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Abstract. The aim of this work is to examine the relation between
the notions of semantic security and indistinguishability against chosen
ciphertext attacks. For this purpose, a new security notion called non-
dividability is introduced independent of attack models, and is shown
to be equivalent to each of the previous two notions. This implies the
equivalence between semantic security and indistinguishability under any
form of attack.

1 Introduction

The security of public key cryptosystems is usually classified from the point of
view of their goals and attack models. The (currently known) standard goals of
public key cryptosystems are as follows. (i)Semantic security (SS)[10]: In this
security notion, any adversary (probabilistic polynomial-time Turing machine)
cannot obtain any partial information about the plaintext of a given ciphertext.
This notion corresponds to a computational version of the “perfect secrecy”
introduced by Shannon[14]. (ii)Indistinguishability (IND)[10]: Here, given a ci-
phertext of one of two plaintexts any adversary cannot distinguish which one
is encrypted. This notion is rather artificial, but in considering provable secu-
rity of a public key cryptosystem it is usually convenient to employ this notion
as the goal of the system. (iii)Non-malleability (NM)[6]: Given a ciphertext of
a plaintext any adversary cannot construct another ciphertext whose plaintext
is meaningfully related to the initial one.

On the other hand, the (currently known) standard attack models of public
key cryptosystems are as follows. (a)Chosen plaintext attacks (CPA): In this
model, an adversary has access to an encryption oracle. That is, she can choose
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Fig. 1. Relations among security notions

a set of plaintexts and obtain the corresponding ciphertexts. (b)(Non-adaptive)
chosen ciphertext attacks (CCA1)[12]: In this model, an adversary has, in ad-
dition to the ability of the CPA adversary, access to a decryption oracle before
she obtains a challenge ciphertext. That is, she can choose a set of ciphertexts
and obtain the corresponding plaintexts during this period. (c)Adaptive chosen
ciphertext attacks (CCA2)[13]: In this model, an adversary has, in addition to
the ability of the CCA1 adversary, access to a decryption oracle even after she
obtains a challenge ciphertext. However, she is prohibited from asking the oracle
to decrypt the challenge ciphertext itself.

Several security notions can be constructed by combining these goals and
attack models, and, of course, there are relations between some of these notions.
In fact, the following facts on such relations have been known so far (figure 1).
First, regarding the attack models, the power of the adversaries gets stronger in
the order CPA, CCA1 and CCA2, so does the strength of the security notions.
Next, regarding the goals, it has been shown that NM implies IND in general,
but, in CCA2 model, IND also implies NM[2]. On the other hand, SS is equiva-
lent to IND in CPA model[7, 10], but, in CCA models, the equivalence has not
been strictly verified so far (see [2]). Observe that, in proposing a public key
cryptosystem, it is conventional to claim, based on the fact IND-CCA2⇔NM-
CCA2 mentioned above, that the system has the strongest security by showing
that it is secure in the sense of IND-CCA2 (see, e.g. [3, 5, 15]). However, in the
background of this claim, it seems to be implicitly assumed that the equivalence
between SS and IND holds under CCA models as well. Hence, formalizing and
proving this equivalence under this stronger attack model (CCA) is of impor-
tance. In this paper, we show that this assumption is true, that is, SS and IND
are equivalent under any attack model.1

The rest of this paper is organized as follows. We first extend the definition of
semantic security to CCA models in section 2. In section 3, we introduce a new
security notion called non-dividability which is equivalent to semantic security
1 After the work of this paper had been completed, the authors were informed that
Goldreich had independently shown the same result in a chapter of his book recently
revised[8], which deals with wide-ranging subjects of encryption and contains several
new results.
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under any form of attack. In section 4, we show that this notion is equivalent
to indistinguishability, which yields that semantic security is equivalent to indis-
tinguishability under any form of attack. We devote section 5 to the conclusion
of this paper.

2 Preliminaries

In this section, we consider two security notions, semantic security and indistin-
guishability. First, we provide the definition of indistinguishability according to
Bellare et al.[2], and then that of semantic security according to Goldreich[7].
Note that the former is independent of attack models, while the latter supposes
CPA model. Thus we next give an extended version of the definition of semantic
security which is based on the framework by Bellare et al.[2], and so is indepen-
dent of attack models. Finally, we show that the extended version of semantic
security implies the original one (in CPA model), which ensures the validity of
the extension.

We start with providing some definitions which will be used later.

Definition 1. A public key encryption scheme is a triplet of algorithms, PE =
(K, E ,D), such that

– the key generation algorithm K is a probabilistic polynomial-time algorithm
which takes a security parameter k ∈ IN and outputs a pair (pk, sk) of match-
ing public and secret keys,

– the encryption algorithm E is a probabilistic polynomial-time algorithm which
takes a public key pk and a message x and outputs a ciphertext y,

– the decryption algorithm D is a deterministic polynomial-time algorithm
which takes a secret key sk and a ciphertext y and outputs either a message x
or a special symbol ⊥ to indicate that the ciphertext is invalid,

where Dsk(Epk(x)) = x for all x and (pk, sk).

Definition 2. A function ε : IN → IR, ε(n) ≥ 0 for n ∈ IN, is called negligible
if for every constant c ≥ 0 there exists an integer kc such that ε(k) < k−c for all
k > kc.

Now we consider the notion of indistinguishability. This notion was first in-
troduced by Goldwasser and Micali[10], and later a version of this notion was
provided by Bellare et al.[2]. We now describe the definition of this notion ac-
cording to Bellare et al.[2]. Let A = (A1, A2) be an adversary attacking an
encryption scheme PE = (K, E ,D). In the first stage of the attack by the adver-
sary, algorithm A1, given the public key pk, outputs a triplet (x0, x1, s), where
the first two components are messages of the same length, and the last one is
state information. A random one of x0 and x1, say xb, is selected, and then xb

is encrypted to give a challenge ciphertext y. In the second stage of the attack
by the adversary, algorithm A2, given (x0, x1, s, y), guesses the bit b, i.e. which
of the two messages is encrypted. If any adversary can guess the bit essentially
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no more than random guess, then PE is called secure in the sense of IND-ATK,
where ATK represents the attack model of A, i.e. CPA, CCA1, or CCA2. The
formal definition is as follows.

Definition 3 (Indistinguishability[2]). Let PE = (K, E ,D) be an encryp-
tion scheme and let A = (A1, A2) be a polynomial-time adversary. For atk ∈
{cpa, cca1, cca2}, b ∈ {0, 1} and k ∈ IN, consider

Experiment Expind−atk−b
PE,A (k)

(pk, sk) R← K(k); (x0, x1, s)← A
O1(·)
1 (pk); y ← Epk(xb);

d← A
O2(·)
2 (x0, x1, s, y);

return d

where |x0| = |x1| and

O1(·) = ε and O2(·) = ε for atk = cpa

O1(·) = Dsk(·) and O2(·) = ε for atk = cca1
O1(·) = Dsk(·) and O2(·) = Dsk(·) for atk = cca2

with ε being the function which, on any input, returns the empty string. In the
case of CCA2, A2 is prohibited from asking its oracle to decrypt y. Let

Advind−atk
PE,A (k) = Pr[Expind−atk−1

PE,A (k) = 1]− Pr[Expind−atk−0
PE,A (k) = 1],

where the probability is taken over the internal coin tosses of all the algorithms.
Then PE is said to be secure in the sense of IND-ATK if Advind−atk

PE,A (k) is
negligible for any A.

The notion of semantic security was first introduced by Goldwasser and
Micali[10], and later refined by Goldreich[7]. The definitions formalize the in-
tuition of privacy that whatever can be efficiently computed about a message
from its ciphertext can also be computed without the ciphertext. This is a poly-
nomially bounded version of “perfect secrecy” introduced by Shannon in the
context of information theoretic security[14]. Now we describe the definition of
this notion according to Goldreich[7]. Let A be an adversary attacking an en-
cryption scheme PE = (K, E ,D). First, a random message x is generated from
a message space Xk samplable in polynomial time, and then x is encrypted to
give a challenge ciphertext y. Given the public key pk, the length |x| of the mes-
sages, a priori information h(x) of x, and a challenge ciphertext y, the adversary
A tries to extract partial information f(x) of the message x. If for every A there
exists its simulator A′ which can guess f(x) only from (pk, |x|, h(x)) (i.e. with-
out y) essentially as well as A, then PE is called secure in the sense of SSG-ATK.
The formal definition is as follows.

Definition 4 (Semantic security under CPA model[7]). Let PE = (K, E ,
D) be an encryption scheme. Let A be a polynomial-time adversary and A′ be
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a polynomial-time algorithm which simulates A (A′ is called a simulator of A).
For k ∈ IN, a polynomial-time samplable message space Xk, a polynomial-time
computable function h of Xk into {0, 1}∗ and a function f of Xk into {0, 1}∗,
consider

Experiment Expssg−cpa−1
PE,A (k, Xk, f, h)

(pk, sk) R← K(k); x← Xk; y ← Epk(x); v ← A(k, pk, |x|, h(x), y);
if v = f(x) then d← 1 else d← 0;
return d

Experiment Expssg−cpa−0
PE,A′ (k, Xk, f, h)

x← Xk; v ← A′(k, |x|, h(x)); if v = f(x) then d← 1 else d← 0;
return d

where |x| = |x′| for every x, x′ ∈ Xk. Let

Advssg−cpa
PE,A,A′(k, Xk, f, h) =Pr[Expssg−cpa−1

PE,A (k, Xk, f, h) = 1]

− Pr[Expssg−cpa−0
PE,A′ (k, Xk, f, h) = 1].

Then PE is said to be secure in the sense of SSG-CPA if for every A there exists
A′ such that Advssg−cpa

PE,A,A′(k, Xk, f, h) is negligible for every Xk, f and h.

Note that, in the above definition, there is neither restriction to the computabil-
ity of f nor need for the adversary to know f .

The above definition of semantic security implicitly supposes CPA model.
Thus, for our purpose, it is necessary first to extend the definition to CCA
models. Now we give a definition of semantic security under any attack models
based on the framework of of Bellare et al.[2]. Let A = (A1, A2) be an adversary
attacking an encryption scheme PE = (K, E ,D). In the first stage of the attack
by the adversary, algorithm A1, given the public key pk, outputs a pair (M, s),
where the first component is a message space samplable in polynomial time and
the second one is state information. A random message x is generated from M
and then encrypted to give a challenge ciphertext y. In the second stage of the
attack by the adversary, algorithm A2, given (M, s, y), tries to find a pair (v, f)
such that v = f(x). If for every A there exists a simulator A′ which can find
such a pair only from (M, s) (i.e. without y) essentially as well as A, then PE is
called secure in the sense of SS-ATK. The formal definition is as follows.

Definition 5 (Semantic security under any attack models). Let PE =
(K, E ,D) be an encryption scheme. Let A be a polynomial-time adversary and
A′ a polynomial-time simulator of A. For k ∈ IN, consider

Experiment Expss−atk−1
PE,A (k)

(pk, sk) R← K(k); (M, s)← A
O1(·)
1 (pk); x←M ; y ← Epk(x);

(v, f)← A
O2(·)
2 (M, s, y); if v = f(x) then d← 1 else d← 0;

return d



76 Yodai Watanabe et al.

Experiment Expss−atk−0
PE,A′ (k)

(pk, sk) R← K(k); (M, s)← A′
1(pk); x←M ; (v, f)← A′

2(M, s);
if v = f(x) then d← 1 else d← 0;
return d

where |x| = |x′| for every x, x′ ∈M , f is a polynomial-time computable function
(or a polynomial-time algorithm) of M into {0, 1}∗, v ∈ f(M), and O1(·) and
O2(·) are as in definition 3. In the case of CCA2, A2 is prohibited from asking
its oracle to decrypt y. Let

Advss−atk
PE,A,A′(k) = Pr[Expss−atk−1

PE,A (k) = 1]− Pr[Expss−atk−0
PE,A′ (k) = 1].

Then PE is said to be secure in the sense of SS-CPA if for every A there exists
A′ such that Advss−atk

PE,A,A′(k) is negligible.

To see the validity of the above formulation for CCA models, we show that, in
CPA model, this one implies the original one, that is, this one provides a stronger
security notion than the original one.

Theorem 1. SS-CPA⇒SSG-CPA

Proof. Suppose that an encryption scheme PE = (K, E ,D) is secure in the sense
of SS-CPA. Then PE is shown to be secure in the sense of SSG-CPA as follows.

Let B be an SSG-CPA adversary, and let B′ be a simulator of B defined as

Algorithm B′(k, |x|, h(x))
(pk′, sk′)← K(k); x1 ← Xk; y ← Epk′ (x1); v ← B(k, pk′, |x1|, h(x1), y);
return v

Now we show that Advssg−cpa
PE,B,B′(k, Xk, f, h) is negligible for any B, Xk, f and h.

For this purpose, we assume, towards contradiction, that there exists B such
that Advssg−cpa

PE,B,B′(k, Xk, f, h) is not negligible. By using such B, Xk, f and h, let
us construct an SS-CPA adversary A = (A1, A2) and its simulator A′ = (A′

1, A
′
2)

as follows.

Algorithm A1(pk)
M ← Xk; s← {pk};
return (M, s)

∣∣∣∣∣∣∣∣
Algorithm A2(M, s, y)

v ← B(k, pk, |x|, h(x), y);
f̃(x)← B(k, pk, |x|, h(x), Epk(x));
return (v, f̃)

Algorithm A′
1(pk)

M ← Xk; s← {pk};
return (M, s)

∣∣∣∣∣∣∣∣∣∣

Algorithm A′
2(M, s)

(pk′, sk′)← K(k); x1 ←M ; y ← Epk′(x1);
v ← B(k, pk′, |x1|, h(x1), y);
f̃(x)← B(k, pk′, |x|, h(x), Epk′ (x));
return (v, f̃)
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It is clear from this construction that A and A′ are polynomial-time. Now let us
define p(1), p(0), p′(1) and p′(0) by

p(1) = Pr[(pk, sk) R← K(k); (M, s)← A1(pk); x1 ←M ; y ← Epk(x1);

(v, f̃)← A2(M, s, y) : v = f̃(x1)]

p(0) = Pr[(pk, sk) R← K(k); (M, s)← A1(pk); x0 ←M ;

(v, f̃)← A′
2(M, s) : v = f̃(x0)]

p′(1) = Pr[(pk, sk) R← K(k); x1 ← Xk; y ← Epk(x1);
v ← B(k, pk, |x1|, h(x1), y) : v = f(x1)]

p′(0) = Pr[x0 ← Xk; v ← B′(k, |x0|, h(x0)) : v = f(x0)]

respectively. It is now convenient to denote by E the experiment

Experiment E

(pk, sk) R← K(k); x0, x1 ← Xk; y0 ← Epk(x0); y1, y
′
1 ← Epk(x1);

v0 ← B(s0, y0); v1 ← B(s1, y1); v′1 ← B(s1, y
′
1);

where sb = {k, pk, |xb|, h(xb)} for b ∈ {0, 1}. Then it is straightforward to verify
that

p′(1) = Pr[E : v0 = f(x0)] = Pr[E : v1 = f(x1)] = Pr[E : v′1 = f(x1)],
p′(0) = Pr[E : v0 = f(x1)] = Pr[E : v1 = f(x0)] = Pr[E : v′1 = f(x0)],

and

p(1) = Pr[E : v1 = v′1]
= Pr[E : v1 = f(x1) ∧ v′1 = f(x1)] + Pr[E : v1 = f(x0) ∧ v′1 = f(x0)]
+ Pr[E : v1 = v′1 ∧ v1 �= f(x0) ∧ v1 �= f(x1)]
≥ Pr[E : v1 = f(x1) ∧ v0 = f(x0)] + Pr[E : v1 = f(x0) ∧ v0 = f(x1)]
+ Pr[E : v1 = v0 ∧ v1 �= f(x0) ∧ v1 �= f(x1)]

= p′(1)p′(1) + p′(0)p′(0) + Pr[E : v1 = v0 ∧ v1 �= f(x0) ∧ v1 �= f(x1)],
p(0) = Pr[E : v1 = v0]

= Pr[E : v1 = f(x1) ∧ v0 = f(x1)] + Pr[E : v1 = f(x0) ∧ v0 = f(x0)]
+ Pr[E : v1 = v0 ∧ v1 �= f(x0) ∧ v1 �= f(x1)]

= p′(1)p′(0) + p′(0)p′(1) + Pr[E : v1 = v0 ∧ v1 �= f(x0) ∧ v1 �= f(x1)].

It follows from the above equations that

Advss−cpa
PE,A,A′(k) = p(1)− p(0) ≥ (

p′(1)− p′(0)
)2 =

(
Advssg−cpa

PE,B,B′(k)
)2

.

Therefore, if Advssg−cpa
PE,B,B′(k, Xk, f, h) is non-negligible, then Advss−cpa

PE,A,A′(k) is also
non-negligible. This contradicts our supposition that PE is secure in the sense
of SS-ATK, thus the theorem follows. ��
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It should be mentioned that the SS-CPA adversary can choose f at her will,
while the SSG-CPA adversary cannot. This indicates that the former has po-
tentially stronger power of attack than the latter. In order that the converse of
the above proposition holds as well, it would be necessary to modify f so that
it is computable in polynomial time and also dependent on the outputs of an
SS-CPA adversary A = (A1, A2) (see [4]).

3 A New Security Notion: Non-dividability

In the previous section, we have provided the definitions of semantic security
and indistinguishability. So far the equivalence between these two notions has
been shown in CPA model[7, 10], but the equivalence is less clear at least by
a direct comparison of their definitions. One obstacle to a clear understanding
would be that semantic security is defined by use of an auxiliary function f .
Thus, in this section, we introduce a new security notion called non-dividability
which is equivalent to semantic security but is described only in terms of the
message space.

Before describing the security notion non-dividability, we first prepare the
following definition and proposition:

Definition 6. Let M be a message space samplable in polynomial time. The
membership problem of a subset Z ⊂ M is a problem to test whether x ∈ Z
or not for a given x ∈ M . Let Bp(M) denote the set of subsets of M whose
membership problem is computable in polynomial time.

Proposition 1. Let M be a message space samplable in polynomial time, and f
be a function defined on M computable in polynomial time. Then, for v ∈ f(M),
f−1(v) ∈ Bp(M).

Proof. It is obvious that, for given v ∈ f(M), x ∈ f−1(v) if and only if f(x) =
v. It is thus clear that the membership problem of f−1(v) is computable in
polynomial time by testing, for given x ∈M , whether f(x) = v or not. ��

The notion of non-dividability captures an adversary’s inability to divide
the message space into two parts in such a way that she can guess which part
contains the message of a given ciphertext. We now describe the definition more
precisely. Let A = (A1, A2) be an adversary attacking an encryption scheme
PE = (K, E ,D). In the first stage of the attack by the adversary, algorithm
A1, given the public key pk, outputs a pair (M, s), where the first component
is a message space samplable in polynomial time and the second one is state
information. A random message x is generated from M and then encrypted to
give a challenge ciphertext y. In the second stage of the attack by the adversary,
algorithm A2, given (M, s, y), tries to find a subset of M which contains the
message x. If any adversary can find such a subset essentially no more than
random guess, then PE is called secure in the sense of ND-ATK. The formal
definition is as follows.
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Definition 7 (Non-dividability). Let PE = (K, E ,D) be an encryption
scheme and let A = (A1, A2) be a polynomial-time adversary. For atk ∈ {cpa,
cca1, cca2}, b ∈ {0, 1} and k ∈ IN, consider

Experiment Expnd−atk−b
PE,A (k)

(pk, sk) R← K(k); (M, s)← A
O1(·)
1 (pk); x0, x1 ←M ; y ← Epk(x1);

Z ← A
O2(·)
2 (M, s, y); if xb ∈ Z then d← 1 else d← 0;

return d

where |x| = |x′| for every x, x′ ∈ M , Z ∈ Bp(M), and O1(·) and O2(·) are as
in definition 3. In the case of CCA2, A2 is prohibited from asking its oracle to
decrypt y. Let

Advnd−atk
PE,A (k) = Pr[Expnd−atk−1

PE,A (k) = 1]− Pr[Expnd−atk−0
PE,A (k) = 1].

Then PE is said to be secure in the sense of ND-ATK if Advnd−atk
PE,A (k) is negligible

for any A.

Next we show that this notion is indeed equivalent to semantic security.
The following proof may seem more complicated than expected. This is mostly
because the definitions of these notions are based on different frameworks; the
former is based on comparison, while the latter is based on simulator (see [4]
for details of these frameworks). The essential point of the proof is merely that
v = f(x) if and only if x ∈ f−1(v) for given v and f ; that is, what is leaked from
the information v = f(x) is that x ∈ f−1(v).

Theorem 2. ND-ATK⇔SS-ATK

Proof. (i) ND-ATK⇒SS-ATK
Suppose that an encryption scheme PE = (K, E ,D) is secure in the sense of

ND-ATK. Then PE is shown to be secure in the sense of SS-ATK as follows. Let
B = (B1, B2) be an SS-ATK adversary, and let B′ = (B′

1, B
′
2) be a simulator of

B defined as

Algorithm B′
1(pk)

(pk′, sk′)← K(k); (M, s)← B
O′

1(·)
1 (pk′);

s′ ← {s, pk′, sk′};
return (M, s′)

∣∣∣∣∣∣∣∣
Algorithm B′

2(M, s′)
x1 ←M ; y ← Epk′ (x1);
(v, f)← B

O′
2(·)

2 (M, s, y);
return (v, f)

Note that B′ can answer queries from B because she knows the secret key sk′.
Now we show that Advss−atk

PE,B,B′(k) is negligible for any B. For this purpose, we
assume, towards contradiction, that there exists B such that Advss−atk

PE,B,B′(k) is
non-negligible. By using such B, let us construct an ND-ATK adversary A =
(A1, A2) as follows.

Algorithm A
O1(·)
1 (pk)

(M, s)← B
O1(·)
1 (pk);

return (M, s)

∣∣∣∣∣∣∣
Algorithm A

O2(·)
2 (M, s, y)

(v, f)← B
O2(·)
2 (M, s, y); Z ← f−1(v);

return Z
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Here, it is easy to see, on remembering proposition 1, that both A and B′ are
polynomial-time. Now, for b ∈ {0, 1}, let us introduce p(b), p′(1) and p′(0) by
writing

p(b) = Pr[(pk, sk) R← K(k); (M, s)← A
O1(·)
1 (pk); x0, x1 ←M ;

y ← Epk(x1); Z ← A
O2(·)
2 (M, s, y) : xb ∈ Z]

p′(1) = Pr[(pk, sk) R← K(k); (M, s)← B
O1(·)
1 (pk); x1 ←M ;

y ← Epk(x1); (v, f)← B
O2(·)
2 (M, s, y) : v = f(x1)]

p′(0) = Pr[(pk, sk) R← K(k); (M, s)← B′
1(pk); x0 ←M ;

(v, f)← B′
2(M, s) : v = f(x0)]

respectively. From these definitions, it is straightforward to verify that

p(1) = p′(1) and p(0) = p′(0),

and so

Advnd−atk
PE,A (k) = p(1)− p(0) = p′(1)− p′(0) = Advss−atk

PE,B,B′(k).

Since we have assumed that Advss−atk
PE,B,B′(k) is non-negligible, Advnd−atk

PE,A (k) is
also non-negligible. This contradicts our supposition that PE is secure in the
sense of ND-ATK. Thus we have ND-ATK⇒SS-ATK.

(ii) ND-ATK⇐SS-ATK
Let B = (B1, B2) be an ND-ATK adversary. By using B, let us construct an

SS-ATK adversary A = (A1, A2) and its simulator A′ = (A′
1, A

′
2) in the same

way as above:

Algorithm A
O1(·)
1 (pk)

(M, s)← B
O1(·)
1 (pk);

return (M, s)

∣∣∣∣∣∣∣∣∣∣∣

Algorithm A
O2(·)
2 (M, s, y)

Z ← B
O2(·)
2 (M, s, y);

f ← f(x) =

{
1 for x ∈ Z,

0 for x /∈ Z;
return (1, f)

Algorithm A′
1(pk)

(pk′, sk′)← K(k);
(M, s)← A

O′
1(·)

1 (pk′);
s′ ← {s, pk′, sk′};
return (M, s′)

∣∣∣∣∣∣∣∣∣∣

Algorithm A′
2(M, s′)

x1 ←M ; y ← Epk′ (x1);
(v, f)← A

O′
2(·)

2 (M, s, y);
return (v, f)

Then we again obtain

Advss−atk
PE,A,A′(k) = Advnd−atk

PE,B (k).

Therefore, if Advnd−atk
PE,B (k) is non-negligible, then Advss−atk

PE,A,A′(k) is also non-
negligible. This completes the presentation that ND-ATK⇐SS-ATK, so the the-
orem follows. ��
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Z

M

x0 x1

M M M

Z Z Zx1 x0

x0
x1

x0

x1

b← 0 b← 1 b
R← {0, 1}

Fig. 2. Reduction of an ND-ATK adversary to an IND-ATK adversary

4 Equivalence among ND-ATK, SS-ATK and IND-ATK

In this section, we show that non-dividability is equivalent to indistinguishability
under any attack model. The proof of the direct part is easy to show. Thus we
now outline the proof of the converse part. Let x0 and x1 be two messages
randomly generated from a message space M . A random one of x0 and x1, say
xb, is selected and then encrypted to give a challenge ciphertext y. Suppose that
given y an ND-ATK adversary divides M into two parts. We wish, by using this
adversary, to construct an IND-ATK adversary to guess the bit b. Observe that,
if x0 is in one of the two parts and x1 is in the other, then the ND-ATK adversary
can guess the bit b only by checking which part contains the message of y, i.e.
xb (see figure 2). Since this situation occurs with non-negligible probability, it
follows that we can construct a required IND-ATK adversary. Below we describe
this more precisely.

Theorem 3. ND-ATK⇔IND-ATK

Proof. (i) ND-ATK⇒IND-ATK
Let B = (B1, B2) be an IND-ATK adversary. By using B, let us construct

an ND-ATK adversary A = (A1, A2) as follows.

Algorithm A
O1(·)
1 (pk)

(x0, x1, s)← B
O1(·)
1 (pk);

M ← {x0, x1}; s′ ← {x0, x1, s};
return (M, s′)

∣∣∣∣∣∣∣∣
Algorithm A

O2(·)
2 (M, s′, y)

b← B
O2(·)
2 (x0, x1, s, y); Z ← xb;

return Z

It is clear that A is polynomial-time. Here, for b ∈ {0, 1}, let us define p(b) and
p′(b) as

p(b) = Pr[(pk, sk) R← K(k); (M, s)← A
O1(·)
1 (pk); x0, x1 ←M ;

y ← Epk(x1); Z ← A
O2(·)
2 (M, s, y) : xb ∈ Z]

= Pr[(pk, sk) R← K(k); (M, s)← A
O1(·)
1 (pk); x0, x1 ←M ;

y ← Epk(xb); Z ← A
O2(·)
2 (M, s, y) : x1 ∈ Z]

p′(b) = Pr[(pk, sk) R← K(k); (x0, x1, s)← B
O1(·)
1 (pk);

y ← Epk(xb); d← B
O2(·)
2 (x0, x1, s, y) : d = 1]
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respectively. Then it is clear from the construction of A that p(b) = p′(b) for
b ∈ {0, 1}, and so

Advnd−atk
PE,A (k) = p(1)− p(0) = p′(1)− p′(0) = Advind−atk

PE,B (k).

Therefore, if Advind−atk
PE,B (k) is non-negligible, then Advnd−atk

PE,A (k) is also non-
negligible. This completes the presentation that ND-ATK⇒IND-ATK.

(ii) ND-ATK⇐IND-ATK
Let B = (B1, B2) be an ND-ATK adversary. By using B, let us construct an

IND-ATK adversary A = (A1, A2) as follows.

Algorithm A
O1(·)
1 (pk)

(M, s)← B
O1(·)
1 (pk);

x0, x1 ←M ; s′ ← {M, s}
return (x0, x1, s

′)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Algorithm A
O2(·)
2 (x0, x1, s

′, y)
Z ← B

O2(·)
2 (M, s, y);

if (x0 ∈ Z ∧ x1 /∈ Z) then d← 0;
if (x1 ∈ Z ∧ x0 /∈ Z) then d← 1;
else d

R← {0, 1};
return d

It is clear that A is polynomial-time. Now, for b ∈ {0, 1}, let us define p(b) and
p′(b) as

p(b) = Pr[(pk, sk) R← K(k); (x0, x1, s)← A
O1(·)
1 (pk); y ← Epk(xb);

d← A
O2(·)
2 (x0, x1, s, y) : d = 1]

p′(b) = Pr[(pk, sk) R← K(k); (M, s)← B
O1(·)
1 (pk); x0, x1 ←M ; y ← Epk(x1);

Z ← B
O2(·)
2 (M, s, y) : xb ∈ Z]

= Pr[(pk, sk) R← K(k); (M, s)← B
O1(·)
1 (pk); x0, x1 ←M ; y ← Epk(xb);

Z ← B
O2(·)
2 (M, s, y) : x1 ∈ Z]

respectively. Here observe that A2 outputs 1 not only when x1 ∈ Z ∧ x0 /∈ Z

but also as a result of the coin flip d
R← {0, 1}. With this observation in mind,

we obtain

p(1) = p′(1)
(
1− p′(0)

)
+

1
2
{
p′(1)p′(0) +

(
1− p′(1)

)(
1− p′(0)

)}
=

1
2
+

1
2
(
p′(1)− p′(0)

)
.

It thus follows that

Advind−atk
PE,A (k) = p(1)− p(0) = 2p(1)− 1 = p′(1)− p′(0) = Advnd−atk

PE,B (k).

Therefore, if Advnd−atk
PE,B (k) is non-negligible, then Advind−atk

PE,A (k) is also non-
negligible. This completes the presentation that ND-ATK⇐IND-ATK, so the
theorem follows. ��
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This, together with the theorem in the previous section, at once yields the equiv-
alence between semantic security and indistinguishability.2

Theorem 4. SS-ATK⇔IND-ATK

5 Conclusion

In this paper, we studied the relation between semantic security and indistin-
guishability against chosen ciphertext attacks. First, we extended the definition
of semantic security to CCA models and confirmed that this extension is valid.
Next, we introduced a new security notion called non-dividability which is inde-
pendent of the attack model and is described only in terms of the message space.
This notion is shown to be equivalent to both of the two notions, and hence we
got that semantic security and indistinguishability are equivalent under any form
of attack.
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