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Abstract. We describe a hardware device for supporting the sieving
step in integer factoring algorithms like the quadratic sieve or the num-
ber field sieve. In analogy to Bernstein’s proposal for speeding up the
linear algebra step, we rely on a mesh of very simple processing units.
Manufacturing the device at moderate cost with current hardware tech-
nology on standard wafers with 200 mm or 300 mm diameter should not
provide any major obstacle.
A preliminary analysis of the parameters for factoring a 512-bit number
with the number field sieve shows that the design considered here might
outperform a TWINKLE device.
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1 Introduction

Current factoring algorithms like the quadratic sieve (QS) or the number field
sieve (NFS) involve a so-called sieving step that is usually considered to be the
most time-consuming part of the whole algorithm. Consequently, the question
arises whether a specialized hardware can be used to achieve a significant speed-
up in this step. For the QS a proposal for such a specialized hardware is due to
Pomerance, Smith and Tuler [8]; according to [7] this special-purpose quadratic
sieve processor “was built but never functioned properly. The point later became
moot due to the exponential spread of low-cost, high-quality computers.”

A more recent proposal for a dedicated sieving hardware, due to Shamir,
is the TWINKLE device [10]. In [5] Lenstra and Shamir analyze this proposal
in more detail and discuss the use of such a hardware in conjunction with the
NFS. A major practical drawback of the TWINKLE device is the fact that it
relies on the use of (expensive) Gallium Arsenide technology with optoelectronic
components; a satisfactory silicon based approach without optical components
seems not to be known.

Recently, Bernstein [1] proposed the use of a ‘classical’ mesh-architecture,
which does not rely on the use of optoelectronic components, for the linear
algebra step of the NFS. For a discussion of this approach we refer to [6]. Here
we want to dwell on the question whether a hardware design similar to the one
considered by Bernstein can be used for speeding-up the sieving step. It turns
out that this approach seems possible indeed, and that it might be more efficient
than using TWINKLE devices.
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Our contribution is organized as follows: after recalling the sieving step of the
NFS to the extent necessary for the sequel, we describe the algorithm we want to
use for sieving, along with the corresponding hardware requirements. Thereafter
we give a rough analysis of the occurring parameter sizes when dealing with 512-
bit numbers. Some remarks on possible improvements and further work conclude
the paper.

2 The Sieving Step in the NFS

For an introduction to the number field sieve we refer to [4]; here we recall only
those aspects of the relation collection/sieving step relevant for the sequel. The
importance of this step is illustrated by the following comment from [6], for
instance: “We conclude that from a practical standpoint, the security of RSA
relies exclusively on the hardness of the relation collection step of the number
field sieve.”

In the first step of the NFS two univariate polynomials f1(x), f2(x) ∈ Z[x]
are chosen that share a common root m modulo n. Typically, f1(x) is of degree 5
and f2(x) is monic and linear:

f1(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

f2(x) = x−m

where f1(m) ≡ f2(m) ≡ 0 (mod n). From these two polynomials two bi-
variate and homogeneous polynomials F1(x, y), F2(x, y) ∈ Z[x, y] are derived
via F1(x, y) := y5 · f1(x/y) resp. F2(x, y) := y · f2(x/y). Now everything related
to f1(x) resp. F1(x, y) is said to belong to the algebraic side, and everything
related to f2(x) resp. F2(x, y) is referred to as the rational side. In particular,
we refer to the sets

Pi := {(p, r) : fi(r) ≡ 0 (mod p), p prime, p < 224, 0 ≤ r < p} ⊆ N
2 (i = 1, 2)

as algebraic and rational factor base, respectively. The upper bound 224 used
here aims at the factorization of a 512-bit number and is taken from [5].

The aim of the relation collection step is to find pairs of coprime integers
(a, b) ∈ Z

2 such that b is positive and the values F1(a, b) and F2(a, b) are smooth.
Having in mind 512-bit numbers, according to [5] a sensible definition of ‘smooth-
ness’ is the following:

Algebraic Side: F1(a, b) factors over the primes < 224, except for possibly 3
primes < 109

Rational Side: F2(a, b) factors over the primes < 224, except for possibly 2
primes < 109

Of course, these parameter choices are debatable: e. g., in [2] a significantly larger
algebraic factor base along with only two (instead of three) large primes is used.
Also, it is common to exclude small primes from the factor bases to speed up
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the sieving step (cf., e. g., [3]). In Section 3 we shall see that for the approach to
sieving considered in this paper, such variations also prove useful.

For finding pairs (a, b) with F1(a, b) and F2(a, b) being smooth, typically
some kind of sieving process is applied to a rectangular region −A ≤ a < A,
0 < b ≤ B where A, B ∈ N. Different techniques are available for organizing this
sieving process. For sake of simplicity, here we focus on so-called line sieving;
some comments on special q sieving are given in Section 5. Denoting by T1, T2

appropriate threshold values for the algebraic and rational side, respectively,
a rough outline of line sieving reads as follows:

b← 0
repeat

b← b+ 1
for i← [1, 2]

si(a)← 0 (∀a : −A ≤ a < A)
for (p, r)← Pi

si(br + kp)← si(br + kp) + log2(p) (∀k : −A ≤ br + kp < A)
for a← {−A ≤ a < A : gcd(a, b) = 1, s1(a) > T1, and s2(a) > T2}
check if both F1(a, b) and F2(a, b) are smooth

until enough pairs (a, b) with both F1(a, b) and F2(a, b) smooth are found

E. g. in [5] it is pointed out that in the last step of the main loop, i. e., when
testing F1(a, b) and F2(a, b) for being smooth, it is computationally too expensive
to use a simple trial-division over the primes in the factor base. The sieving
device described below takes this problem into consideration: when reporting
that some F1(a, b) and F2(a, b) values are smooth, also prime factors hereof that
have been found during sieving are reported.

3 A Sieving Device

3.1 Schimmler’s Sorting Algorithm

An essential algorithmic tool we will use for sieving is Schimmler’s sorting algo-
rithm: assume we are given an M ×M mesh of processing units (Qi,j)1≤i,j≤M

where M := 2n and each processing unit Qij stores some integer qi,j . Then
Schimmler’s sorting algorithm can sort these M2 numbers in 8M − 8 ‘steps’
according to any of the following orders on the indices (i, j) of the processing
units Qi,j :

left-to-right: (1, 1) ≤ (1, 2) ≤ . . . ≤ (1, M) ≤ (2, 1) ≤ . . . ≤ (M, M)
right-to-left: (1, M) ≤ (1, M − 1) ≤ . . . ≤ (1, 1) ≤ (2, M) ≤ . . . ≤ (M, 1)
snakelike: (1, 1) ≤ (1, 2) ≤ . . . ≤ (1, M) ≤ (2, M) ≤ (2, M − 1) ≤ . . . ≤ (M, 1)

A detailed explanation of this algorithm is given in [9, 1], for instance. Here it is
sufficient to recall an elementary ‘step’ of the algorithm: in analogy to the well-
known odd-even transposition sorting, in a single step each processing unit Qij

communicates with exactly one of its horizontal or vertical neighbours. So let
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Q̂, Q̃ be two communicating processing units, and denote by q̂, q̃ the integers
stored in Q̂, Q̃, respectively. At the end of one ‘elementary step’ one of the two
processing units, say Q̂, must hold min(q̂, q̃) while the other one has to store the
value max(q̂, q̃). To achieve this we can proceed as follows:

1. Q̂ sends q̂ to Q̃, and Q̃ sends q̃ to Q̂. E. g., if the stored integers represent
natural numbers < 224, this operation can be completed in one clock cycle
via a unidirectional 24-bit bus in each direction.

2. Both Q̂ and Q̃ compute the boolean value exchange := (q̃ < q̂). E. g., if q̂
and q̃ are 24-bit numbers, this comparison can be done in one clock cycle.

3. If exchange evaluates to true, then Q̂ stores q̃ and deletes q̂. Analogously, Q̃
keeps q̂ and deletes q̃, in this case. If exchange evaluates to false, then both
Q̂ and Q̃ keep their old values and delete the values received in the first
step. Again, for 24-bit integers this operation does not require more than
one clock cycle. In fact it is feasible to integrate this step into the previous
one without requiring an additional clock cycle.

In summary, when dealing with natural numbers < 224, Schimmler’s sorting
algorithm enables us to sort M2 numbers in less than 8M steps where each step
takes 2 clock cycles. If pairs of integers (q, r) have to be sorted according to the
size of q, this can easily be done within the same time. In Step 2 and Step 3
the bus is not used and thus can transmit r. On behalf of exchange this value is
stored or ignored by the appropriate unit.

Before applying these observations to the sieving step of the NFS, for sake
of completeness, we would like to point out that the idea of making use of
Schimmler’s sorting algorithm within the sieving step is also mentioned (without
further explanation) in [1, Section 5, ‘Plans.’].

3.2 Sieving with a Fast Sorting Hardware

For the ease of exposition we first describe the basic outline of our algorithm
and postpone a more detailed discussion of the hardware requirements and the
resulting performance to a separate paragraph.

The Sieving Algorithm Assume that in a precomputation step the factor
bases P1 and P2 have been computed. For the moment we also assume that
all primes that do not exceed some bound S are excluded from the two factor
bases; for 512-bit numbers we may think of S = 222, i. e., the 295,947 smallest
primes do not occur in P1 and P2—of course we must not ignore that many
small primes, and we will discuss later how to lower the bound S.

Now we load into each processing unit of the sorting network one of the
|P1| + |P2| tuples (p, r, i) ∈ N

2 × {1, 2} with (p, r) ∈ Pi. In other words, each
processing unit holds an element from one of the factor bases along with a flag i
that indicates to which of the two factor bases the stored value belongs. For sake
of simplicity let us assume that |P1| + |P2| coincides with the number M2 of
processing units.
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For the actual sieving of an interval −A ≤ a < A (with b fixed), at first we
divide this interval into 2A/S subintervals, each of size S (throughout we assume
that S | 2A). Then we know that for (p, r) ∈ P1 ∪ P2 arbitrary, each of these
subintervals contains no more than one element r̃ with r ≡ r̃ (mod p). Further
on, for ã an arbitrary number from a given subinterval and (p, r) ∈ Pi, the value
�log2(p)� is added to si(ã) during line sieving if and only if ã ≡ br (mod p) (i =
1, 2). The initial values stored in the processing units correspond to b = 1, and
to identify potentially useful (a, 1)-pairs we first apply Schimmler’s algorithm to
‘collect equal residues’, namely we perform the following computation:

(I) Sort the triples (p, r, i) in snakelike order (smaller values first) accord-
ing to the following order: (p0, r0, i0) < (p1, r1, i1) ⇐⇒ r0||i0 < r1||i1,
where rj ||ij denotes the value obtained by concatenating the registers
where rj and ij are stored.

Now all pairs (p, r) that share the same r- and i-values are neighbours of
each other. Thus, all (p, r)-pairs that belong to the same factor base and that
contribute a value log2(p) to the same counter si(−A+1·r) during line sieving are
neighbours. In Step (II)–(VI) we determine (by means of local computations)
whether for both factor bases the value

∑
p|(−A+r)�log2(p)� (with p ranging

over P1 resp. P2) exceeds the corresponding threshold value T1 resp. T2. Within
each sequence of identical r-values an ok-flag will be set if and and only if both
threshold values are exceeded.

To do so, first of all each processing unit determines the approximate bit
length of the currently stored prime number:

(II) Each processing unit initializes an internal counter c to �log2(p)� by count-
ing the leading zeroes in p (where (p, r, i) is the currently stored value).

Next, for each sequence of equal r-values referring to the same factor base,
we want to identify the first resp. last element of the sequence—in dependence
of the stored factor base index i. The processing units holding these values play
a distinguished role in the sequel.

(III) Each processing unit sends r||i to its two neighbours in the snakelike order.
A processing unit with i = 1 receives an r||i-value different from its own
(from its successor) if and only if it is the last one in a sequence of equal
r||i-values. Analogously, processing units with i = 2 can decide whether
they are at the beginning of a sequence of equal r-values with i = 2.

For each sequence of r-values we want to compute
∑

p|(−A+r)�log2(p)� for p
ranging over the primes in the algebraic and the rational factor base, respectively:

(IV) Each processing unit not at the end of an r-sequence (i = 1) or not at
the beginning of an r-sequence (i = 2), sends its �log2(p)�-value c to its
neighbours in the snakelike order. Further on, these processing units receive
and store the c-value from their predecessor (i = 1) resp. successor (i = 2).
Processing units at the end of an r-sequence (i = 1) or at the beginning
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of an r-sequence (i = 2) send 0 and add the value received from their
predecessor resp. successor to their current counter c.
Depending on the expected maximal number of prime divisors of theFi(a, b)
within a factor base, this step is repeated several times (for 512-bit numbers
say ≈ 10).

Due to the order used during sorting in Step (I), for an r-value that occurs
both with factor base index i = 1 and i = 2, the two processing units storing∑

p|(−A+r)�log2(p)� with p ranging over P1 and P2 respectively, are neighbours.
Consequently, for deciding whether the value −A + r belongs to a potentially
useful (a, 1)-pair, these two processing units compare their counter c with the
corresponding ‘smoothness threshold’ Ti; these threshold values are identical for
all processing units and adapted for new a-subintervals (through an external
signal) if required.

(V) The processing units that summed up the �log2(p)�-values in their counter c
compare c with the corresponding threshold value Ti. If c > Ti then a flag
ok is set to 1, otherwise ok is set to 0.
Thereafter, in case of factor base index i = 1, the stored ok||r-value is
sent to the successor. Dually, for i = 2 the stored ok||r-value is sent to
the predecessor. Finally, the stored ok-value is left unaltered, if the stored
ok||r-value coincides with the received one, otherwise ok is set to 0.

Hereafter, the ok-flags of the two processors ‘in the middle of an r-sequence’
are set if and only if both smoothness conditions are met, i. e., a potentially
useful (a, 1)-pair has been found. As we do not want to loose the prime factors
found during sieving, we next broadcast these (identical) ok-flags to all elements
of the corresponding r-sequence:

(VI) Repeating Step (III) with the roles of i = 1 and i = 2 interchanged, the
processing units with i = 1 notice whether they are at the beginning of
an r-sequence. Dually, for i = 2 the end is recognized.
These ‘border units’ send 0 in the sequel to ensure that only the correct
prime factors are marked. The other processing units send their ok-flag.
The processing units with i = 1 receive and store the ok-flag from their
successor and those processing units with i = 2 from their predecessor.
Similarly as in Step (V), in dependence on the number of expected prime
factors, this operation is repeated several times.

At the end of Step (VI) exactly those (p, r, i)-triples are marked with ok = 1
that we want to have as output to examine the smoothness of F1(−A + r, 1)
and F2(−A+ r, 1) in more detail:

(VII) To output the marked triples, we sort in snakelike1 order (larger values first)
according to the following order: (p0, r0, i0, ok0) < (p1, r1, i1, ok1) ⇐⇒

1 left-to-right or right-to-left would work as well here
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ok0||r0 < ok1||r1. Then, depending on the maximal number of ‘hits’ ex-
pected, a fixed part of the processing units writes their (p, r, i, ok)-values
in parallel into the output buffer.
As there are only very few hits expected within one subinterval of size S,
this step can be simplified: first sort the columns according to the order
above; thereafter with high probability all marked triples are within the
first few rows (for 512-bit numbers say ≈ 4)2. Next, we sort these first few
rows left-to-right, and write them into an output buffer—possibly several
rows in parallel.

The output will serve as basis for more precise smoothness tests discussed
in Section 4. Here we focus on the problem of how to continue with the sieving
of the next subinterval once the first subinterval [−A, . . . ,−A+ S − 1] has been
sieved as described above. For passing to the next subinterval each processing
unit must adapt its r-values to the new start −A + S of the sieve subinterval.
This can be done with simple ‘local’ computations, i. e., there is no need to load
new data into the mesh. At this we exploit that all processed prime numbers are
larger than the length S of the sieving interval:

(VIII) Each processing unit performs the following operation: r is replaced by
r − S, and in case of r − S < 0 the prime p is added.

Now we are in essentially the same position as before Step (I), but now the
processing units are initialized for sieving an interval of length S that starts at
−A + S. Consequently, we apply the Steps (I)–(VIII) again, and continue in
this way until the complete interval −A ≤ a < A of a-values has been sieved.—
Without having to load new data into the mesh. Once the complete interval has
been processed, the current value of b must be increased by 1. For doing so, new
data is loaded into the network: in analogy to the case b = 1, each processing
unit is initialized with a triple of the form (p, b · r (mod p), i) where (p, r) ∈ Pi.
In this way the sieving is continued until enough coprime values a, b with F1(a, b)
and F2(a, b) being smooth are found.

We are still left to explain in more detail how the smoothness testing is
actually done; in particular all prime numbers ≤ S have not been taken into
account so far. But before dwelling onto this topic, we take a more detailed look
on the hardware characteristics and the possible performance of the above device
when dealing with 512-bit numbers.

Hardware Requirements To analyze the technical limits of the above algo-
rithm we first estimate the number of transistors required for one processing
unit when dealing with 512-bit numbers. Each of these units requires

2 registers with 24 bit each (p, r),

2 For the very few subintervals with |a|, |b| very small a different procedure should be
used, as otherwise too many useful candidates might be lost. This part is so small,
however, that even a few hours on a normal PC are sufficient to take care hereof.
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1 adder/compare unit for 25-bit numbers,
2 registers with 1 bit each (i, ok),
3 registers with 8 bit each (c, T1, T2), and
2 unidirectional 25-bit connections with each of the 4 neighbours; one to send
and one to receive data

to perform the algorithm above. One D Flip-Flop can be realized with 8 tran-
sistors, and an adder of the appropriate size with about 40 transistors per bit.
In total, around 1600 transistors are required for these basic elements. Together
with 4 multiplexers for the 25-bit connections (4 transistors per bit each) and
the additional program-logic, e. g., to store internal states like first/last unit in
a sequence of equal r-values, we estimate the number of transistors required per
processing unit as 2500 transistors. (In [6] a slightly simpler unit was assumed
to need 2000 transistors.) Within each cell only a very small program logic is
required; most commands determine how to set the multiplexers and are identi-
cal within one row resp. column. These commands can be generated outside the
square area of processing units and distributed through a couple of connections.
The only part of the procedure that requires more logic within the units is the
calculation of �log2(p)�; it might be more efficient to store and communicate this
8-bit value through the complete calculation.

With current 0.13 µm technology (used for the Intel Pentium 4 “Northwood”
processor) more than 400,000 transistors and thus at least 160 processing units
fit on 1 mm2. On the square area of a wafer with 200 mm diameter 3.2 million
units can be placed; on a 300 mm wafer, as used for the Pentium 4 ‘Northwood’
processor, 7.2 million processing units fit. Thus it is certainly possible to produce
a mesh of 211 × 211 processing units with current technology.

This estimation does not take into account the problem of defective cells.
Additional rows and columns and some logic have to be added to the layout
to bypass complete rows and columns with defective units. On a 300 mm wafer
there should be enough space left to take care of this problem.

Performance If a mesh with M2 = 222 processing units is given we want to
analyze its use for the sieving step in the NFS for a 512-bit number. The size of
the factor bases and the regions to be sieved are taken from [5] to easily compare
the suggested hardware with the version of the TWINKLE device adapted for
the NFS.

With subintervals of length S = 222, on a mesh with 222 processors a large
part of the factor bases, namely all pairs (p, r) ∈ Pi (i = 1, 2) with 217 < p < 224,
can be processed in the form described in Section 4: for all these primes the triples
(k · p, r + (l − 1) · p, i) with 1 ≤ l ≤ k := �222/p� are stored. In summary, then
2, 025, 624 processors are needed for the rational factor base and about the same
number for the algebraic factor base. The 12, 251 primes smaller 217 have to be
processed by the trial division pipeline described in Section 4.

With a conservative estimation the mesh can be expected to work at a clock
rate of 500 MHz; the communication across the border of the wafer is slower
by a factor 4. Using a 48-bit I/O bus for loading the data for the 222 cells
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sequentially onto the wafer requires 224 clock cycles or 0.034 seconds; with 4 · 48
I/O pins this initialization can be finished in less than 0.01 seconds.—If an
additional powerful (standard) processor and 32 MB of memory are placed on
the remaining ≈ 35% of the wafer outside the square area, this operation can be
speeded up significantly.

Schimmler’s sorting algorithm has to be performed in Step (I) and requires
about 8M steps with 2 clock cycles each. The reduced version in Step (VII)
works with about 2M steps. The rest of the algorithm, Steps (II)–(VI) and (VIII)
require a small fixed number of clock cycles (less than 100) and are neglected
for the following estimations.

For M = 211 an interval of length S = 222 can be sieved within 20 · 211 clock
cycles. A line of the sieving region required for factoring a 512-bit number with
the NFS has a length of 1.8 · 1010; it can be sieved in 4292 runs of the above
algorithm within 0.36 seconds. The modified TWINKLE device with 2 LEDs per
cell, working at a clock rate of 10 GHz, requires 1.8 seconds for the same interval
or 18 seconds, when working at the lower speed of 1 GHz; there are about 10
wafers with 6 inches (≈ 152 mm) required for this TWINKLE architecture.

To sieve the complete region necessary for the 512-bit factorization, 9 · 105

such lines are required and can be processed in less than 4 days with the device
described here.

Alternatively, a different (slower) setting of the parameters can be chosen
to reduce the false alarms by allowing only two large primes on the algebraic
side instead of three (cf. [2]). In this case the computing time of the further
processing (like trial division and checking for large primes) is reduced. To find
still enough relations one has to increase the size of the algebraic factor base.
This can be achieved if the size of the subinterval in the above procedure is
reduced to S := 221: in the 222 processing units the part of the factor bases
related to the primes p with 216 < p < 224 can be stored analogously as above.
Then 1, 577, 786 processors are required for the rational factor base and about
the same number for the algebraic factor base related to the primes < 224. The
remaining 1, 030, 000 processors can be used to deal with the 985, 818 primes
up to 225. In this setting only 6542 primes smaller 216 have to be taken into
account for the trial division pipeline, and the size of the algebraic factor base
has nearly doubled. Compared to the previous parameters the time for sieving
has increased by a factor 2 to less than 8 days.

4 Handling Small Primes and Testing Smoothness

The assumption that the mesh handles only primes p > S is overnecessarily
restrictive. If we are willing to dedicate more than one processing unit to a pair
(p, r) ∈ P1 ∪ P2, then at least primes that are not ‘much’ smaller than S can be
dealt with: let (p, r) ∈ P1 ∪P2 and k ∈ N minimal with k · p > S. Then we use k
processing units for representing the triple (p, r, i) where the lth unit (1 ≤ l ≤ k)
holds the value (k · p, r + (l − 1) · p, i). Note here that this approach introduces
an inaccuracy into the summation of the �log2(p)�-values: if we proceed during
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the summation as described in Section 3.2, we essentially add �log2(kp)� instead
of �log2(p)�. If one is not willing to accept this inaccuracy, one may think of
adding a fourth component to the triples (k ·p, r+(l−1) ·p, i) to store the value
�log2(p)�. Of course, whenever two processing units exchange their currently
stored values throughout Schimmler’s sorting algorithm, the additional fourth
component must also be taken care of then. To do so without sacrificing time,
one can use a broader bus between the processing units. E. g., if �log2(p)� is
represented with 8 bits, then 4 extra bits on the bus are sufficient to transmit
this value within two clock cycles.—Step (II), and therewith also parts of the
program logic, obviously become superfluous when �log2(p)� is stored explicitly.

Using S = 222, on the rational side all 1,065,620 primes p with 217 < p < 224

can be represented with 2,025,624 processing units in this way.—And analogously
on the algebraic side. Using S = 221, the 1,071,329 primes p with 216 < p < 224

on the rational side can be handled with 1,577,786 processing units. But even
with the modification just described, for S = 222 resp. S = 221 so far we still
ignore the smallest 12,251 resp. 6,542 prime numbers; these remaining primes
can be dealt with in a ‘trial division pipeline’:

Once the sieving of a subinterval is completed, the output of the sieving device
tells us promising (a, b)-pairs (note that the a-value corresponding to a (p, r, i)-
triple of the output is given by a = −A+(u− 1) ·S+ r with u ≥ 1 denoting the
number of the subinterval sieved). A separate processor reads the output buffer
of the sieving device and stores a and b along with the corresponding (p, i)-values
found during sieving, if gcd(a, b) = 1 holds.

If in the earlier �log2(p)�-summation the inaccuracies—due to multiples j ·p—
have not been taken into account, this processor can also recompute the sum
of the logarithms of the potential prime factors in each factor basis and com-
pare them with the corresponding threshold value Ti. In this way the number of
candidates that have to be explored in more detail can be reduced. For all (a, b)-
pairs that passed the tests so far, the result of the two �log2(p)�-summations
is appended to the already stored list of prime factors of the Fi(a, b). The val-
ues F1(a, b) and F2(a, b) are also stored and passed to a ‘trial division pipeline’
that divides out small prime factors (in the above example with S = 222 resp.
S = 221 the first 12,251 resp. 6,542 primes have to be dealt with here): this
device has a simple pipeline structure where in each step of the pipeline a small
prime factor is divided out if this divisor is actually present, and the result is
passed on to the next stage of the pipeline. For very small primes one may also
devote several stages of the pipeline to one prime factor; e. g., to divide out all
powers of 2 up to 27 one can use three division units that try to divide out 24,
22, and 21, respectively.

The output of this pipeline is forwarded to a processor that determines the bit
length of the result and subtracts the corresponding �log2(p)�-sum hereof. (Note
that by construction the output of the division pipeline alternately refers to the
algebraic and rational side, and the algebraic and rational �log2(p)�-sum have
been stored right before passing F1(a, b), F2(a, b) into the division pipeline.)
If the obtained value is too large for being the length of a number consisting
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of two resp. three large primes, the candidate pair (a, b) is not processed any
further—in the corresponding table entry a ‘to do’ flag will be set to zero in this
case. Otherwise the factors F̃1 and F̃2 of F1(a, b) and F2(a, b) obtained from the
division pipeline are appended to the table entry for (a, b) and the table entry
is marked by setting a ‘to do’ flag.

While the two processors before and after the division pipeline fill the table
row by row in this way, the entries marked with ‘to do’ will be processed by
several additional processors (working in parallel) as explained in a moment. In
particular the processing of these entries—which might, e. g., be done by a PC
network—has to be fast enough so that at the time when the table would be
full, a wrap around is possible; entries already processed will then have a reset
‘to do’ flag.

As indicated already, the actual factorization of F1(a, b) and F2(a, b) is per-
formed by several additional processors. These processors are assumed to be able
to do long integer arithmetics: they look for set ‘to do’ flags in the table, read
out the table entry and reset the ‘to do’ flag. Now the F̃i values are divided by all
prime factors that have been found during sieving. Finally, the resulting cofactor
is checked for being composed of only two or three primes. If this is the case, the
small factors removed by the division pipeline will have to be recovered—say by
factoring the values Fi(a, b)/F̃i (i = 1, 2) with trial division. Once a complete
(a, b)-pair has been processed (and if necessary the resulting factorizations been
written in an output buffer), the next table entry with set ‘to do’ flag is looked
for and processed.

Although several details are ignored in the above discussion, we think it
gives ample evidence that neglecting smaller prime values during the actual
sieving does not provide fundamental difficulties. In fact, for 512-bit numbers one
might think about locating the division pipeline and the supporting processors
(possibly including the hardware that provides the (p, (b · r) mod p, i)-triples to
be loaded into the processing units) on the same 300 mm wafer as the actual
sieving circuit.

5 Improvements and Further Work

The sieving device described above is certainly not optimal, and several questions
seem worth to be explored. We would like to mention some interesting issues here:

– A crucial point is the reinitialization of the device when incrementing b.
In particular, if one thinks about implementing so-called q sieving (instead
of line sieving) this point becomes important, as here the a-intervals are
shorter. If one is willing to store the initial r-values and to add some addi-
tional hardware for an externally controlled shift-and-add procedure, updat-
ing the b-values should be possible within ≈ 100 clock cycles (in parallel in
each processing unit). Of course, the additionally stored r-value also has to
be taken care of during the sorting.
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– A well-known optimization of the line-sieving procedure that is exploited in
normal PC implementations is to exclude sieving regions with both a and b
even. Assuming w. l. o. g. the numbers A and S to be even one can think of
increasing the bit size of the processed numbers by one and using a similar
trick in the above device: whenever b is even, we subtract S twice (and if
necessary add 2p) to get into the next subinterval.

– Also the question of scalability should be explored further, as the above
design exploits that the complete sieving circuit is located on a single wafer.

6 Conclusions

We have described a dedicated hardware for supporting the sieving step in fac-
toring algorithms like the NFS. The given rough analysis for the case of 512-bit
numbers gives evidence that it might be feasible to manufacture such a circuit
on the basis of a standard wafer, and that such an approach could possibly be
preferable to the optoelectronic approach used for the TWINKLE device.
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