
An Efficient Two-Party Public Key

Cryptosystem Secure against Adaptive
Chosen Ciphertext Attack

Philip MacKenzie

Bell Laboratories, Lucent Technologies
Murray Hill, NJ 07974, USA

philmac@lucent.com

Abstract. We propose an efficient two-party public key cryptosystem
that is secure against adaptive chosen ciphertext attack, based on the
hardness of Decision Diffie-Hellman (DDH). Specifically, we show that
the two parties together can decrypt ciphertexts, but neither can alone.
Our system is based on the Cramer-Shoup cryptosystem. Previous re-
sults on efficient threshold cryptosystems secure against adaptive chosen
ciphertext attack required either (1) a strict majority of uncorrupted de-
cryption servers, and thus do not apply to the two-party scenario, or (2)
the random oracle assumption, and thus were not proven secure in the
“standard” model.

1 Introduction

In this paper we present an efficient and provably secure protocol by which
alice and bob, each holding a share of a Cramer-Shoup [15] private key, can jointly
decrypt a ciphertext, but such that neither alice nor bob can decrypt a ciphertext
alone. Of course, protocols for generic secure two-party computation (e.g., [43])
could be used to perform this decryption operation, but here we present a more
efficient protocol to solve this particular problem. To our knowledge, this is
the first practical and provably secure protocol for a two-party Cramer-Shoup
cryptosystem.

In addition to being an important theoretical question, our interest in a two-
party Cramer-Shoup cryptosystem is motivated by some very practical applica-
tions. One is that it could be used for a secure distributed third-party decryption
service, which requires the joint agreement by two parties to decrypt a cipher-
text. For example, this may be used to provide added security to (1) a key
recovery system by law enforcement (e.g., [37]), or (2) an “offline trusted third
party” system in a fair exchange protocol (e.g., [2]).

Another application (and our main motivation) is related to the work of [35]
on techniques by which a device that performs private key operations (signa-
tures or decryptions) in networked applications, and whose local private key is
activated with a password or PIN, can be immunized against offline dictionary

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 47–61, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

48 Philip MacKenzie

attacks in case the device is captured. Briefly, this goal is achieved by involv-
ing a remote server in the device’s private key computations, essentially sharing
the cryptographic computation between the device and the server. The work
of [35] showed how to accomplish this for the case of RSA functions and certain
discrete-log-based functions, with DSA signatures and Cramer-Shoup decryp-
tions being notable exceptions. These exceptions were due to the fact that there
were no known provably secure protocols for a two-party DSA signature system
or a two-party Cramer-Shoup cryptosystem. The work of [36] on two-party DSA
signatures filled this gap for DSA signatures, although provable security was only
obtained in the random oracle model based on the hardness of Decision Com-
posite Residuosity [38] and Strong RSA [5], along with the standard security of
DSA signatures.

The work in this paper fills this gap with respect to the Cramer-Shoup cryp-
tosystem. Moreover, the cryptosystem presented here requires no extra assump-
tions beyond those required for the original Cramer-Shoup cryptosystem, and it
is proven secure in the standard model (without random oracles). To achieve
this we introduce some novel techniques, including the use of homomorphic
encryptions of partial Cramer-Shoup decryption subcomputations (rather than
encryptions of partial keys as in the two-party DSA signature system), and spe-
cial three-move Σ-protocols for proving consistency (rather than non-interactive
zero-knowledge proofs using random oracles as in the two-party DSA signature
system). These Σ-protocols are especially noteworthy in that (1) they are not re-
quired to be (fully) zero-knowledge, and are used as proofs of consistency rather
than proofs of knowledge, and thus they can be used in a concurrent setting
(since neither simulation of provers nor extraction of witnesses is needed), and
(2) their secure use relies in a fundamental way on the hardness of DDH, though
their soundness and (honest-verifier) zero-knowledge properties do not. We will
further discuss these technical issues in Section 5.

2 Related Work

The two-party Cramer-Shoup cryptosystem falls into the general category of
threshold cryptography. Early work in the field is due to Boyd [7], Desmedt [19],
Croft and Harris [17], Frankel [24], and Desmedt and Frankel [20]. Work in
threshold cryptography for discrete-log based cryptosystems includes, for exam-
ple, Desmedt and Frankel [20], Hwang [32], Pedersen [40], Cerecedo et al. [12],
Harn [30], Langford [34], Gennaro et al. [29], Park and Kurosawa [39], Herzberg
et al. [31], and Frankel et al. [26].

There have been previous proposals for threshold cryptosystems secure
against adaptive chosen ciphertext attack, namely, Shoup and Gennaro [42],
Canetti and Goldwasser [10], Abe [1], Jarecki and Lysyanskaya [33], and Fouque
and Pointcheval [23]. They all assume the adversary corrupts t out of n de-
cryption servers. Both the Shoup and Gennaro scheme and the Fouque and
Pointcheval scheme may be used in the two-party case (t = 1, n = 2) if one
is only concerned with security and not robustness, but they also both use the

An Efficient Two-Party Public Key Cryptosystem 49

non-standard assumption that hashes are modeled as random oracles ([8, 11]
give arguments for and against this assumption). In this paper we are concerned
with schemes that may be proven secure without using random oracles.

The remaining proposals are all based on the Cramer-Shoup cryptosystem.
Canetti and Goldwasser assume there are users that wish to have messages de-
crypted, and that the servers do not communicate with each other, but only with
the users. Then they show a secure system for n > 2t, a secure and robust system
for n > t2, and a secure and robust system for n > 2t if the users are given extra
per-ciphertext robustness information. Abe, and Jarecki and Lysyanskaya allow
the servers to communicate with each other and present secure and robust sys-
tems for n > 2t. Note that none of these results apply to the scenario of this pa-
per, i.e., t = 1 and n = 2. In fact, it is often the case that threshold cryptosystems
(assuming a strict minority of corrupted players) are developed before the corre-
sponding two-party cryptosystems. For example, threshold DSA [12, 34, 29] was
developed before two-party DSA [36], and threshold RSA key generation [4, 25]
was developed before two-party RSA key generation [28, 41].

3 Preliminaries

Security parameter Let κ be the cryptographic security parameter used for, e.g.,
hash functions and discrete log group orders; reasonable values today may be
κ = 160 or κ = 256.

Notation and definitions We use (a, b) × (c, d) to mean elementwise multipli-
cation, i.e., (ac, bd). We use (a, b)r to mean elementwise exponentiation, i.e.,
(ar, br). For a tuple V , the notation V [j] means the jth element of V .

Let Gq denote a finite (cyclic) group of prime order q, where |q| = κ. Let g
be a generator of Gq, and assume it is included in the description of Gq. Note
that in the following definitions and descriptions, we will abuse notation slightly
and let Gq denote its own description. For instance, when we say the input to
a function is Gq, we mean that the input is the description of the group Gq.

Encryption schemes An encryption scheme E is a triple (GE , E,D) of algorithms,
the first two being probabilistic polynomial-time, and the last being deterministic
polynomial time. GE takes as input1 Gq and outputs a public key pair (pk, sk),
i.e., (pk, sk)← GE(Gq). E takes a public key pk and a message m as input and
outputs an encryption c for m; we denote this c← Epk(m). D takes a ciphertext c
and a secret key sk as input and returns either a message m such that c is a
valid encryption of m under the corresponding public key, if such an m exists,
and otherwise returns an arbitrary value.
1 For convenience, instead of using input 1κ, we will simply use a fixed group Gq with
|q| = κ and define encryption schemes over this group.

50 Philip MacKenzie

Now we define the Cramer-Shoup encryption scheme [15, 16] using a fixed
universal one-way hash function H and over a fixed group Gq, in which solving
DDH is difficult.2

GCS(Gq): Let g be the generator of Gq (implicitly included in the descrip-
tion of Gq). Generate g2

R←Gq and a, b, c, d, e
R← Zq, and set U ← ga(g2)b,

V ← gc(g2)d, and W ← ge. Let the public key be <g, g2, U, V,W> and the
secret key be <a, b, c, d, e>.

E<g,g2,U,V,W>(m): Generate r
R← Zq and compute x← gr, y← (g2)r , w←W rm,

σ←H(x, y, w), and v← U rV rσ. Return <x, y, w, v> as the ciphertext.
D<a,b,c,d,e>(<x, y, w, v>): Generate σ←H(x, y, w). If v �= xa+cσyb+dσ, return
⊥, else return w/xe.

Canetti and Goldwasser [10] give a variation of this protocol in which the
decryption algorithm D<a,b,c,d,e>(<x, y, w, v>) generates σ as above, but then
generates s

R← Zq and returns w/(xe(v/v′)s), where v′ = xa+cσyb+dσ. One can
see that for invalid encryptions (those in which the original D function returns
⊥) the new decryption function will return a completely random value, and for
all other encryptions, the new decryption function returns the same value as the
original. Our two-party protocol will actually perform the Canetti-Goldwasser
variation of the decryption procedure.

System model Our system includes two parties, alice and bob, who obtain public
and secret data through a trusted initialization procedure. Here we will simply
assume alice and bob receive all their public and secret data from a trusted party.
After initialization, communication between alice and bob occurs in sessions (or
decryption protocol runs), one per ciphertext that they decrypt together. al-
ice plays the role of session initiator in our decryption protocol. That is, alice re-
ceives requests to decrypt ciphertexts, and communicates with bob to decrypt
these ciphertexts. We presume that each message between alice and bob is im-
plicitly labeled with an identifier for the session to which it belongs. Multiple
decryption sessions may be executed concurrently.

The adversary in our protocol controls the network, inserting and manip-
ulating communication as it chooses. In addition, it takes one of two forms:
an alice-compromising adversary that has perpetual read access to the private
storage and computation of alice, and a bob-compromising adversary that has
perpetual read access to the private storage and computation of bob.

We note that a proof of security in this two-party system extends to a proof
of security in an n-party system in a natural way, assuming the adversary de-
cides which parties to compromise before any session begins. The basic idea is to
guess for which pair of parties the adversary decrypts a ciphertext without the
assistance of the non-corrupted party, and focus the simulation proof on those
2 Note that one possible group Gq may be found by generating a large prime p such
that q divides p− 1, and letting Gq be the subgroup of order q in Z

∗
p.

An Efficient Two-Party Public Key Cryptosystem 51

two parties, running all other parties as in the real protocol. The only conse-
quence is a factor of roughly n2 lost in the reduction argument from the security
of the encryption scheme.

Labeled ciphertexts Note that our scenario in which alice decides on which ci-
phertexts to decrypt is motivated by the systems in [35]. This removes the need
to include in our model separate users that communicate with alice and bob to
obtain decryptions, and allows us not to have to change the encryption scheme
to use explicit labels (see [42]). Of course, the Cramer-Shoup encryption scheme
does allow an easy way to introduce labels, and this could be done in our protocol
also.

4 Definition and Basic Theory of Σ-Protocols

Our two-party decryption system in Section 5 uses special types of Σ-protocols
to deal with malicious adversaries, so here we overview the basic definitions and
properties of Σ-protocols [14, 13]. (This section may be skipped if one is only
interested in the high-level design of our two-party decryption system, and in
particular, a design that is only secure against so-called “honest-but-curious”
adversaries.)

First we start with some definitions and notation. Let R = {(x,w)} be a bi-
nary relation and assume that for some given polynomial p(·) it holds that
|w| ≤ p(|x|) for all (x,w) ∈ R. Furthermore, let R be testable in polynomial
time. Let LR = {x : ∃w, (x,w) ∈ R} be the language defined by the relation,
and for all x ∈ LR, let WR(x) = {w : (x,w) ∈ R} be the witness set for x.
For any NP language L, note that there is a natural witness relation R con-
taining pairs (x,w) where w is the witness for the membership of x in L, and
that LR = L.

Now we define a Σ-protocol (A,B) to be a three move interactive protocol be-
tween a probabilistic polynomial-time prover A and a probabilistic polynomial-
time verifier B, where the prover acts first. The verifier is only required to send
random bits as a challenge to the prover. For some (x,w) ∈ R, the common input
to both players is x while w is private input to the prover. For such given x, let
(a, c, z) denote the conversation between the prover and the verifier. To compute
the first and final messages, the prover invokes efficient algorithms a(·) and z(·),
respectively, using (x,w) and random bits as input. Using an efficient predicate
φ(·), the verifier decides whether the conversation is accepting with respect to x.
The relation R, the algorithms a(·), z(·) and φ(·) are public. The length of the
challenges is denoted tB , and we assume that tB only depends on the length of
the common string x. (In the following, we will always use challenges randomly
drawn from Zq.)

We will need to broaden this definition slightly, to deal with cheating provers.
We will define L̂R to be the input language, with the properties that LR ⊆ L̂R,
and that membership in L̂R may be tested in polynomial time. We implicitly
assume B only executes the protocol if the common input x ∈ L̂R.

52 Philip MacKenzie

All Σ-protocols presented here will satisfy the following security properties:

1. weak special soundness: Let (a, c, z) and (a, c′, z′) be two conversations, that
are accepting for some given x. If c �= c′, then x ∈ LR.3 The pair of accepting
conversations (a, c, z) and (a, c′, z′) with c �= c′ is called a collision .

2. special honest verifier zero knowledge (special HVZK): There is a (probabilis-
tic polynomial time) simulator M that on input x ∈ LR generates accepting
conversations with the exact same distribution as when A and B execute
the protocol on common input x (and A is given a witness w for x), and B
indeed honestly chooses its challenges uniformly at random. The simulator
is special in the sense that it can additionally take a random string c as
input, and output an accepting conversation for x where c is the challenge.
In fact, we will require the simulator to have this special property for not
only x ∈ LR, but also any x ∈ L̂R.

A simple but important fact (see [14]) is that if a Σ-protocol is HVZK, the
protocol is perfectly witness indistinguishable (WI) [22]. Although HVZK by
itself is defined with respect to a very much restricted verifier, i.e. an honest
one, this means that if for a given instance x there are at least two witnesses w,
then even an arbitrarily powerful and malicious verifier cannot distinguish which
witness the prover uses.

In our results to follow, we need a particular, simple instance of the main
theorem from [14]. Specifically, we use a slight generalization of a corollary in [14]
which enables a prover, given two relations (R1, R2), values (x1, x2) ∈ L̂R1×L̂R2,
and corresponding 3-move Σ-protocols ((A1, B1), (A2, B2)), to present a 3-move
Σ-protocol (Aor, Bor) for proving the existence of a w such that either (x1, w) ∈
R1 or (x2, w) ∈ R2. We call this the “OR” protocol for ((A1, B1), (A2, B2)),

For a relation R, let Σ[R] denote a Σ-protocol over R. For a predicate P , let
Σ[P] denote Σ[R] for the relation R defined by P , with public values defined
by P . Furthermore, let LP = LR and L̂P = L̂R, for the relation R defined by P .
Let Σ[X,Y] denote the “OR” protocol for (Σ[X], Σ[Y]).

5 S-CS System

In this section we present a new system called S-CS by which alice and bob can
jointly decrypt Cramer-Shoup ciphertexts.

Our main motivating application naturally admits a trusted party for ini-
tializing the system (see [35]), so we will focus on that case.4 Specifically, we
3 Often these protocols are assumed to satisfy special soundness: On input x and those
two conversations, a witness w such that (x, w) ∈ R can be computed efficiently. We
do not need special soundness for our results.

4 Alternatively, one could build a distributed initialization protocol involving only
alice and bob, and no trusted center. To achieve provable security, this initialization
would have to be executed in a sequential manner prior to any decryption sessions,
even though the decryption sessions themselves may be executed concurrently with
respect to each other. Details are beyond the scope of this paper.

An Efficient Two-Party Public Key Cryptosystem 53

assume a trusted party is given a (public) group Gq with generator g and gen-
erates a Cramer-Shoup public key along with secret values for alice and bob to
allow decryption:

g2
R← Gq,

a1, a2, b1, b2, c1, c2, d1, d2, e1, e2
R← Zq,

<U1, U2> ← <ga1(g2)b2 , ga2(g2)b2>,

<V1, V2> ← <gc1(g2)d2 , gc2(g2)d2>,

<W1,W2> ← <ge1 , ge2>,

β1, β2
R← Zq,

<h1, h2> ← <gβ1, gβ2>,

D1, D2, D3, D
′
1, D

′
2, D

′
3

R← Gq.

The trusted party gives alice the values <a1, b1, c1, d1, e1, β1>, gives bob the
values <a2, b2, c2, d2, e2>, and gives both alice and bob the values

<g, g2, U1, U2, V1, V2,W1,W2, h1, h2, D1, D2, D3, D
′
1, D

′
2, D

′
3>.

Letting U ← U1U2, V ← V1V2 and W ←W1W2, the Cramer-Shoup public key is
<g, g2, U, V,W>. Note that this public key is drawn from the same distribution
as in the standard Cramer-Shoup key generation. Also note that only this public
key is necessary for encryption, and not the partial public key values U1, U2, etc.

Here we give some intuition for this initialization. First, it is easy to see
how the standard Cramer-Shoup private keys are split between alice and bob,
with their associated public values. Next, the h1 and h2 values will be used
as ElGamal [21] public keys for alice and bob, respectively. Note that it is not
necessary for bob to receive β2, since bob does not need to decrypt anything
encrypted with h2. Encryptions using h2 will simply be used for consistency
checking, as described below. Finally, the D1, D2, D3, D

′
1, D

′
2, D

′
3 values are used

in order to make our consistency proofs work in the concurrent setting based on
DDH, as explained later.

5.1 Decryption Protocol

The protocol by which alice and bob cooperate to decrypt ciphertexts with re-
spect to the public key <g, g2, U, V,W> is shown in Figure 1. As input to this
protocol, alice receives a ciphertext c to be decrypted. bob receives no input (but
receives c = <x, y, w, v> from alice in the first message). The predicates Ψ , Ψ ′,
Γ , and Γ ′ used for consistency checking are displayed without their parameters
in the figure for readability. We give their full descriptions below, with parameter
names that correspond to the parameters in the S-CS protocol.

The decryption protocol proceeds as follows. Upon receiving c to decrypt, al-
ice first generates a share s1 of a random secret s as used in a Canetti-Goldwasser
variant of Cramer-Shoup decryption. Then alice generates ElGamal encryptions

54 Philip MacKenzie

of xs1 , ys1 , vs1 , and x−(a1+c1σ)y−(b1+d1σ). All of these values except vs1 are
needed by Bob to be able to perform his part of the decryption, but it is nec-
essary to include vs1 for consistency checking, and more specifically, for the
protocol’s proof of security. She generates these encryptions under the public
key h1, for which she knows the secret key. Finally, alice proves that she has
generated these encryptions consistently.

Once bob receives c and the four encryptions from alice and accepts the proof,
bob generates his own share s2 of s. (Note that this is an intuitive description - s
itself is actually determined by s1 and s2.) Next bob uses the homomorphic prop-
erties of the ElGamal encryption scheme used by alice to compute an encryption
(still under the public key for which alice knows the secret key) of a partial de-
cryption of c, using the first, second, and fourth encryptions sent by alice. Then
bob generates ElGamal encryptions of xs2 , ys2 , vs2 , and x−s2(a2+c2σ)y−s2(b2+d2σ)

under the public key h2, for which the secret key is not known to alice. Finally,
bob proves that he has generated these encryptions consistently. Note that the
extra encryptions are not necessary for any computations of alice, but are used
for consistency checking, and more specifically, for the protocol’s proof of secu-
rity.

When alice receives the encryptions from bob and accepts the proof, she de-
crypts the encryption containing bob’s partial decryption of c, and then finishes
the decryption of c using her local values.

Given g, g2, c = <x, y, w, v>, and σ = H(x, y, w), the predicates Ψ , Ψ ′, Γ ,
and Γ ′ are defined as follows.

Ψ [U1, V1, E1, E2, E3, E4] def=

∃r1, r2, r3, r4, a1, b1, c1, d1, s1 :
U1 = ga1(g2)b1

∧ V1 = gc1(g2)d1

∧ E1 = (gr1 , (h1)r1xs1)
∧ E2 = (gr2 , (h1)r2ys1)
∧ E3 = (gr3 , (h1)r3vs1)
∧ E4 = (gr4 , (h1)r4x−(a1+c1σ)y−(b1+d1σ))

Ψ ′[U2, V2,W2, E5, E
′
1, E

′
2, E

′
3, E

′
4]

def=

∃r5, r′1, r′2, r′3, r′4, a2, b2, c2, d2, e2, s2 :
U2 = ga2(g2)b2

∧ V2 = gc2(g2)d2

∧ W2 = ge2

∧ E5 = (gr5 , (h1)r5xe2(vx−(a2+c2σ)y−(b2+d2σ))s2)
×(E1)−(a2+c2σ) × (E2)−(b2+d2σ) × (E4)s2

∧ E′
1 = (gr′

1 , (h2)r′
1xs2)

∧ E′
2 = (gr′

2 , (h2)r′
2ys2)

∧ E′
3 = (gr′

3 , (h2)r′
3vs2)

∧ E′
4 = (gr′

4 , (h2)r′
4)× (E′

1)−(a2+c2σ)

×(E′
2)−(b2+d2σ)

An Efficient Two-Party Public Key Cryptosystem 55

Γ [D1, D2, D3] def= [∃r : D1 = gr ∧D3 = (D2)r]

Γ ′[D′
1, D

′
2, D

′
3] def= [∃r : D′

1 = gr ∧D′
3 = (D′

2)r]

The encryptions of alice are defined to be consistent if Ψ holds, but instead of
simply constructing Σ[Ψ] to prove consistency, alice constructs Σ[Ψ, Γ], proving
that either Ψ holds, or the triple (D1, D2, D3) is a Diffie-Hellman triple. Ob-
viously, since (D1, D2, D3) was chosen randomly in initialization, most likely it
will not be a Diffie-Hellman triple, and thus alice will essentially be proving that
Ψ holds. The reason for including Γ is that we will be able to use it to sim-
ulate the Σ-protocols for alice, by having our simulator set (D1, D2, D3) to be
a Diffie-Hellman triple in the initialization protocol. By the hardness of DDH,
this should not noticeably affect the adversary. Note that this technique only
works in the case of static adversaries, and in particular, bob-compromising ad-
versaries, since setting (D1, D2, D3) to be a Diffie-Hellman triple may also allow
an adversary to give a valid proof Σ[Ψ, Γ] without Ψ holding. However, it is easy

alice bob
σ←H(x, y,w)

s1, r1, r2, r3, r4
R← Zq

E1← (gr1 , (h1)
r1xs1)

E2← (gr2 , (h1)
r2ys1)

E3← (gr3 , (h1)
r3vs1)

E4← (gr4 , (h1)
r4x−(a1+c1σ)y−(b1+d1σ))

<E1,E2,E3,E4,<x,y,w,v>>
✲

Σ[Ψ,Γ]
✲✛ ✲

σ←H(x, y,w)

s2, r5, r
′
1, r

′
2, r

′
3, r

′
4

R← Zq

E5← (gr5 , (h1)
r5xe2(vx−(a2+c2σ)y−(b2+d2σ))s2)

×(E1)
−(a2+c2σ) × (E2)

−(b2+d2σ) × (E4)
s2

E′
1← (gr′

1 , (h2)
r′
1xs2)

E′
2← (gr′

2 , (h2)
r′
2ys2)

E′
3← (gr′

3 , (h2)
r′
3vs2)

E′
4← (gr′

4 , (h2)
r′
4)× (E′

1)
−(a2+c2σ) × (E′

2)
−(b2+d2σ)

<E5,E′
1,E′

2,E′
3,E′

4>
✛

Σ[Ψ ′,Γ ′]
✛ ✲✛

w′← xe1(vx−(a1+c1σ)y−(b1+d1σ))s1 · E5[2] · (E5[1])
−β1

output w/w′

Fig. 1. S-CS shared decryption protocol: alice receives a ciphertext c =
<x, y, w, v> as input

56 Philip MacKenzie

to see (and follows from the proof) that a bob-compromising adversary gains no
advantage from this.

The encryptions of bob are defined to be consistent if Ψ ′ holds, and the
reasoning behind the Σ[Ψ ′, Γ ′] construction is similar to the reasoning behind the
Σ[Ψ, Γ] construction of alice. Σ[Ψ, Γ] and Σ[Ψ ′, Γ ′] are similar to other protocols
for proving relations among discrete logs, e.g., [9], and are omitted due to space
limitations.

At this point, we have stated that E3 and E′
i for 1 ≤ i ≤ 4, as well as the

two Σ-protocols, are used for consistency checking, and thus it may be tempting
to believe that they could all be removed from the protocol if one were only to
consider security against “honest-but-curious” adversaries. However, this does
not seem to be true. The Σ-protocols and E′

4 could in fact be removed, but
the other values serve another purpose in our security proofs, namely, to allow
a simulator for one of the parties to obtain the results of partial decryption
computations from the other party. Thus if one were to consider the “simplified”
protocol for honest-but-curious adversaries, only E′

4 and the Σ-protocols would
be removed, leaving alice and bob to send values to each other that are never
actually used.5

As a final remark, and relating to the preceding discussion, our simulator
does not require knowledge of the other party’s share of the decryption random-
izer s, but only the results of partial decryption computations. These can be
encrypted and checked for consistency easily, using techniques that rely solely
on the hardness of DDH. This is one of the important technical contributions of
this paper, since having the simulator obtain s itself, although not difficult to
achieve in threshold Cramer-Shoup protocols [10, 33] assuming an honest ma-
jority, seems to require a much more complicated two-party protocol, and in fact
may not admit a protocol whose security relies solely on the hardness of DDH.
For instance, it may requires techniques such as those in [36].

Efficiency As shown, our protocol requires 6 messages. This could possibly be
improved to 4 messages by using the “committed proof” technique of Jarecki and
Lysyanskaya [33] or Damg̊ard [18]. In particular, one could replace bob’s proof
Σ[Ψ ′, Γ ′] by a committed proof of Σ[Ψ ′, Γ ′], where, in particular, E5 is kept secret
until the third message of the committed proof. This would allow the proofs
by alice and bob to be interleaved, since E5 would not be revealed until after
bob verifies that Ψ holds. This would be a novel application of the committed
proof technique, i.e., it would be used not for the purpose of obtaining security
against adaptive adversaries, but for improving efficiency. However, the security
reduction involved in the committed proof technique is neither as straightforward
nor as efficient as the security reduction in our proofs. Nevertheless, we will
provide the analysis of this variation in the full paper.

We should also note that our protocol could be reduced to two messages
using the standard Fiat-Shamir technique [27] for making proofs non-interactive

5 This would indeed be a “curious” protocol.

An Efficient Two-Party Public Key Cryptosystem 57

using a hash function to calculate a challenge, but then a proof of security would
require the random oracle assumption, which we specifically want to avoid.

Turning to computational complexity, one can see that each party must per-
form roughly 90 exponentiations.6 By comparison, the protocol of Shoup and
Gennaro [42] only requires each party to perform about 7 exponentiations. How-
ever, the security of their protocol relies on the random oracle assumption, which,
as stated above, we specifically want to avoid.

6 Security for S-CS

Due to space limitations, we will present our theorems, and briefly sketch our
proofs. Details will be presented in the full paper.

First we informally define some notation. AdvDDH
Gq

(t) is the maximum advan-
tage of distinguishing a DH triple (gx, gy, gxy) from a random triple (gx, gy, gz),
where the maximum is taken over all adversaries that run in time t. See [3] for
details. For an encryption scheme E = (GE , E,D), Advind-cca2

E,Gq
(t, u) is the maxi-

mum advantage of distinguishing which of two messages was encrypted by a test
oracle, where the maximum is taken over all adversaries that run in time t and
make u queries to a decryption oracle (but not on the ciphertext returned by
the test oracle). See [6, Property IND-CCA2] for details.

Finally, for an adversary A in the model described in Section 3 where two
parties, alice and bob are running the S-CS protocol, Advind-cca2

S-CS,Gq
(A) is the ad-

vantage of A in distinguishing which of two messages was encrypted by a test
oracle, given that A cannot start an alice or bob session using the ciphertext
returned by the test oracle. An “alice-compromising attacker” is additionally
given perpetual read access to the private storage and computation of alice.
A “bob-compromising attacker” has perpetual read access to the private storage
and computation of bob. Recall that A is either an alice-compromising attacker
or a bob-compromising attacker, but not both, and we assume this is statically
fixed before initialization.

Now we state our theorems and give sketches of our proofs. The idea behind
each proof is to construct a series of systems S-CS0,S-CS1, . . ., related to S-CS,
with S-CS0 = S-CS, and such that we eventually come to a system S-CSi such
that breaking S-CSi implies breaking the original Cramer-Shoup cryptosystem.
We then show that for any attacker, the difference in the advantage of the
attacker in breaking S-CSi−1 and S-CSi is related to the maximum advantage
of breaking DDH. For the following theorems, let texp be the time to perform an
exponentiation in Gq.

6 Although this number is somewhat high, most of the exponentiations are performed
over one of a small number of bases, and thus preprocessing can be used to greatly
reduce the computation time. Also, assuming that the group is of size q where
|q| = 160, the exponents are reasonably small (roughly 160 bits each).

58 Philip MacKenzie

Theorem 1. Fix an alice-compromising adversary A that runs in time t. Then
for t′ = O(t + (qalice + qbob)texp):

Advind-cca2
S-CS,Gq

(A) ≤ 4 · AdvDDH
Gq

(t′) + Advind-cca2
CS,Gq

(t′, qbob) +
2(qbob + 2)

q
.

This is proven as follows. First simulate the initialization so that (D′
1, D

′
2, D

′
3)

is a DH triple. The advantage gained by A is at most O(AdvDDH
Gq

(t′)). Then have
bob instances generate E′

1, E
′
2, E

′
3, E

′
4 randomly, and prove Σ[Ψ ′, Γ ′] using Γ ′

(since (D′
1, D

′
2, D

′
3) is a DH triple). One can show that the advantage gained by

A is O(AdvDDH
Gq

(t′)) plus a small amount related to Σ-protocols. Next set up
a Cramer-Shoup decryption oracle (using the key from the simulated initializa-
tion) and have bob compute the encryption E5 by taking the result of calling
the decryption oracle on the input ciphertext and modifying it appropriately
using E1, E2, E3 (which can be decrypted with β1 obtained from the simulated
initialization). As long as E1, E2, E3, E4 are consistent, this does affect A. Break-
ing this scheme can now be reduced to breaking the Cramer-Shoup scheme by
taking a Cramer-Shoup key, along with a decryption and test oracle, simulat-
ing the private key shares of alice along with all public key shares, and having
bob use the given decryption oracle to decrypt the input ciphertexts.

Theorem 2. Fix a bob-compromising adversary A that runs in time t. Then
for t′ = O(t + (qalice + qbob)texp):

Advind-cca2
S-CS,Gq

(A) ≤ 4 · AdvDDH
Gq

(t′) + Advind-cca2
CS,Gq

(t′, qbob) +
6(qalice + 1) + 2

q
.

This is proven as follows. First simulate the initialization so that (D1, D2, D3)
is a DH triple. The advantage gained by A is at most O(AdvDDH

Gq
(t′)). Then have

alice instances generate E1, E2, E3, E4 randomly, prove Σ[Ψ, Γ] using Γ (since
(D1, D2, D3) is a DH triple), and compute the decryption of the input ciphertext
using E′

1, E
′
2, E

′
3 (which can be decrypted with β2 obtained from the simulated

initialization). One can show that the advantage gained by A is O(AdvDDH
Gq

(t′))
plus a small amount related to Σ-protocols. Next set up a Cramer-Shoup de-
cryption oracle (using the key from the simulated initialization) and have al-
ice output the result of calling the decryption oracle. Since E1, E2, E3, E4 are
random, if E5, E

′
1, E

′
2, E

′
3, E

′
4 are consistent, this does affect A. Breaking this

scheme can now be reduced to breaking the Cramer-Shoup scheme by taking
a Cramer-Shoup key, along with a decryption and test oracle, simulating the
private key shares of bob along with all public key shares, and having alice use
the decryption oracle to decrypt the input ciphertexts.

An Efficient Two-Party Public Key Cryptosystem 59

References

[1] M. Abe. Robust distributed multiplication without interaction. In CRYPTO ’99
(LNCS 1666), pages 130–147, 1999. 48

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In 3rd ACM Conference on Computer and Communications Security, pages 6–17,
1996. 47

[3] D. Boneh. The decision Diffie-Hellman problem. In Proceedings of the Third Al-
gorithmic Number Theory Symposium (LNCS 1423), pp. 48–63, 1998. 57

[4] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In
CRYPTO ’97 (LNCS 1294), pages 425–439, 1997. 49

[5] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT ’97 (LNCS 1233), pages 480–494, 1997.
48

[6] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In CRYPTO ’98 (LNCS 1462),
pp. 26–45, 1998. 57

[7] C. Boyd. Digital multisignatures. In H. J. Beker and F. C. Piper, editors, Cryp-
tography and Coding, pages 241–246. Clarendon Press, 1986. 48

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, November 1993. 49

[9] J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Department of Computer Science, ETH
Zurich, March 1997. 56

[10] R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack. In EUROCRYPT ’99 (LNCS
1592), pages 90–106, 1999. 48, 50, 56

[11] R. Canetti, O. Goldreich, and S. Halevi. Random oracle methodology, revisited.
In 30th ACM Symposium on Theory of Computing, pages 209–218, 1998. 49

[12] M. Cerecedo, T. Matsumoto, H. Imai. Efficient and secure multiparty generation
of digital signatures based on discrete logarithms. IEICE Trans. Fundamentals
of Electronics Communications and Computer Sciences, E76A(4):532–545, April
1993. 48, 49

[13] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols.
Ph.D. Thesis. CWI and University of Amsterdam, 1997. 51

[14] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO ’94 (LNCS 839), pages
174–187, 1994. 51, 52

[15] R. Cramer and V. Shoup. A practical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98 (LNCS 1462), pages
13–25, 1998. 47, 50

[16] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT 2002 (LNCS
2332), pages 45–64, 2002. 50

[17] R.A. Croft and S. P. Harris. Public-key cryptography and reusable shared secrets.
In H. Baker and F. Piper, editors, Cryptography and Coding, pages 189–201, 1989.
48

60 Philip MacKenzie

[18] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000 (LNCS 1807), pages 418–430, 2000. 56

[19] Y. Desmedt. Society and group oriented cryptography: a new concept. In
CRYPTO ’87 (LNCS 293), pages 120–127, 1987. 48

[20] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89 (LNCS
435), pages 307–315, 1989. 48

[21] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985. 53

[22] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd ACM Symposium on Theory of Computing, pp. 416–426, 1990. 52

[23] P. Fouque and D. Pointcheval. Threshold Cryptosystems secure against Chosen-
Ciphertext Attack. In ASIACRYPT ’01 (LNCS 2248), pages 351–368, 2001. 48

[24] Y. Frankel. A practical protocol for large group oriented networks. In EURO-
CRYPT ’89 (LNCS 434), pages 56–61, 1989. 48

[25] Y. Frankel, P. MacKenzie, and M. Yung. Robust efficient distributed RSA-key
generation. In 30th ACM Symposium on Theory of Computing, pages 663–672,
1998. 49

[26] Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure distributed threshold
public key systems. In European Symposium on Algorithms (LNCS 1643), pages
4–27, 1999. 48

[27] A. Fiat and A.Shamir. How to prove yourself: practical solutions to identification
and signature problems. In CRYPTO ’86 (LNCS 263), pages 186–194, 1987. 56

[28] N. Gilboa. Two party RSA key generation. In CRYPTO ’99 (LNCS 1666), pages
116–129, 1999. 49

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS sig-
natures. In EUROCRYPT ’96 (LNCS 1070), pages 354–371, 1996. 48, 49

[30] L. Harn. Group oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proc.-Comput. Digit. Tech. 141(5):307–313, 1994. 48

[31] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public-key and signature schemes. In 4th ACM Conference on Computer and
Communications Security, pages 100–110, 1997. 48

[32] T. Hwang. Cryptosystem for group oriented cryptography. In EUROCRYPT ’90
(LNCS 473), pages 352–360, 1990. 48

[33] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: In-
troducing concurrency, removing erasures. In EUROCRYPT 2000 (LNCS 1807),
pages 221–242, 2000. 48, 56

[34] S. Langford. Threshold DSS signatures without a trusted party. In CRYPTO ’95
(LNCS 963), pages 397–409, 1995. 48, 49

[35] P. MacKenzie and M.K. Reiter. Networked cryptographic devices resilient to cap-
ture. DIMACS Technical Report 2001-19, May 2001. Extended abstract in 2001
IEEE Symposium on Security and Privacy, May 2001. 47, 48, 51, 52

[36] P. MacKenzie and M.K. Reiter. Two-party generation of DSA signatures. In
CRYPTO 2001 (LNCS 2139), pages 137–154, 2001. 48, 49, 56

[37] S. Micali. Fair public-key cryptosystems. In CRYPTO ’92 (LNCS 740), pages
113–138, 1992. 47

[38] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT ’99 (LNCS 1592), pages 223–238, 1999. 48

[39] C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme.
IEICE Trans. Fundamentals of Electronics Communications and Computer Sci-
ences, E79A(1):86–93, January, 1996. 48

An Efficient Two-Party Public Key Cryptosystem 61

[40] T. Pedersen. A threshold cryptosystem without a trusted party. In EURO-
CRYPT ’91 (LNCS 547), pages 522–526, 1991. 48

[41] G. Poupard and J. Stern. Generation of shared RSA keys by two parties. In
ASIACRYPT ’98, LNCS 1514, pages 11–24, 1998. 49

[42] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. In EUROCRYPT ’98, pp. 1–16, 1998. 48, 51, 57

[43] A. Yao. Protocols for secure computation. In 23rd IEEE Symposium on Founda-
tions of Computer Science, pages 160–164, 1982. 47

	An Efficient Two-Party Public Key Cryptosystem Secure against Adaptive Chosen Ciphertext Attack
	Introduction
	Related Work
	Preliminaries
	Definition and Basic Theory of Σ-Protocols
	S-CS System
	Decryption Protocol

	Security for S-CS
	References

