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Abstract. Motivated by cryptographic applications, we study subgroups
of braid groups Bn generated by a small number of random elements
of relatively small lengths compared to n. Our experiments show that
“most” of these subgroups are equal to the whole Bn, and “almost all”
of these subgroups are generated by positive braid words. We discuss
the impact of these experimental results on the security of the Anshel-
Anshel-Goldfeld key exchange protocol [2] with originally suggested pa-
rameters as well as with recently updated ones.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [2], [11]) using braid groups as a platform.
We refer to [3], [5] for more information on braid groups.
Here we start out by giving a brief description of the Anshel-Anshel-Goldfeld

key exchange protocol [2] (subsequently called the AAG protocol) to explain our
motivation.
Let Bn be the group of braids on n strands and Xn = {x1, . . . , xn−1} the set

of standard generators. Thus,

Bn = 〈x1, . . . , xn−1; xixi+1xi = xi+1xixi+1, xixj = xjxi for |i− j| > 1〉.

Let N1, N2 ∈ N, 1 ≤ L1 ≤ L2, and L ∈ N be preset parameters. The AAG
protocol [2] is the following sequence of steps:

(1) Alice randomly generates an N1-tuple of braid words a = {a1, . . . aN1
}, each

of length between L1 and L2, such that each generator of Bn non-trivially occurs
in a. The tuple a is called Alice’s public set.
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(2) Bob randomly generates an N2-tuple of braid words b = {b1, . . . bN2
}, each

of length between L1 and L2, such that each generator of Bn is non-trivially
involved in b. The tuple b is called Bob’s public set.

(3) Alice randomly generates a product A = aε1s1 . . . a
εL
sL
, where 1 ≤ si ≤ N1 and

εi = ±1 (for each 1 ≤ i ≤ L). The word A is called Alice’s private key.

(4) Bob randomly generates a product B = bδ1t1 . . . bδL

tL
, where 1 ≤ ti ≤ N2 and

δi = ±1 (for each 1 ≤ i ≤ L). The word B is called Bob’s private key.

(5) Alice computes b′i = D(A−1biA) (1 ≤ i ≤ N2) and transmits them to Bob.
Here D(w) denotes Dehornoy’s form of a braid word w (see the beginning of the
next Section 2).

(6) Bob computes a′i = D(B−1aiB) (1 ≤ i ≤ N1) and transmits them to Alice.

(7) Alice computesKA = A−1a′ε1s1
. . . a′εL

sL
. It is straightforward to see thatKA =

A−1B−1AB in the group Bn.

(8) Bob computes KB = b′−δL

tL
. . . b′−δ1

t1
B. Again, it is easy to see that KB =

A−1B−1AB in the group Bn.

Thus, Alice and Bob end up with the same elementK = KA = KB = A−1B−1AB

of the group Bn. This K is now their common secret key.

Note that for an intruder to get the common secret key K, it is sufficient to

find any element C = aτ1r1 . . . a
τm
rm
such that b

′
= C−1bC in the group Bn (see e.g.

[11], [15]). Finding such an element is an instance of the following problem (call
it subgroup-restricted conjugacy search problem for future reference):

Let G be a group, A a subgroup of G generated by some {a1, . . . ar}, and
let g = (g1, . . . gk), h = (h1, . . . hk) be two tuples of elements of G. Find
x ∈ A, as a word in {a1, . . . ar}, such that h = x−1gx, provided that at
least one such x exists.

Without the restriction x ∈ A, this would be a well-known (multiple simul-
taneous) conjugacy search problem. While the latter problem for braid groups
is not known to have polynomial-time solution, some important recently made
inroads [7], [12] suggest that it may be solved quite efficiently by a deterministic
algorithm for at least some inputs, e.g. if one of the tuples g or h consists of pos-
itive braid words only. Thus, having the above subgroup A ≤ Bn significantly
different from Bn should be important for the security of the AAG protocol.
In the present paper, we experimentally show that the parameters

N = 80, N1 = 20, N2 = 20, L1 = 5, L2 = 8, L = 100

for the AAG protocol suggested in [1] may not provide sufficient level of security
because the relevant subgroup A ≤ Bn is either the whole Bn or is “very close”
to the whole Bn.



More specifically, out of 100 experiments that we performed, a randomly
selected tuple a = (a1, . . . , aN1

) with parameters as above (see our Section
6 for details on producing random tuples) generated the whole group Bn

in 63 experiments. In the remaining 37 experiments, the subgroups were
“close” to the whole group Bn, and in 36 of them, the subgroups were
generated by positive braid words. See Section 4 for more details.

Similar results were obtained in [9] using homomorphisms of braid groups
onto permutation groups. In this paper we go further and extend these results to
recently suggested greater parameter values; this is discussed later in this section.
Our approach to cryptanalysis of the AAG protocol (we call it the “subgroup
attack”) is rather general and can be used in cryptanalysis of commutator key
exchange schemes based on other groups.
In the AAG protocol, there are two subgroups a = (a1, . . . , aN1

) and b =
(b1, . . . , bN2

) each of which is generated independently of the other. The following
procedure can be used to attack the AAG protocol:

(1) Given two tuples a and b, simplify them using the procedure(s) in our Section
3.

(2) Both simplified tuples will consist of positive braid words with probability
98% (99% each), see the list in the beginning of our Section 4. In that case, the
corresponding multiple simultaneous conjugacy search problem can be efficiently
solved by the method of [12] (using super summit sets).

(3) With probability 98% (99% each), the centralizer of Alice’s and Bob’s sub-
group coincides with the center of Bn. Therefore, any solution of the multiple
simultaneous conjugacy search problem obtained by using, say, the method of
[12] mentioned above, will differ from the actual Alice’s (Bob’s) private key by
a factor lying in the center of Bn. This will yield the correct common secret key
K because K is the commutator K = A−1B−1AB, and therefore its value does
not change if either A or B or both are multiplied by elements from the center of
the ambient group Bn. Thus, one does not have to solve the subgroup-restricted
conjugacy search problem in this case.
The above claim that the centralizer of any subgroup (except the last one)

on the list in the beginning of Section 4 coincides with the center of Bn, follows
from the following fact: any element in the group Bn that commutes with xk

i for
some positive k, also commutes with xi. This, in turn, follows from the results
of [8].

Thus, it appears that with probability at least 98% · 98% ≈ 96%, the
AAG protocol (with parameters as in [1]) can be successfully attacked
by the procedure outlined above.

We note that by increasing the crucial parameters L1 and L2 (and therefore
increasing the lengths of the private keys), it is probably possible to downsize
the relevant subgroup so that the method of [12] would not work. However, for
public sets with longer elements, length-based attacks, as described in [6], [9],



[10], may become a threat, although it seems that the existing experimental base
is insufficient to draw any definitive conclusions on using longer keys in the AAG
protocol.
Another possible way of improving security of the AAG protocol might be

increasing the rank of the ambient braid group. However, we have run similar
experiments with N = 150, N1 = 20, N2 = 20, L1 = 10, L2 = 13, L = 100
and arrived at similar results: with probability at least 92%, the AAG protocol
with these parameters can be successfully attacked by our procedure.
The arrangement of the paper is as follows. In Section 2, we introduce some

more notation and describe an algorithm from [13] producing a shorter word
representing a given braid word. In Section 3, we describe a heuristic procedure
which allows us to simplify a given set of generators of a subgroup in Bn. In
Section 4, we describe results of our experiments. In Section 5, we explain how
these experimental results affect the security of the AAG protocol. Finally, in
Section 6, we describe our procedure for producing random subgroup generators
as in the AAG protocol.

2 Preliminaries

Let F (Xn) be the free group generated by Xn. An element of F (Xn) is a reduced
word over X±1

n referred to as a braid word. For a braid word w = w1 . . . wk ∈
F (Xn) we will denote by |w| its length k and by |w|Bn

the length of a shortest
braid word w′ defining the same element of Bn as w does. There is no efficient
way to compute |w|Bn

; in [14] the authors prove that the problem of computing
a geodesic for a braid word is co-NP-complete. We will employ Algorithm 1 from
[13] to obtain a shorter word representing a given braid word w; description of
this algorithm is given below, for the sake of completeness. For relatively short
words w considered in this paper, one almost always has |Shorten(w)| = |w|Bn

(where |Shorten(w)| is the output of Algorithm 1 in [13]; see [13] for more
information).
By Dehornoy’s form of a braid we mean a braid word without any “handles”,

i.e. a completely reduced braid word in the sense of [4]. The procedure that
computes Dehornoy’s form for a given word chooses a specific (“permitted”)
handle inside of the word and removes it (see [1] or [4]). This can introduce new
handles but the main result about Dehornoy’s forms states that any sequence of
handle reductions eventually terminates. Of course, the result depends on how
one chooses the handles at every step. Let us fix any particular strategy for
selecting handles. For a word w = w(Xn) we denote by D(w) the corresponding
Dehornoy’s form (i.e., the result of handle reductions where handles are chosen
by the fixed strategy).
Now we describe Algorithm 1 from [13]. This algorithm tries to minimize a

given braid word. It uses the property of Dehornoy’s form that for a “generic”
braid word one has |D(w)| < |w|.

Algorithm 1 (Minimization of braids)
Signature. w′ = Shorten(w).



Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

A. Increment i.
B. Put wi = D(wi−1).
C. If |wi| < |wi−1| then

1) Put wi = w∆
i .

2) Goto A.

D. If i is even then output w∆
i+1.

E. If i is odd then output wi+1.

3 Subgroup simplification

In this section we describe a heuristic procedure which allows us to simplify a
given set of generators of a subgroup in Bn.

3.1 Reducing generating sets

Let S be a set of words in the alphabet Xn. We say that the set S is reduced if:

1) |w| = |w|Bn
for each w ∈ S, i.e., each word from S is geodesic in Bn.

2) For each pair of words u, v ∈ S and any numbers ε, δ ∈ {−1, 1}, one has

|uεvδ|Bn
> ||u|Bn

− |v|Bn
|.

(Otherwise, the total length of elements of S can be reduced by replacing the
longer of the words u, v by uεvδ).
Let 〈S〉 denote the subgroup generated by S. We say that two sets S, T ⊆ Bn

are equivalent if 〈S〉 = 〈T 〉 in Bn.
The following algorithm tries to reduce a given set S, i.e., tries to find a re-

duced set equivalent to S. As mentioned above, the problem of finding a geodesic
for a given braid word is computationally hard. Instead, we are using here the
procedure Shorten (Algorithm 1 in [13]) to minimize the length of braid words.
Thus, in general, the output of Algorithm 2 may not be a reduced set of braid
words, but for generating sets meeting the requirements in [1], this is usually the
case.

Algorithm 2 (Reduction of a generating set)
Signature. T = Reduce(S).
Input. A finite set S of braid words.
Output. A finite reduced set T of braid words which is equivalent to S.
Initialization. Put T = S.
Computations.



A. For each word w ∈ T , replace w with the word Shorten(w) (cf. Algorithm 1
in [13]). Remove the empty word if produced.

B. For each pair of words u, v ∈ T and numbers ε, δ ∈ {−1, 1}, compute w =
Shorten(uεvδ).

1) If |w| = ||u| − |v|| = 0 then remove v from the current set T .
2) If |w| = ||u| − |v|| 6= 0 then remove from T the longer of the words u, v
and add w to T .

C. When all pairs of words u, v ∈ T are handled (including the new words)
output the current set T .

Proposition 1. Algorithm 2 terminates on any finite subset S of F (Xn). Fur-
thermore, if T = Reduce(S), then 〈T 〉 = 〈S〉.

Proof. Since each reduction decreases the total length of the generating set, the
number of reductions Algorithm 2 performs is finite and limited by L(S), the
total length of elements of S.
To prove the second statement observe that the transformations used in Algo-

rithm 2 are Nielsen transformations; they do not change the subgroup generated
by a given set.

Let (a, a′) be a pair of conjugate tuples of braid words and (z, z′) be a pair
of conjugate tuples of braid words. We say that tuples (a, a′) and (z, z′) are
equivalent if the following conditions hold:

(E1) The tuples a and z define the same subgroup (i.e., 〈a〉 = 〈z〉).
(E2) For any braid word x ∈ Bn x−1ax = a′ if and only if x−1zx = z′.

Observe that from (E1), (E2), and the fact that tuples are conjugate follows that
〈a′〉 = 〈z′〉.
Now assume that we have two conjugate tuples a and a′ of braid words as in

the AAG protocol. The next algorithm reduces the pair (a, a′).

Algorithm 3 (Reduction of conjugate tuples)
Signature. (z, z′) = Reduce(a, a′).
Input. Conjugate tuples a = {a1, . . . , aN1

} and a′ = {a′1, . . . , a
′
N1
} of braid

words.
Output. Conjugate tuples (z, z′) equivalent to (a, a′).
Initialization. Put z = a and z′ = a′.
Computations.

A. Replace each word zi ∈ z′ with the word Shorten(zi) (cf. Algorithm 1 in
[13]) and each z′i ∈ z′ with Shorten(z′i). Remove empty words if produced.

B. For each pair of words zi, zj ∈ z (i 6= j) and numbers ε, δ ∈ {−1, 1}, compute
w = Shorten(zεi z

δ
j ).

1) If |w| = ||zj | − |zi|| = 0, then remove zi from z and remove z′i from z′.
2) If |w| = |zj | − |zi| > 0, then replace zj ∈ z with w and replace z′j ∈ z′

with Shorten(z′εi z′δj ).



C. Repeat Step B. while applicable (i.e., while the set S ′ keeps changing).
D. Output the obtained set S ′.

Proposition 2. Let (a, a′) be a pair of conjugate tuples. Algorithm 3 terminates
on (a, a′). Furthermore, if (z, z′) = Reduce(a, a′), then (z, z′) is equivalent to
(a, a′).

Proof. The transformations used in Algorithm 3 are Nielsen transformations;
they do not change the subgroup generated by a given set. Hence (E1) holds.
Furthermore, by transforming zi ∈ z, we transform z′i ∈ z′ the same way. Thus,
the property (E2) holds and the output (z, z′) is equivalent to the input (a, a′).

3.2 Extending generating sets

We say that a set S ∪ S′ is an extension of S. The next algorithm heuristically
extends a reduced set of generators S by adding words (one at a time) of length
2 from the subgroup 〈S〉, and then reduces the set. Basically, the algorithm
generates words from 〈S〉 using a few patterns and, in case a new word has
length 2, adds it to the current set and reduces the result.

Algorithm 4 (Extension of a generating set)
Signature. T = Extend(S).
Input. A set S of braid words.
Output. A reduced set S′ of braid words equivalent to S.
Initialization. Put T = S.
Computations.

A. For each pair of words (u, v) ∈ T , and each pair of numbers ε, δ ∈ {−1, 1}:
1) Compute w = Shorten(v2εuδv−εu−δv−ε) and T ′ = Reduce(T ∪ {w}). If
|w| = 2 and T 6= T ′, then put T = T ′.

2) Compute w = Shorten(vεuδ) and T ′ = Reduce(T ∪{w}). If |w| = 2 and
T 6= T ′, then put T = T ′.

B. When all pairs of words u, v ∈ T are handled (including the new ones),
output the current set T .

Proposition 3. Algorithm 4 terminates on any finite set S of braid words and,
if T = Extend(S), then 〈S〉 = 〈T 〉.

Proof. The latter statement is obviously true by Proposition 1 and since each
braid word we add to T defines an element of 〈S〉.
Note that Algorithm 4 extends the current set T with braid words w of length

2 only. Moreover, a word w = xε
ix

δ
j of length 2 cannot be added twice (the second

time T ′ = T ). Thus, Algorithm 4 can add at most 4n2 new words to T .

Now assume that we have two conjugate tuples a and a′ of braid words as in
the AAG protocol. The next algorithm computes an extended conjugated pair
of tuples (z, z′) equivalent to (a, a′). In Algorithm 5, for a tuple a = (a1, . . . , ak)
and a braid word w, by a ∪ w we denote a tuple (a1, . . . , ak, w).



Algorithm 5 (Extension of conjugate tuples)
Signature. (z, z′) = Extend(a, a′).
Input. Conjugate tuples a = {a1, . . . , ak} and a′ = {a′1, . . . , a

′
k} of braid words.

Output. Conjugate ”extended” tuples (z, z′) equivalent to (a, a′).
Initialization. Put z = a and z′ = a′.
Computations.

A. For each distinct pair of words (zi, zj) ∈ a, and each pair of numbers ε, δ ∈
{−1, 1}:

1) Perform the following:

– Compute w = Shorten(z2ε
i zδj z

−ε
i z−δ

j z−ε
i ).

– Compute w′ = Shorten(z′2εi z′δj z′−ε
i z′−δ

j z′−ε
i ).

– Compute (y, y′) = Reduce(z∪{w}, z′∪{w′}). If |w| = 2 and (z, z′) 6=
(y, y′), then put (z, z′) = (y, y′).

2) Perform the following:

– Compute w = Shorten(zεi z
δ
j ).

– Compute w′ = Shorten(z′εi z′δj ).
– Compute (y, y′) = Reduce(z∪{w}, z′∪{w′}). If |w| = 2 and (z, z′) 6=
(y, y′), then put (z, z′) = (y, y′).

B. When all pairs of words zi, zj ∈ S are handled (including the new words),
output the current pair (z, z′).

Proposition 4. Let (a, a′) be a pair of conjugate tuples. Algorithm 5 terminates
on (a, a′). Furthermore, if (z, z′) = Extend(a, a′), then (z, z′) is equivalent to
(a, a′).

Proof. Each time we extend the tuples (z, z′) with elements w,w′ which follows
from the tuples (i.e., w ∈ 〈z〉 and w′ ∈ 〈z′〉). So, now the property (E1) follows
from Proposition 2. Furthermore, braid words w and w′ were obtained the same
way. Thus, the property (E2) holds and the output (z, z′) is equivalent to the
input (a, a′).

We therefore have

Proposition 5. Let (a, a′) and (b, b
′
) be two pairs of conjugated tuples as in

AAG-protocol. Let (y, y′) = Extend(a, a′) and (z, z′) = Extend(b, b
′
). Then to

break the AAG protocol with (a, a′) and (b, b
′
) it is sufficient to break AAG-

protocol with (y, y′) and (z, z′).

Proof. Obvious.

The main point of Proposition 5 is that the obtained instance (y, y′) and

(z, z′) of the AAG protocol is easier to break than the original (a, a′) and (b, b
′
).

(It will be clear from the experimental results described in the next section.)
Furthermore, (y, y′) and (z, z′) can be computed quite efficiently.



4 Experimental results

We performed a series of 100 experiments with randomly generated subgroups
of B80. In each experiment we

1) Generated Alice’s and Bob’s public and private keys a, b, A, B (as described
in the Introduction).

2) Computed a′ and b
′
.

3) Computed (y, y′) = Extend(a, a′).

The obtained sets of results are as follows:

1) In 63 cases, y = (x1, . . . , x79).
2) In 25 cases, y = (x1, . . . , xi−1, x

2
i , xi+1, . . . , x79) for some i.

3) In 5 cases, y = (x1, . . . , xi−1, x
2
i , xi+1, . . . , xj−1, x

2
j , xj+1, . . . , x79) for some

i, j.
4) In 5 cases, y = (x1, . . . , xi−1, x

2
i , xix

2
i+1xi, xi+2, . . . , x79) for some i.

5) In 1 case,
y = (x1, . . . , xi−1, x

2
i , xix

2
i+1xi, xi+1, . . . , xj−1, x

3
j , xj+1, . . . , x79) for some i, j.

6) In 1 case, y = (x1, . . . , xi−1, x
−1
i xi+1xi, xi+2 . . . , x79) for some i.

Thus, randomly generated tuples of braid words a and b of “AAG-type”
generate either the whole Bn or a subgroup which is “close” to the whole group
Bn.
To explain this phenomenon, consider two particular braid words in B80:

w1 = x71x47x11x
−1
45 x9x6x

−1
72 and w2 = x64x

−1
32 x−1

39 x17x8x26x
−1
31 x78.

It is easy to check that w2
1w2w

−1
1 w−1

2 w−1
1 = x2

9x8x
−1
9 x−1

8 x−1
9 = x9x

−1
8 . This

happens, basically, because all generators in w1 commute with all generators in
w2 except x8 which does not commute with x9.
In general, if we pick two random braid words w1 and w2 (of length 5 − 8

over the alphabet {x1, . . . , x79}) in a such that w1 contains some fixed generator
x±1
i and w2 contains x±1

i+1, then there is a big chance that all other generators
that occur in w1 or w2 commute with each other and with xi and xi+1. In other
words, for each 1 ≤ i ≤ 79, with significant probability, there are two words w1

and w2 such that

1. w1 = w′1x
±1
i w′′1 ;

2. w2 = w′2x
±1
i+1w

′′
2 ;

3. xi commutes with w′1, w
′
2, w

′′
1 , and w′′2 ;

4. xi+1 commutes with w′1, w
′
2, w

′′
1 , and w′′2 ;

5. w′1 commutes with w′2 and w′′2 , and w′′1 commutes with w′2 and w′′2 .

In this case, for some ε, δ ∈ {−1, 1}, we have w2ε
1 wδ

2w
−ε
1 w−δ

2 w−ε
1 = xε

ix
−ε
i+1.

Somewhat informally, Algorithm 5 works as follows. First, a lot of words of
the form xε

ix
−ε
i+1 are being produced (using the pattern v2εuδv−εu−δv−ε). Then,

using generators of the form xε
ix
−ε
i+1, Algorithm 4 produces all kinds of genera-

tors of the form xε
ix

δ
j (using the pattern vεuδ). Finally, after sufficient number

of words of length 2 is produced, the algorithm reduces the initial subgroup
generators to generators of the whole group Bn.



Remark 1. We note that increasing the parameters L1 and L2 decreases the
probability for pairs of words w1, w2 to satisfy the properties (1)–(5) above.
However, if the increase is moderate, then it is quite likely that w1 and w2 will
contain two pairs of non-commuting generators, say, xi, xj in w1 and xi±1, xj±1

in w2. Then, for some ε, δ ∈ {−1, 1}, we have w
2ε
1 wδ

2w
−ε
1 w−δ

2 w−ε
1 = xε

ix
−ε
i±1x

ε
jx
−ε
j±1

which is a word of length 4. In this case, performance of the algorithm 5 can
be improved by allowing to add words of length 4 to the generating set (at the
cost of somewhat reducing the speed of computation). As the parameter values
L1 and L2 are increased further, the pattern w2ε

1 wδ
2w
−ε
1 w−δ

2 w−ε
1 produces longer

and longer words, and for some of these words the algorithm may fail to prove
that the relevant subgroup is the whole group Bn (sometimes the subgroup may
actually be different from Bn).
We used this modification of the algorithm to test the following parameters:

N = 80, N1 = 20, N2 = 20, and L1 = 11, L2 = 13. Even with the generators
that long, many subgroups do generate the whole BN . As we have mentioned
before, further increase of the length of the generators can make the protocol
vulnerable to length-based attacks.

5 The impact of the experimental results on the security

of the AAG protocol

As described in the previous section, our experiments show that with the choice
of parameters for the AAG protocol suggested in [1], the subgroups generated
by a and b tend to have the following properties:

(G1) They are either the whole group Bn or “almost” the whole Bn.
(G2) They have cyclic centralizer which coincides with the center of Bn. (The

latter is generated by the element ∆2.)
(G3) They are generated by short (of length up to 3) positive braid words.

Furthermore, Algorithm 5 efficiently transforms an initial generating tuple
into a simplified generating tuple of type (G1)–(G3). In this section, we explain
how these results affect the security of the AAG protocol. The techniques used
in this section were developed by S. J. Lee and E. Lee in [12] and by J. Gonzalez-
Meneses in [7]. We refer the reader to these two papers for more information on
the algorithms; here we just recall some notation that we need.
For a ∈ Bn, the number inf(a) denotes the maximum integer k such that

a = ∆kp in the group Bn, where ∆ ∈ Bn is the half-twist braid and p is a
positive braid. For an r-tuple of braids a = (a1, . . . , ar), denote by Cinf (S) the
set of all r-tuples (b1, . . . , br) ∈ Br

n such that inf(bi) ≥ inf(ai) (i = 1, . . . , r) and
there exists w ∈ Bn such that b = w−1aw.
The following algorithm combines two ingredients: the subgroup simplifica-

tion algorithm of the present paper and the summit attack of [7], [12] into one
attack on Alice’s (or Bob’s) key.



Algorithm 6 (Attack on AAG-protocol)
Signature. w = GetConjugator(a, a′).
Input. Conjugate tuples (a, a′) of AAG-type.
Output. A braid word w such that a′ = w−1aw.
Computations.

A. Compute (a1, a
′
1) = Extend(a, a′).

B. Using technique from [12], compute (a2, a
′
2), u, and v satisfying the following

properties:
1) a2 ∈ Cinf (a′2) ⊆ Cinf (a′1) and a′2 ∈ Cinf (a2) ⊆ Cinf (a1).
2) a2 = u−1a1u.
3) a′2 = v−1a′1v.

C. Using technique from [7], compute a braid word s such that a2 = s−1a′2s.
D. Output us−1v−1.

By Theorem 2 of [12], the step B of Algorithm 6 can be performed very
efficiently (by a polynomial time algorithm). The time complexity of the step
C is proportional to the size of Cinf (a1) which is large in general, but for all
subgroups obtained in our experiments these sets were small. For instance, if the
tuple a consists of all generators of Bn, then |C

inf (a1)| = 2 as shown in the next
proposition.

Proposition 6. Let x = (x1, . . . , xn−1). Then Cinf (x) = {x,∆−1x∆}.

Proof. Let c0 ∈ Bn be such that c
−1
0 xc0 ∈ Cinf (x). Then for each i = 1, . . . , n−1

one has
c−1
0 xic0 = xsi

for some 1 ≤ si ≤ n − 1. Since conjugation is an automorphism, it is easy to
see that either (s1, . . . , sn−1) = (1, . . . , n − 1) or (s1, . . . , sn−1) = (n − 1, . . . , 1)
which proves the proposition.

For other generating tuples obtained in our experiments the sizes of the
summit set Cinf (x) are small, too. Therefore, we can say that Algorithm 6 is
efficient on a randomly generated subgroup as described in the AAG protocol. We
should mention that the obtained conjugator may not be exactly Alice’s (Bob’s)
private key; we compute it up to the centralizer of Bob’s (Alice’s) subgroup.
However, since in almost all examples the centralizer is generated by the element
∆2 (i.e., coincides with the center of Bn), this is not a problem. We would like
to point out that without the first step the attack may not be efficient since the
size of the summit set would be huge.
Now, with Algorithm 6 it is easy to find the shared key obtained by Alice

and Bob in the AAG protocol:

Algorithm 7 (Attack on the AAG protocol)

Signature. w = GetSharedKey(a, a′, b, b
′
).

Input. Conjugate tuples (a, a′) and (b, b
′
) of as in the AAG protocol.

Output. The shared key K.
Computations.



A. Let wa = GetConjugator(a, a′).

B. Let wb = GetConjugator(b, b
′
).

C. Output w−1
a w−1

b wawb.

6 Appendix: generating random subgroups

The question of how one could produce a random generating set of a required
type for a subgroup of Bn is by no means trivial. We used the following proce-
dure for producing random subgroup generators as in the AAG protocol. In the
description of the algorithm below, when we say “uniformly choose an integer”
from a given interval, that means all integers from this interval are selected with
equal probabilities.

Algorithm 8 (Subgroup generator)
Input. The rank n of the braid group, the rank k of a subgroup, and numbers
L1, L2 such that L1 < L2.
Output. Braid words w1, . . . , wk over Xn such that L1 ≤ |wi| ≤ L2 and each
generator x ∈ Xn non-trivially occurs in at least one of the wi’s.
Computations.

A. For each 1 ≤ i ≤ k, uniformly choose an integer li, L1 ≤ li ≤ L2, and
compute L =

∑k
i=1 li.

B. Construct a sequence {a1, . . . , aL} ∈ (X
±1)∗ the following way:

1) For each 1 ≤ i ≤ n− 1, uniformly choose εi ∈ {−1, 1} and put ai = xεi

i .
2) For each n ≤ i ≤ L, uniformly choose ji ∈ {1, . . . , n − 1} and εi ∈
{−1, 1}, and put ai = xεi

ji
.

C. Randomly permute elements in {a1, . . . , aL}.

D. For each 1 ≤ j ≤ k, compute sj =
∑j−1

i=1 li and put
wj = Shorten(a(sj)+1 . . . as(j+1)

).
E. If some braid generator xi does not occur in the obtained sequence w1, . . . , wk,
then repeat all the steps.

Note that, in theory, Algorithm 8 might go into an infinite loop if the sub-
group generators {w1, . . . , wk} do not involve some braid generator xi. But in
real life, such a situation is extremely rare. In fact, the greatest number of iter-
ations Algorithm 8 performed in our experiments was 5.

References

1. I. Anshel, M. Anshel, B. Fisher, D. Goldfeld, New Key Agreement Protocols
in Braid Group Cryptography. In: Progress in Cryptology – CT-RSA 2001,
13–27. Lecture Notes Comp. Sc., vol. 2020. Berlin Heidelberg New York
Tokyo: Springer 2001.

2. I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryp-
tography, Math. Res. Lett. 6 (1999), 287–291.



3. J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies
82, Princeton Univ. Press, 1974.

4. P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997),
200–235.

5. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
W. P. Thurston, Word processing in groups. Jones and Bartlett Publishers,
Boston, MA, 1992.

6. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne, Probabilistic so-
lutions of equations in the braid group, preprint.
http://arxiv.org/abs/math.GR/0404076

7. J. Gonzalez-Meneses, Improving an algorithm to solve Multiple Simultaneous
Conjugacy Problems in braid groups, Contemp. Math., Amer. Math. Soc.
372 (2005), 35–42.

8. J. Gonzalez-Meneses and B. Wiest, On the structure of the centraliser of a
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