, we let τB be the constructed transcript of the nk−2 £rst messages in the
AKA protocol, τ̂A||α̂A be the accepted message at the end of the MCA protocol,
and β be his last message in the AKA0 protocol assuming that Alice’s last one
is α̂A. We let αB = α̂A. Bob’s message to be authenticated is τB||αB||β.

Given an adversary A against the AKA protocol, we construct a simula-
tor B interacting with A and attacking the MCA protocol. We simply simu-
late instances running the AKA0 protocol and launch the MCA protocol in-
stances when appropriate. test, remove, reveal and corruct queries can eas-
ily be simulated. Clearly, the attack against the MCA protocol does not suc-
ceed with probability at least 1− ε. In those cases, we have τB = τ̂B, τA = τ̂A,
αA = α̂A = αB = α̂B, and β = β̂, just as if the instance of Alice and Bob had the
AKA0 protocol run over an authenticated channel.

9



We construct a simulator C interacting with A and attacking the AKA0 pro-
tocol over an authenticated channel. The simulator simply replaces inputs to
the send oracle by authenticated ones when possible, or fails, and simulates the
MCA protocol. Clearly, running A in parallel with B and C with the same ran-
dom source, we derive that whenever A succeeds, either B or C succeed. ut

A trivial MMA protocol consists of authenticating the digest of the input
message from a collision-resistant hash function. This protocol can be trans-
formed into an MCA protocol by using 2 moves (to exchange mA and mB) plus
the authentication of a SAS in two ways as for the construction in Section 2.2.
We obtain a 2-move AKA protocol with symmetric SAS, but the length of the
SAS is quite long (typically, 160 bits).

A SAS-based cross-authentication protocol was proposed in [?] by inter-
leaving two SAS-based message authentication protocols. It is a 4-move MCA
protocol with symmetric SAS and can thus be transformed into a 4-move AKA
protocol with symmetric SAS based on Dif£e-Hellman.

5 A new SAS-Based Message Mutual-Authentication Protocol

We propose a new protocol improving the number of exchanged messages. As
depicted on Fig. 2, and without any attack, Alice and Bob start with the same
message, i.e. mA = mB. Each participant chooses a k-bit random value RA and
RB, respectively. Alice starts by committing on her random value RA by send-
ing c, keeping it hidden. Bob sends the random value RB. Then, Alice opens
her value by sending the decommit value d. Finally, both authenticate the SAS
which has been computed using a simple XOR function. Using the generic con-

Alice Bob
input: mA input: mB

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

(c,d)← commit(mA,RA)
c

−−−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−−−
d

−−−−−−−−−−−−−−−−→ R̂A← open(mB, ĉ,d̂)

SAS← RA⊕ R̂B
authenticateAlice(SAS)
−−−−−−−−−−−−−−−−→ SAS

?
= R̂A⊕RB

check SAS is the same
authenticateBob(SAS)

←−−−−−−−−−−−−−−−−

output: Bob output: Alice

Fig. 2. A New SAS-Based Message Mutual-Authentication Protocol.

10



struction with Dif£e-Hellman we obtain a 4-move AKA protocol with symmet-
ric SAS.

Theorem 2. We consider adversaries against the MMA protocol of Fig. 2 who
are bounded by complexity T , QA instances of Alice, and QB instances of Bob.
We assume that we have an (TC,ε)-secure equivocable commitment scheme.
There exists a (small) constant µ such that any adversary wins either with prob-
ability limited to QA · (QA +QB)(2−k + ε) or with complexity T ≥ TC−µ.

Proof. Any adversary which would attack an instance of either Alice or Bob
needs one SAS to send her/him so that she/he can complete. This required SAS
can easily be obtained from any instance of Alice since she does not need any
prior authenticated message. It can also be obtained from any instance of Bob
in which case he must be sent another SAS before. The output SAS by Bob
is equal to the sent one. Indeed, a successful adversary interaction de£nes the
£rst attacked instance and a prior sequence initiated by one instance of Alice
followed by a chain (possibly empty) of instances of Bob and ended by the at-
tacked instance. Every (unattacked) instance of Bob in this sequence is sending
a SAS identical to the received one to the next instance. Every intermediate in-
stance of Bob terminates with an output message which must be equal to the
input message of the previous instance in the sequence (otherwise, they would
be successfully attacked). However, the £nal instance in the sequence outputs a
message which is different than the input of the previous instance. Hence, every
instance in the sequence but the £nal one has the same input message and all
instances yield the same SAS. Clearly, sending the output SAS from the leading
Alice to the tailing instance produces a successful attack with no intermediate
instance of Bob.

Let A0 be an adversary who launches at most QA instances of Alice and QB

instances of Bob. We transform it into an adversary A who launches an instance
of Alice and a single target instance (of either Alice or Bob) as follows:

1. A £rst picks two random numbers I,J such that 1 ≤ I ≤ QA and 1 ≤ J <
QA +QB.

2. We initialize counters i and j to 0 and run A0 step by step.
– Every time A0 would like to make a launch query to launch an instance

of Alice, we increment i. If i = I, we really launch it and call the instance
Alice π. Otherwise, we increment j and if j = J, we really launch it and
call the target instance π′. Otherwise, we simulate the oracle call.

– Every time A0 would like to make a launch query to launch an instance
of Bob, we increment j. If j = J, we really launch it and call the target
instance π′. Otherwise, we simulate the oracle call.

– If we have to send a SAS to π, we just simulate the oracle call.

11



– If we have to send a SAS to π′ and we already got a SAS from π which
is equal to the expected one, we just send it. Otherwise, the attack fails.

Due to the previous discussion, if A0 succeeds, if π′ is the £rst attacked instance
for A0 and if π is the leading instance of Alice in the sequence, then A suc-
ceeds. Hence, the probability of success of A is at least 1

QA(QA+QB−1) times the
probability of success p of A0.

We now have an adversary A with Alice and a target instance. We assume
that the adversary complexity is bounded by TC−µ for some constant overhead
µ to be determined by the following reductions. We consider two cases: attacks
targeting an instance of Bob and attacks targeting an instance of Alice. Let pA

resp. pB be the probability of a target Alice resp. Bob and qA resp. qB be the suc-
cess probability conditioned to both cases, respectively. The success probability
of A is p = qA pA +qB pB and we have pA + pB = 1.

In both cases, we de£ne a simulator B who simulates the two instances
as follows. We £rst pick a random k-bit SAS. When an instance of Alice is
launched for the £rst time by the adversary A , we simulate a commitment c by
using simcommit. Then the corresponding R̂B is sent to this instance of Alice,
the commit value is equivocated so that it opens to the key SAS⊕ R̂B. This
simulation of Alice is perfect and has the property to determine the £nal SAS at
the beginning. If the attack succeeds, the other instance will have to deal with a
commit value with a different tag. Depending on whether the other instance is an
Alice or a Bob, we simulate it so that we can win the hiding game or the binding
game against a challenger C as depicted on Fig. 3. In the case of a target Alice,

A B C

select SAS

· · · (equivocate with tag m′
A)

mA−−−→
mA−−−→

c
←−−−

c
←−−−

·· ·
R̂B−−−→ RA← SAS⊕ R̂B

RA−−−→
d
←−−−

d
←−−−

·· ·

Goal: mA 6= m′
A, open(mA,c,d) = RA

target Alice: hiding game

A B C

select SAS

· · · (equivocate with tag mA)
mB, ĉ
−−−→

mB, ĉ
−−−→

RB←−−− RB← SAS⊕ R̂A
R̂A←−−−

·· ·
d̂
−−−→

d̂
−−−→

·· ·

Goal: mA 6= mB, open(mB, ĉ,d̂) = R̂A
target Bob: binding game

Fig. 3. Simulator Playing the Hiding/Binding Game.

12



the adversary succeeds if R̂B leads the target instance to derive SAS. In that
case we can correctly derive RA and win the hiding game. Since the equivocable
commitment is always perfectly hiding, we deduce qA = 2−k. We could have
played the binding game in a trivial way and won with the same probability
2−k. In the case of a target Bob, the adversary succeeds if d̂ decommits to a key
which leads Bob to the right SAS, thus to the key R̂A. In that case, we win the
binding game with probability qB. To summarize, we made an adversary playing
the binding game with probability of success p. Therefore, p≤ 2−k + ε. ut

6 A new SAS-Based Message Cross-Authentication Protocol

We propose a new protocol based on the previous one, but improving the num-
ber of exchanged messages through the broadband insecure channel. Our proto-
col uses an almost strongly universal hash function family h [?,?]. In practice,
one can use hK(x) = trunc(hash(K||x)) where hash is a collision-resistant hash
function and trunc truncates to the leading ρ bits. Our protocol also uses a com-
mitment scheme to commit on a κ-bit key K. Contrarily to our previous protocol,
the committed key K can now be pretty large. Using the generic construction
with Dif£e-Hellman we obtain a 3-move AKA protocol with symmetric SAS.
Note that we added an identity test on Alice’s side to avoid trivial re¤ection
attacks.

Alice Bob
input: mA input: mB

pick K ∈U {0,1}κ pick R ∈U {0,1}ρ

(c,d)← commit(mA,K)
mA,c

−−−−−−−−−−−−−−−−→
mB,R

←−−−−−−−−−−−−−−−−
d

−−−−−−−−−−−−−−−−→ K̂← open( m̂A, ĉ,d̂)

SAS← R̂⊕hK( m̂B)
authenticateAlice(SAS)
−−−−−−−−−−−−−−−−→ SAS

?
= R⊕hK̂(mB)

check SAS is the same
authenticateBob(SAS)

←−−−−−−−−−−−−−−−−
check Alice 6= Bob

output: Bob, m̂B output: Alice, m̂A

Fig. 4. A New SAS-Based Message Cross-Authentication Protocol.

Theorem 3. Let `e, `c be the parameters of the random oracle commitment
scheme. Let q be the upper bound on the number of H queries. Let ε = q22−`e +

13



q22−`c . Let h be an εh-almost strongly universal hash function family with ρ-
bit digests, i.e. Pr[hK(a) = α,hK(b) = β]≤ 2−2ρ + 2−ρεh for any a,b,α,β such
that a 6= b with a random K.3 We consider adversaries against the message
cross authentication protocol of Fig. 4 who are bounded by Q instances of
Alice or Bob and by q queries to H. The success probability is limited by
Q(Q−1)

2 (2−ρ + ε+ εh).

By launching Q instances of either Alice or Bob with pairwise different input
messages and by picking independent uniformly distributed R̂, all SAS are in-
dependent and uniformly distributed so we have one matching with probability
1− 2−Qρ · 2ρ!/(2ρ−Q)! which is roughly Q(Q−1)

2 2−ρ when Q¿ 2
ρ
2 . Hence,

this bound is essentially tight. Note that the above attack can apply to any MCA
protocol of similar structure (see [?]), so our protocol is optimal.

Proof. We let ε1 = ε2 = εh (h is almost uniform). We have Pr[hK(a) = α] ≤
2−ρ +ε1 and Pr[hK(a)⊕hK(b) = α]≤ 2−ρ +ε2 for any a,b,α such that a 6= b and
with K uniformly distributed (h is ε-almost XOR universal [?]). In what follows,
only those properties will be used. Namely, we could replace the condition on h
by those two properties.

We de£ne a new character: the ¤ipped Bob who proceeds as Bob but £rst
issues a SAS equal to R⊕ hK̂(mB) then receives a SAS for veri£cation. In a
new protocol, Alice and the ¤ipped Bob can interact with two crossing SAS
exchange.

We consider an adversary successfully running his attack with many in-
stances for the original MCA protocol. We say that a given instance is attacked
if it completed the protocol during which a SAS was received, with an output
which is not consistent with the input of the instance who issued the received
SAS. (Note that a successful adversary must have an attacked instance.) An at-
tacked (target) instance (of either Alice or Bob) must receive one SAS from a
(sending) instance. Note that those two instances must be different. (Indeed, no
instance of Bob can send a SAS to himself otherwise it would have to be re-
ceived before being sent. Similarly, no instance of Alice can accept a SAS com-
ing from herself.) Clearly, both instances must agree on the SAS to complete.
Hence, if the SAS sent by the target instance is forwarded to the sending in-
stance then both instances fully interact. We can guess the pair of instances with
probability 2/(Q(Q−1)). Hence, we can simulate all instances except the two
guessed ones. Since the SAS veri£cation phase is the last step on both instances,
there is no trouble to make the two instances exchange their SAS. We thus trans-
form the initial adversary against the MCA protocol with success probability p

3 Note that this de£nition of almost strongly universal hashing is slightly different from [?,?] in
the sense that perfect uniformity is not required.

14



into a one-shot adversary against our new protocol with success probability at
least 2p(Q(Q−1))−1.

The interaction of the transformed adversary with an instance of Alice con-
sists of two steps

A1 sending her her message mA (for the launch query) and getting her commit
value c (for the £rst send query)

A2 giving her Bob’s alleged message m̂B and random value R̂ and getting her
decommit value d.

Alice’s SAS equals R̂⊕ hK(m̂B) where K is the result of open(mA,c,d). The
second step must be performed after the £rst one.

The interaction of the adversary with an instance of Bob consists of two
steps

B1 sending him his message mB (for the launch query) and Alice’s alleged mes-
sage m̂A and commit value ĉ and getting his random value R (for the £rst
send query)

B2 giving him Alice’s alleged decommit value d̂.

The adversary wins if the two instances complete and compute the same
SAS and if the input message of one instance is different from the output mes-
sage of the other instance.

In what follows we show that all cases can be simulated so that we can
win a hard game, proving that the probability of success is at most 2−ρ + ε +
max(ε1,ε2).

Cases Alice-Alice. We number 2 the instance of Alice whose A2 step is the
last. Since the commitment is perfectly hiding, this Alice leaks no information
about K2 (variable K for Alice number 2) until this very last step. Hence, K2 is
independent from the rest and R̂1⊕ R̂2⊕hK1(m̂1

B) = hK2(m̂2
B) with probability at

most 2−ρ + ε1.

On Bob’s incoming ĉ (Step B1). In the random oracle commitment model, we
only consider the event where no collision occurred. Hence, a commit value ĉ
issued by the adversary for an instance of Bob is either a real output by H and
can only be opened in a single way, or no output from H. In the latter case, we
can consider (⊥,⊥,⊥, ĉ) as a new entry in the H list and count it as an extra
oracle call. This way, ĉ can never be opened. Hence, with probability at least
1− (q+1)(q+2)2−`e−1− (q+1)(q+2)2−`c−1, which is larger than 1− ε, the
commit value(s) ĉ by the adversary are either openable in a single £xed way
or not openable. If they are not openable, the adversary fails. If openable ĉ are

15



issued by an oracle call to H by the adversary, we can thus virtually replace the
adversary release of ĉ by an adversary release of K̂ and step B2 can be ignored.
If openable ĉ are issued by other oracle calls to H, it can only be by a simulation
of Alice, leading us to c = ĉ, thus K̂ = K and mA = m̂A.

Cases Bob-Bob. We number 2 the instance of Bob whose B1 step is the last one.
Those cases produce no oracle calls to H by Alice, so K̂1 and K̂2 are selected
by the adversary before the B2

1 step. Note that R1 is already released. The at-
tack succeeds if R2 = R1⊕ hK̂1(m1

B)⊕ hK̂2(m2
B) where R2 is independent of the

righthand term and selected at random by the second Bob. Clearly, this succeeds
with probability 2−ρ.

Cases Alice-Bob. Without loss of generality, we can assume that B2 is the last
step.

In cases A1A2B1B2, R is selected in step B1 so the adversary succeeds with
probability 2−ρ.

In cases A1B1A2B2 with c 6= ĉ or in cases B1A1A2B2 (necessarily with c 6=
ĉ), the adversary has no information about K until step A2 and succeeds when
R̂⊕R⊕hK̂(mB) = hK(m̂B). Hence succeeds with probability at most 2−ρ + ε1.

In cases A1B1A2B2 with c = ĉ, we must have mA = m̂A. This can only be
an attack for mB 6= m̂B. The adversary has no information about K until step A2

and succeeds when R̂⊕R = hK(mB)⊕ hK(m̂B), hence with probability at most
2−ρ + ε2. ut

With the same analysis as in [?], in a network of N participants, each limited
to R runs of the protocol, and a maximal attack probability at large p, we should
use ρ ≈ log2

N2R2

2p . When p is the probability to attack a target node, we should

use ρ≈ log2
NR2

2p . With N ≈ 220, R≈ 210, and p≈ 2−10, we obtain ρ≈ 49. In an

ATM-like environment, we can take N = 2, R = 3, and p = 3 ·10−4, leading us
to ρ ≈ 15. In between, we believe that ρ = 20 bits provides enough security in
a small community of human users.

7 Conclusion

We have shown how to construct ef£cient SAS-based AKA protocols based on
existing ones and SAS-based MMA or MCA protocols. We have proposed a
new 3-move MMA protocol using a generic commitment scheme. It can make
a secure and ef£cient SAS-based AKA protocol with 4 moves over the insecure
channel. We have also proposed a new 3-move MCA protocol using random or-
acle commitments. It can make a secure and ef£cient SAS-based AKA protocol

16



with 3 moves in the random oracle model. For both constructions, we can have
e.g. a SAS of 20 bits. Note that our two constructions use the same authenticated
strings in both directions.

Applications of such protocols can be traditional key agreement, but run in
an ad-hoc way. For instance, it can be used to exchange PGP public keys to be
authenticated by a human-to-human telephone conversation. It can also be used
to secure peer-to-peer VoIP communications. Other straightforward applications
can be the Bluetooth-like establishment of symmetric key between associated
wireless devices, e.g. for wireless USB.

17


