
Side-Channel Attacks on Textbook RSA and

ElGamal Encryption

Ulrich Kühn

Dresdner Bank, IS-STA 5, Information Security
D-60301 Frankfurt, Germany

ulrich.kuehn@dresdner-bank.com

ukuehn@acm.org

Abstract. This paper describes very efficient attacks on plain RSA en-
cryption as usually described in textbooks. These attacks exploit side
channels caused by implementations that, during decryption, incorrectly
make certain assumption on the size of message. We highlight different
assumptions that are easily made when implementing plain RSA decryp-
tion and present corresponding attacks.
These attacks make clear that plain RSA is a padding scheme that has
to be checked carefully during decryption instead of simply assuming a
length of the transported message.
Furthermore we note that the attacks presented here do also work against
a similar setting of ElGamal encryption with only minimal changes.

Keywords: RSA encryption, ElGamal encryption, Side-channel attack.

1 Introduction

In general RSA is described as the modular exponentiation applied directly to
a message M – plain RSA. Boneh, Joux and Nguyen [6] have shown that this
method is insecure when the bit-length m of the encrypted message is fixed to
a small amount of bits, say 64 bits, by giving a meet-in-the-middle attack that
uses 2 · 2m/2 modular exponentiations and 2m/2m bits of memory; this result is
independent of the size of the modulus. But if longer messages are involved, e.g.
128 bits or more in length, this method becomes impractical. Attacks against
RSA encryption of messages with related or stereotyped content do not seem
applicable when only random session keys of considerable size are encrypted as
part of a hybrid encryption scheme (see Boneh [5] for an overview of attacks on
RSA).

On the other hand, attacks using side channels caused by incorrect imple-
mentations have been presented by Bleichenbacher [3] against PKCS #1 v1.5
RSA block type 2 padding as well as by Manger [12] against PKCS #1 v2.0
(RSA-OAEP); here the adversary learns one bit of information about the result-
ing plaintext from a server that sends detailed error codes for different failures
in the decryption process. The query complexities of these attacks essentially
depend exponentially on the number of bits that the padded message is shorter

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 324–336, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 325

than the modulus; the attacks are efficient because for the PKCS #1 padding
schemes these numbers are 16 resp. 8 bits for usual choices of the length of the
modulus.

In this paper we present attacks that exploit side channels in plain RSA en-
cryption and make use of the homomorphic property of RSA. The side channels
result from implementation flaws in the decryption process, namely certain as-
sumptions about the message being encrypted; we argue that these assumptions
are easily made when implementing the decryption of plain RSA.

We model the decryption process in a server as an oracle that tests whether
a given message is – under some equivalence relation specific to the oracle –
equivalent to the original message that was given to the adversary as a challenge.
The oracle-specific assumptions on the message are either that the relevant mes-
sage bits (the session key) occur at certain positions or that the message has
a specific, a-priori known (short) size when interpreted as an integer. The latter
assumption is similar to the one used by Manger [12], but here we have to deal
with messages that are a lot shorter than the modulus.

We present the approximation attacks that can very efficiently break the
confidentiality of the messages using the oracles that assume positions of the
message bits, provided that the size of the message is at most about one third
of the size of the modulus. We also present the divisibility attack that works
when the adversary can gain one bit of knowledge about the size of a (short)
decrypted message. All our attacks are independent of the size of the modulus,
they depend only on the size of the encrypted message.

Related to our attacks are the attacks of Bleichenbacher [3] and Manger [12],
as all these attacks exploit side channels that result from incorrect implemen-
tations of the RSA decryption and unpadding process. The query complexity
of Bleichenbacher’s resp. Manger’s attack e.g. for a message encrypted under
a 1024-bit modulus is about one million resp. roughly a thousand queries; the
approximation attacks need only 130 queries to reveal a 128-bit message, while
an improved divisibility attack requires for example roughly 7000 queries and 232

offline work with a probability of success of about one in 82 messages. It should
be noted that our attacks do not work for PKCS #1 padded messages, while
Bleichenbacher’s and Manger’s attacks effectively do not work in the setting of
plain RSA.

The practical aspect of our attacks is that they exploit implementation errors
one can easily step into. We found that the home banking system HBCI, an early
version of the e-government protocol OSCI (the current specification uses PKCS
#1 padding) and an early (now obsolete) version of PEM do apply plain RSA,
and we are aware of implementations seemingly vulnerable to the approximation
attacks.

The rest of this paper is organised as follows. Section 2 describes the different
types of server oracles that are examined here, Sections 3 to 5 give attacks on
each of these oracles, while Section 6 shows that nearly the same attacks might
work against improperly implemented plain ElGamal encryption. Then Section 7

326 Ulrich Kühn

discusses the practical impact on the above-mentioned systems in more detail.
Finally some conclusions are drawn.

2 Decryption Oracles

While we model our attacks in terms of oracles they should be viewed with
a hybrid encryption setting in mind.1 We further assume that redundancy to
check for decryption errors is present. In the sequel we refer to the session key
also as the message of the plain RSA encryption.

When a message M of fixed and a-priori known size is transmitted after
encryption with plain RSA useful information might leak from the receiver,
depending on the way the receiver reacts on the result of decryption. In the
sequel we will refer to the receiver of the message as the server.

Throughout this paper we will use the following notation:

Notation. We denote the size of a value X measured in bits by L(X). Let N be
an RSA modulus, i.e. N = PQ for two primes P and Q, and e resp. d the public
resp. private exponent. When using modular reduction, we identify integers in
the interval [0, N) with the elements of ZN ; elements of ZN are represented by the
least positive residue modulo N in the interval [0, N). For y with gcd(y,N) = 1
we use the notation x/y mod N to denote x ·a mod N with a being the inverse
of y modulo N , i.e. the unique integer a, 0 < a < N , such that ay ≡ 1 (mod N).

Modeling the Oracles. Throughout this paper we will use the following defi-
nitions to refer to the oracles and the queries involved:

Definition. We model the server as an oracle O, holding a secret MO known
only to the oracle. We assume that MO < B for a fixed, publicly known bound
B = 2b, i.e. MO has at most b bits. O has an associated public RSA-key (N, e)
and a private exponent d. The adversary is given the public key (N, e) and the
challenge ciphertext CO =M e

O mod N .
The oracle answers a query O(C) either with success or failure, depending on
whether the decrypted M = Cd mod N is equivalent to MO with the equiva-
lence relation depending on the oracle actually used. The oracle treats the query
message M = Cd mod N after RSA decryption in one of the following ways,
depending on the oracle-specific secret MO:

LSB-oracle: The oracle uses the least significant b bits of M , i.e. checks if M ≡
MO (mod B).

1 A payload is encrypted under a random session key using symmetric cryptography
while the session key itself is encrypted with plain RSA; both ciphertexts are trans-
mitted to the receiver. Some redundancy, i.e. a MAC or a digital signature is assumed
to be present to distinguish between a correct and an incorrect decryption.

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 327

MSB-oracle: If L(M) < L(B), then the oracle checks that M = MO. If M
has L(M) ≥ L(B) bits, the most significant b bits of M (i.e. the value
�M/2(L(M)−b)�) are tested if they equal MO.
A variant checks if the most significant octets, words etc. ofM , e.g. the most
significant

⌈
b
8

⌉
octets2 of M equal MO, i.e. uses the value

⌊
M

28(�L(M)
8 �−� b

8�)
⌋
.

Size-checking oracle: The oracle checks thatM < B, i.e. checks ifM is conform-
ing to the size assumption on the message.

Remark 1. Note that none of these oracles represents a correct implementation
of the decryption process for plain RSA.

Remark 2. A server can be modeled as the size-checking oracle if it provides error
codes that allow to distinguish between a messageM ≥ B and a messageM < B
that is incorrect for some other reason, i.e. does not yield a valid decryption of the
payload in a hybrid encryption scheme. This oracle has been used in Manger’s
attack on RSA-OAEP [12], but his attack does not work efficiently if B is much
shorter than the modulus.

3 Attacking the LSB-Oracle

The attack on the LSB-oracle is based on two crucial observations: First, en-
cryptions of multiples of MO of the form M = (aB + 1)MO result, as M ≡MO
(mod B), in the oracle answering success whenever M < N ; if a is too large
(thus M ≥ N) then the modular reduction in the RSA decryption is likely3 to
yield an incorrect message.

Second, if z is such that zMO ≈ N , zMO < N , then MO ≈ �N/z� with
a small margin of error. We will show below that an approximation of the most
significant b plus a small constant number of bits of N are sufficient to work
reliably. Therefore we call this kind of attack the approximation attack.

The idea of the attack is to use the homomorphic property of RSA to compute
ciphertexts from the oracle’s challenge (the encryption ofMO) yielding multiples
of MO. Furthermore the modular reduction in the RSA encryption / decryption
operation indicates whether M < N or not; this information is employed in
2 Such a behavior can occur if the long integer package used for implementation returns
numbers without leading zeros and the integer-to-octet-array conversion places the
highest octets first into the array.

3 The heuristic here is that if M = (aB +1)M is only slightly larger than N , changes
are wrapped by the modular reduction into the result of decryption and truncation.
This assumption might not hold if N has a special form N ≡ c (mod B) where the
least significant L(c) bits of the session key are ignored (e.g. a Triple-DES key where
the parity bits are ignored has c = 1).

328 Ulrich Kühn

a (truncated) binary search to find the approximation M = zMO ≈ N . Infor-
mally speaking, an additional copy of the original message is shifted towards the
more significant bits as far as possible without making it bigger than the modu-
lus and is subsequently padded out by other copies not shifted that far while still
keeping the result below the modulus. This is basically done by binary search.

The attack algorithm works as follows, where the bound B is assumed to be
known to all parties. Furthermore, it is assumed that MO
= 0 and N is of size
L(N) > 3b+ c, where c is some small constant (c = 3 is sufficient).

Input: LSB-oracle O with public RSA-key (N, e), challenge CO =M e
O mod N

derived from MO with 0 < MO < B; MO is known only to O.
Output: The message MO.

1. Set z ← max{2w|w > 0 and 2w < N/B}, b′ ← b.
2. Compute the query C = CO(2z+1)e mod N ; if O(C) = success, set z ← 2z,

b′ ← b′ − 1 and repeat this step.
3. Set y ← z/2.
4. Do for b′ + 1 times:
(a) Compute the query C = CO(z + y+ 1)e mod N ; if O(C) = success, set

z ← z + y.
(b) Set y ← y/2.

5. Compute a candidate M̂ ← �N/(z + 1)� for MO and return it.

To show the correctness of the attack algorithm we show that a partial ap-
proximation of N is sufficient.

Proposition 1. Let N , b, k < b be positive integers; let B = 2b. If N > 2b+k

then for each integer M , 0 < M < B there exists an integer z with

N − zM < 2L(N)−1−k, (1)

i.e. an approximation of the most significant k bits of N by multiples of M is
possible.

Proof. Equation 1 can be fulfilled if 0 < M < 2L(N)−1−k, as the points in the
set {iM | i ∈ Z} have a distance of less than the error bound, and thus a point
exists with the claimed property.

As Equation 1 has to hold for all M < B, this can be fulfilled if B = 2b ≤
2L(N)−1−k, thus 2L(N)−1−k−b ≥ 1. As N > 2L(N)−1, the claim follows. ��
Proposition 2. Let N , b, k < b be positive integers such that N > 2b+k; let
B = 2b and M ∈ {0, . . . , B − 1}. Let z be a positive integer such that zM < N
and N−zM < 2L(N)−k−2, i.e. the most significant k+2 bits of zM and N match.
With M ′ := �N/z� the approximation error is bounded by |M −M ′| < 2b−k−1.

Proof. The existence of such a z follows from Proposition 1. To prove the error
bound, we use the first order Taylor expansion of N/(z + x) at z with x ≥ 0:

N

z + x
=

N

z
− Nx

ξ2
with ξ ∈ [z, z + x] (2)

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 329

and thus

δ(x) def=
N

z
− N

z + x
=

Nx

ξ2
≤ Nx

z2
, as ξ ≥ z. (3)

From M < B it follows that z > N/B, and as x = (N − zM)/z, we have
x < 2L(N)−k−2/z. Thus

δ(x) <
N2L(N)−k−2B3

N3
<

B3

2k+1N
< 2b−k−1, (4)

as B = 2b, N > 2L(N)−1 and N > B2. ��
The condition L(N) > 3b+ c for the algorithm is necessary in order to have

at all times the correct message being present as the b least significant bits plus
the approximation using copies of MO shifted to the more significant bits while
the least significant bits of the shifted copies must not interfere with the most
significant bits ofMO in the original position (as these bits are used by the oracle
to check the equivalence).

The first two steps of the attack algorithm make sure that leading zero bits
in MO are taken care of, thus allowing to apply Proposition 2 using a modified
bound B′ = 2L(MO). Step 4 is basically binary search with the condition that
MO(z + y + 1) < N during each iteration. The loop count makes sure that the
error condition of Proposition 2 with k = b is fulfilled; thus Step 5 results in
M̂ =MO as the approximation error is less than 1/2.

The algorithm is very efficient as it uses only b+ 2 queries, thus proving the
intuition that the oracle leaks about one bit per query. Furthermore it should be
noted that this attack is independent of the size of the modulus, as long as the
condition for the size of B and N are fulfilled. The algorithm requires nearly no
memory.

4 Attacking the MSB-Oracle

The MSB-oracle can be attacked with a similar method as the LSB-oracle in
the last section. In the sequel we will be mostly concerned with the variant that
uses the most significant L :=

⌈
b
8

⌉
octets of the decrypted query message M

(see Section 2). An adaption to the situation where this is done for single bits
or words is rather straight-forward.

Remark 3. In order for this attack to work it is necessary that the message MO
has full length in octets, i.e. �L(MO)/8� = L, as otherwise any shifted copy of
MO would result in the oracle reporting failure. A random messageM is expected
to have full length in octets in 255 out of 256 cases.

Roughly speaking, the essential observation is that any multiple of MO of
the form M = (28Lc + z)MO for z < 28(L(c−1)), c > 1, results in the oracle
reporting success whenever MO has full length, i.e. consists of L octets. Then

330 Ulrich Kühn

the bound 28Lc can be approximated by multiples of MO. Thus this is another
instance of the approximation attack.

In order to use Proposition 2 with k = b it is necessary to have slightly more
than 8L bits in an approximation, thus we have to use at least one more octet.
The attack algorithm approximates 28(Lc+1) for c = 2 by a multiple zMO by
binary search in the same way as N is approximated in Section 3. The attack
algorithms works for N > 28(Lc+1)B.

Input: MSB-oracleO with public RSA-key (N, e), challenge CO =M e
O mod N

derived from MO with 28(L−1) ≤MO < 28L; MO is known only to O.
Output: The message MO.

1. Set f ← 28(2L+1), z ← 28(L+1), b′ ← b.
2. Compute the query C = CO(f +z)e mod N ; if O(C) = success, set z ← 2z,

b′ ← b′ − 1 and repeat this step.
3. Set y ← z/2.
4. Do for b′ + 1 times:
(a) Compute the query C = CO(f + z + y)e mod N ; if O(C) = success, set

z ← z + y.
(b) Set y ← y/2.

5. Compute a candidate M̂ ← �f/z� for MO and return it.

The correctness of this attack algorithm can be seen in basically the same
way as in the case of the LSB-oracle in Section 3, again using Proposition 2 with
k = b.

The algorithm is as efficient as the one in Section 3, it uses only b+2 queries
to retrieve the complete message MO, provided that MO has the full length in
octets; this is fulfilled for 255 out of 256 messages. Thus this oracle also leaks
about one bit per query. Again, the algorithm needs virtually no memory.

Remark 4. A difficulty for the attack algorithm may arise if some bits of an RSA-
encrypted session key are ignored, e.g. a Triple-DES key where the parity bits
are ignored or corrected whenever they are incorrect. In this situation a cleared
parity bit in the octet located at the least significant position will result in Step 2
in z being too big by a factor of 2; the reason is that the most significant set bit
of MO has to be shifted past this critical parity bit to lead to a negative result
of the oracle query. This also happens in Step 4, thus leading to M̂ = �MO/2�;
therefore it is necessary to modify the last step of the attack algorithm as follows:

5’. Compute two candidates for MO as M̂1 ← �f/z� and M̂2 ← �2f/z�,
which effectively leaves a single bit of entropy of the session key; this bit has to
be determined by the adversary from other sources of redundancy like the parity
bits or the symmetrically-encrypted message itself.
Interestingly, the fact that keys for Triple-DES employ odd parity results in the
situation that all messages MO have full length as a leading zero octet – which
would have even parity – is impossible; thus all messages can be recovered by
the attack.

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 331

5 Attacking the Size-Checking Oracle

Given the attacks in the previous sections one might try to fix the vulnerability
by checking on the receiver’s side that the decrypted message is below an a-priori
fixed bound B. We show here that simply checking the size of the message after
decryption may not be sufficient to prevent the attacks of this paper. When not
done very carefully an implementation might actually implement a size-checking
oracle leaking information to an adversary. This is a setting similar to that
of Manger’s attack on RSA-OAEP [12], although his attack cannot be applied
efficiently in our situation here. This is due to the running time containing an
expression exponential in N/B.

Definition 1. (see [14]) A number n with factorisation n =
∏k

i=1 pi with pi

prime is called y-smooth if pi ≤ y for 1 ≤ i ≤ k.

Definition 2. (see [1]) A number n with factorisation n =
∏k

i=1 pi with pi

prime and pi ≥ pi+1 is called semismooth with respect to y and z if p1 ≤ y
and p2 ≤ z. We also say in this case that n is (y, z)-semismooth.

The next Proposition essentially allows to convert the size-checking oracle
into an oracle that answers requests of the type “Does p divide the secret message
MO?”, i.e. a test for divisibility. Therefore we call the attack based on this oracle
the divisibility attack.

Proposition 3. Let B < N , x ∈ {0, . . . , B − 1} and a such that 1 ≤ a < N/B
and gcd(a,N) = 1. Let y = x/a mod N . Then y ∈ [0, B) if and only if a|x.

Proof. The claim is clear for a|x. Assume now y ∈ [0, B). Then we have ay ∈
{0, a, 2a, . . . , (B − 1)a}. Furthermore, for 0 ≤ t ≤ (B − 1) it is ta < N as
a < N/B, i.e. no wrap-around occurs when reducing modulo N . It follows that
ay = a y mod N and thus ay = x. We find that x ∈ {aj|1 ≤ j < B}, i.e.
a|x. ��

The attack based on the oracle provided by Proposition 3 tries to extract
a large smooth part of the message MO and to find the rest of the message by
other means, e.g. by offline search using brute force.

The attack algorithm is as follows:

Parameters: Fix a bound S for the smooth part of MO and a bound T for the
amount of offline work; both S and T may depend on the bound B.

Input: A size-checking oracle O with public RSA-key (N, e) and a challenge
CO =M e

O mod N derived from MO with 0 < MO < B; MO is known only
to O.

Output: If successful, the message MO.
State variables: m′, the currently known smooth part of MO; c′, the RSA

encryption of MO/m′.

332 Ulrich Kühn

1. Initialise m′ ← 1, c′ ← CO.
2. For each prime p ≤ S (assuming gcd(p,N) = 1)
(a) Compute the next query C = c′/pe mod N .
(b) If O(C) = success (i.e. p | MO

m′), set m′ ← pm′ mod N , c′ ← c′/pe

mod N , and go to step 2a.
(c) Otherwise, go to the next prime.

3. For each mt ≤ T test if c′ = me
t mod N . If so, return M̂ ← mtm

′ mod N
as candidate for MO.

4. If the execution path arrives here, abort, as MO cannot be recovered with
these settings.

The correctness of the attack algorithm is based on an invariant that is
maintained in Steps 1 and 2:

C = (m′)ec′ mod N. (5)

During Step 2, m′ resp. c′ are modified if and only if Proposition 3 says that the
decryption of c′ is divisible by p. As a result of the loop the S-smooth part of
MO is extracted. Finally, Step 3 tries to find the non-S-smooth part of MO.

Selection of Parameters. The attack works for those messages MO that are
divisible by primes p < S possibly except for a factor bounded by T . Thus the
probability of success is given by the probability that a random message is of
this form.

For certain choices of S and T this is related to the concept of semismooth
numbers, as the attack works for all numbers that are (T, S)-semismooth. There-
fore probabilities of semismoothness give a lower bound on the success probabil-
ities of the attack (see [1, Table 1]). On the other hand, if T < S2 this bound is
also tight, as the non-S-smooth part mt of MO must be a prime in this case.

The following example indicates that an adversary can find the message with
a non-negligible advantage:

Example 1. Assume that keys for 2-key Triple-DES with correct parity, i.e. keys
with 128 bits but only 112 bits of entropy, are encrypted by plain RSA using
a 1024-bit modulus. Thus, B = 2128. Using S = 222 and T = 242 the bound
provided by the semismoothness probability is tight. Experiments with 22 ·214 =
360448 random 128-bit numbers with adjusted parity yielded 559 numbers being
(T, S)-semismooth, representing a fraction of 0.155% ≈ 2−9.3.

Improvements. The attack can be improved by combining it with the approxi-
mation attack, namely by using Proposition 2 with k < b. We will first describe
the method with general parameters and then give a concrete setting.

Assuming that an adversary is willing to invest the queries to the server to
find all factors ofMO below S using the divisibility attack, and further assuming
that for the resulting rest M̂ (free of divisors ≤ S) M̂ < T = 2t holds, Proposi-
tion 2 guarantees that b− t − 2 further bits of M̂ can be found with a process

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 333

similar to the approximation attacks of Sections 3 and 4 with b− t queries, thus
leaving t− (b− t− 2) = 2t− b+ 2 bits to be found by brute force.

The probability of success is that of a random number MO < 2b being divis-
ible by primes below S and leaving a non-S-smooth remainder below T .

In a concrete setting using b = 128 (thus MO < 2128), S = 216 and t =
79, T = 279 results in less than 7000 queries (see [14, Table 3]) to find the small
prime factors ofMO, approximation of 47 bits of M̂ using 49 queries and finding
of 32 bits by brute force. The probability of success has been experimentally
found (using 216 random numbers) to be about 2−6.4 or 1 in 82 random messages.
Many other trade-offs are possible.

6 Attacking ElGamal Encryption

In [8] ElGamal encryption of a message MO is described as C = (gr,MOyr)
where p, g, y = gx is the public key, x the private key, and computation is
done in Zp. Similar to the RSA case, for plain ElGamal encryption no further
padding is applied to the message before encryption. Plain ElGamal encryption
has been shown in [6] to be attackable under certain conditions on the order
of the generator g and the bit-size b of the messages using 2 · 2b/2 modular
exponentiations.

As the message MO is masked by multiplying with yr there is basically
the same multiplicative property as in RSA (this was also noted by Bleichen-
bacher [4]): Given (gr,MOyr), the ciphertext (gr, zMOyr) decrypts to zMO.

This implies that the attacks presented above do also work for plain ElGamal
encryption after minor adaptions without changing the analysis. It should be
noted that, given a susceptible implementation, the attacks do not depend on
the choice of p or the generator g, provided that L(p) > 3b+ c for small c and
MO < B = 2b.

Remark 5. While in [8] ElGamal encryption is proposed with multiplication
modulo p to blind MO with yr, it is also noted there that other reversible op-
erations could be used, e.g. bitwise XOR. This would destroy the multiplicative
property used here and thus make the attacks much harder or even impossible.

The same problem exists with ElGamal encryption based on any other group,
e.g. elliptic curves, provided that the blinding value is combined with the message
by modular multiplication without any other precautions.

7 Practical Impact

In the sequel we will discuss three systems that make use of plain RSA en-
cryption. It should be noted that the assessment that these systems might be
susceptible to the attacks given in this paper is based purely on theoretical
analysis of the specification. Generally, any system using plain RSA might be
susceptible to our attacks if the highlighted implementation issues are present.

334 Ulrich Kühn

Furthermore it should be noted that only the confidentiality of payload mes-
sages is in danger, not their integrity, if the integrity of the messages is properly
protected, e.g. by a digital signature.

7.1 HBCI

The Home Banking Computing Interface (HBCI) [9] is a protocol for providing
a means of online banking to a bank’s customers. To ensure confidentiality of
the messages HBCI employs two alternatives: one is based fully on Triple-DES
and will be ignored here, the other uses a hybrid encryption scheme on which
we will focus. The actual banking messages (including a digital signature) are
encrypted with 2-key Triple-DES in CBC mode under a random session key that
is generated anew for each banking message; this session key is encrypted using
plain RSA. The length parameters given in [9] are a modulus size of 768 bits for
RSA and session keys of 128 bits for Triple-DES (including the correct parity
bits).4

While it is possible to implement the encryption scheme such that our at-
tacks do not work, we are aware of implementations that may be vulnerable. To
be more precise, we found implementations of the cryptographic functionality
with freely available source code, and, according to a source code inspection,
they implement the LSB- and the MSB-oracle.5 On the other hand we have no
example of an implementation instantiating a size-checking oracle.

Interestingly the HBCI specification [9, Sect. VI.2.2.1] explains very carefully
how to generate session keys and how to format them for encryption, but does
not specify how the decryption and session key extraction have to be done.

7.2 OSCI

Another system that might be vulnerable is the (now outdated) version 1.0 of
the Online Services Computing Interface (OSCI) [7] which is a proposal for an

4 The recently published draft of version 3.0 [10] specifies, besides the old method,
encryption of the message key using PKCS #1 padding and longer RSA keys; thus
our attacks do not apply in this case, but one has to guard against the attack of [3].

5 One is an implementation of an HBCI-Client which retrieves the session key from
the last 16 octets of the result of the RSA decryption; these are the least significant
octets. While the attack does not seem to work against a client, the attack from
Section 3 can reveal any intercepted message with only 130 queries to a server that
uses the same method.
The other is a generic implementation, suitable both for server and client. Here the

session key is retrieved from an octet array with the leading zeroes being removed;
but the result is not checked if it is too long, while too short arrays are padded. Thus
the session key is constructed from the most significant 16 octets resulting from the
RSA decryption. Here the attack from Section 4 needs only 130 queries to a server
for obtaining the plaintext of an intercepted message. Remark 4 applies here as the
parity is automatically corrected when it is incorrect.

Side-Channel Attacks on Textbook RSA and ElGamal Encryption 335

XML-based e-government protocol. This version uses basically the same crypto-
graphic functionality as HBCI to conceal messages, although with longer RSA
keys (1023 to 1024 bits). Thus, depending on the actual implementation, a server
implementing this protocol might instantiate one of the oracles examined here.
Again the specification explains in great detail how to encrypt but not in detail
how to decrypt.

Note that the newer version 1.2 as specified in [13] uses PKCS #1 v1.5
padding as part of XML encryption so that the attacks of this paper do not
apply, but instead an implementation has to be guarded against [3].

7.3 Early Version of PEM

A third system that used plain RSA to transport session keys is an early, now
obsoleted version of the Privacy-enhancement for Internet electronic mail (PEM)
as specified in [11]. An important difference to the other systems mentioned
above is that with PEM no server is normally present; instead, a mail reader
performs the decryption under human supervision, so persuading the user to
answer more than 100 queries might be difficult. But as newer versions [2] do
not use plain RSA anymore this possible vulnerability does no longer exist.

8 Conclusion

In this paper we have shown that the decryption oracles examined here all result
in insecure implementations of the decryption process for plain RSA, effectively
destroying the confidentiality of the messages. The oracles are the result of as-
sumptions on the messages during decryption; these assumptions are easily made
when implementing the decryption process, we even found examples of seemingly
vulnerable implementations.

In order to protect oneself against our attacks one has to rigorously check the
padding with zeroes and the size of the message – this avoids the approximation
attacks – and furthermore make sure that an adversary cannot get any informa-
tion on the size of the decrypted message from error codes etc., effectively avoid-
ing the divisibility attack. Our attacks show that plain RSA is indeed a padding
scheme, contrary to the common belief that it does not use any padding.

It should be noted that a decryption process has not only to deal with valid
ciphertexts but also with ciphertexts that are not the outcome of the correspond-
ing encryption process; thus the specification of the decryption has to contain
more than just the reversal to the encryption process. Indeed, the decryption
process has to be specified and implemented very carefully.

Acknowledgment

The author is thankful to the anonymous referees for their helpful comments.
Thanks are also due to Stefan Lucks for helpful discussions.

336 Ulrich Kühn

References

[1] E. Bach and R. Peralta. Asymptotic semismoothness probabilities. Mathematics
of Computation, 65(216):1701–1715, 1996. 331, 332

[2] D. Balenson. RFC 1423: Privacy enhancement for Internet electronic mail: Part
III: Algorithms, modes, and identifiers, Feb. 1993. Obsoletes RFC1115 [11]. 335,
336

[3] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standards PKCS #1. In H. Krawczyk, editor, Advances in
Cryptology – CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 1–12. Springer Verlag, 1998. 324, 325, 334, 335

[4] D. Bleichenbacher. Decrypting ElGamal messages. Message to ietf-open-
pgp mailing list on imc.org, April 1999. http://www.imc.org/ietf-open-pgp/

mail-archive/msg02431.html. 333
[5] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the

AMS, 46(2):203–213, February 1999. 324
[6] D. Boneh, A. Joux, and P.Q. Nguyen. Why Textbook ElGamal and RSA Encryp-

tion Are Insecure. In T. Okamoto, editor, Advances in Cryptology – ASIACRYPT
2000, volume 1976 of Lecture Notes in Computer Science, pages 30–43. Springer
Verlag, 2000. 324, 333

[7] Bremen Online Services. OSCI – Online-Services-Computer-Interface. Candi-
date for Version 1.0, November 2000. http://www.bos-bremen.de/downloads/

kap10 1.html. 334
[8] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In G.R. Blakley and D. Chaum, editors, Advances in Cryptology:
Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer-Verlag, 1985, 19–22 Aug. 1984. 333

[9] HBCI – Home Banking Computer Interface. Specification Version 2.2, May 2000.
http://www.hbci.de/. 334

[10] HBCI – Home Banking Computer Interface. Draft Specification Version 3.0, July
2002. http://www.hbci.de/. 334

[11] J. Linn. RFC 1115: Privacy enhancement for Internet electronic mail: Part III —
algorithms, modes, and identifiers, Aug. 1989. Obsoleted by RFC1423 [2]. 335,
336

[12] J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. In J. Kilian, editor, Advances
in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer Science,
pages 230–238. Springer Verlag, 2001. 324, 325, 327, 331

[13] OSCI Leitstelle. OSCI-Transport Version 1.2, June 2002. See
http://www.osci.de/projekte/osci.html. 335

[14] H. Riesel. Prime Numbers and Computer Methods for Factorization. Birkhäuser,
2nd edition, 1994. 331, 333

	Side-Channel Attacks on Textbook RSA and ElGamal Encryption
	Introduction
	Decryption Oracles
	Notation
	Modeling the Oracles

	Attacking the LSB-Oracle
	Attacking the MSB-Oracle
	Attacking the Size-Checking Oracle
	Selection of Parameters
	Improvements
	Attacking ElGamal Encryption
	Practical Impact
	HBCI
	OSCI
	Early Version of PEM

	Conclusion
	Acknowledgment
	References

