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Abstract. We propose a robust proactive threshold signature scheme,
a multisignature scheme and a blind signature scheme which work in
any Gap Diffie-Hellman (GDH) group (where the Computational Diffie-
Hellman problem is hard but the Decisional Diffie-Hellman problem is
easy). Our constructions are based on the recently proposed GDH sig-
nature scheme of Boneh et al. [8]. Due to the instrumental structure
of GDH groups and of the base scheme, it turns out that most of our
constructions are simpler, more efficient and have more useful properties
than similar existing constructions. We support all the proposed schemes
with proofs under the appropriate computational assumptions, using the
corresponding notions of security.

1 Introduction

Recently Boneh, Lynn and Shacham [8] proposed a new signature scheme that
uses groups where the Computational Diffie-Hellman (CDH) problem is hard
but the Decisional Diffie-Hellman (DDH) problem is easy. (Recall that the CDH
problem asks to compute h = glogg u·logg v given the three random group elements
(g, u, v) and the DDH problem asks to decide whether the four group elements
(g, u, v, h) are all random or they are a valid Diffie-Hellman tuple, namely, they
have the property that logg u = logv h.) Following [8] we will refer to such groups
as Gap Diffie-Hellman (GDH) groups. The first example a GDH group is given
in [29] and more details on the existence and composition of GDH groups can
be found in [30, 6, 8]. Another signature scheme that works in GDH groups has
been proposed by Lysyanskaya in [32]. Unlike the scheme of [8], it does not use
random oracles but is less efficient.
Let G be a GDH group of prime order p and let g be a generator of G.

Similarly to most discrete-log-based schemes, the secret key of the signature
schemeGS of [8] is a random element x ∈ Z∗

p and the public key is y = gx. To sign
a messageM ∈ {0, 1}∗ a signer who holds x computes the signature σ = H(M)x,
where H is a hash function mapping arbitrary strings to the elements of G\{1},
where 1 denotes the identity element of G. Following [8] let us denote G∗ =
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G\{1}. In order to verify the validity of a candidate signature σ of a messageM ,
a verifier simply checks whether (g, y,H(M), σ) is a valid Diffie-Hellman tuple.
Boneh et al. [8] prove that signature scheme GS is secure against existential

forgery under chosen message attack in the random oracle model assuming that
the underlying group is GDH. They also show that using this signature scheme
in some GDH groups leads to very short signatures of length approximately
160 bits. In this paper we show that besides this attractive property, GS gives
rise to various efficient extensions. More precisely, we propose a robust thresh-
old proactive signature scheme, a multisignature scheme and a blind signature
scheme which are all based on the GS signature scheme. Thanks to the elegant
structure of GDH groups and of the base scheme it turns out that most of our
constructions are simpler, more efficient and have more useful properties than
similar existing constructions. We support all the proposed schemes with proofs
under the appropriate computational assumptions using the corresponding no-
tions of security.

The new GDH threshold signature scheme.The idea behind the (t, n)-
thre-shold cryptography approach [9, 14, 16, 43] is to distribute secret information
(i.e. a secret key) and computation (i.e. signature generation or decryption)
between n parties in order to remove single point of failure. The goal is to allow
any subset of more than t parties to jointly reconstruct a secret and perform the
computation while preserving security even in the presence of an active adversary
which can corrupt up to t (a threshold) parties. A review of research on threshold
cryptography is presented in [15].
In threshold signature schemes the secret key is distributed among n parties

with the help of a trusted dealer or without it by running an interactive protocol
among all parties. To sign a message M any subset of more than t parties can
use their shares of the secret and execute an interactive signature generation
protocol, which outputs a signature of M that can be verified by anybody using
the unique fixed public key. The security notion for threshold signature schemes
requires that no polynomial-time adversary that corrupts any t parties can learn
any information about the secret key or can forge a valid signature on a new
message of its choice. An important property of threshold signature schemes is
robustness, which requires that even t malicious parties that deviate from the
protocol cannot prevent it from generating a valid signature. Another useful
property of a threshold signature scheme is proactivness [37, 13] (or periodic
refreshment of shares of a secret) whose goal is to protect a system from an
adversary that builds-up knowledge of a secret by several attempted break-ins to
several locations. In general, the main goals of threshold signature constructions
are to provably achieve the following properties: to support as high a threshold t
as possible, to avoid use of a trusted dealer, to be robust, proactive and as efficient
as possible in terms of computation, interaction and length of the shares.

The new GDH threshold signature scheme. In Section 3 we propose the
thre-shold signature scheme TGS that works in any GDH group. It is based on
the GDH signature scheme of [8]. Our threshold GDH group signature scheme
can tolerate any t < n/2 malicious parties, which is an optimal result. Its key
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generation protocol does not require a trusted dealer. The signature generation
protocol does not require interaction or any zero-knowledge proofs, and avoids
other difficulties pertaining to various threshold schemes. The signature genera-
tion protocol has a minimal overhead compared to that of the base scheme. The
shares are short and their length does not depend on the number of parties. The
signature share generation protocol is basically the signing algorithm of the base
scheme and the signature reconstruction requires only multiplication of shares.
We state the security result in Theorem 2. The proof is in the random oracle
model only because the latter is used in the proof of security of the base signa-
ture scheme. We also show how proactive security can be added to our scheme
using general methods of [26, 25].

Related work. There exist many threshold signature scheme constructions,
i.e. [16, 24, 17, 19, 41, 21, 44]. The proposals of [16, 24] lack security proofs, the
schemes of [16, 17] are non-robust while those of [19, 41] are robust and proactive
but require a lot of interaction. We compare our scheme with the threshold DSS
signature scheme of Gennaro et al. [21] and with the threshold RSA scheme of
Shoup [44].
The threshold DSS signature proposed in [21] is robust, does not require

a trusted dealer and has a proof of security without the random oracle assump-
tion. It deals with technical difficulties such as combining shares of two secrets
into shares of the product of these secrets and producing shares of a reciprocal of
a secret given shares of this secret. To achieve robustness, the authors use error-
correction techniques of Berlekamp and Welch [4]. As a result, the threshold DSS
can tolerate only t < n/4 malicious parties, the threshold signature-generation
protocol requires a lot of interaction and the complexity of a threshold scheme
increases considerably related to the base signature scheme. The scheme can be
made proactive following the methods of [26, 25].
The robust threshold RSA signature scheme of [44] is proven secure in the

random oracle model. It can tolerate t < n/2 malicious parties and its signature
generation algorithm is non-interactive. It, however, requires a trusted dealer
to run the key generation protocol. The public key uses an RSA modulus that
is a product of two safe primes. The protocol utilizes zero-knowledge proofs in
the random oracle model in order to achieve robustness. Proactivization is not
considered in [44].

The new GDH multisignature scheme. In order to gain intuition about
what multisignature schemes are we first discuss this notion informally and com-
pare it to other notions.
A multisignature scheme allows any subgroup of a group of players to jointly

sign a document such that a verifier is convinced that each member of the sub-
group participated in signing. The trivial solution which satisfies the above infor-
mal definition is as follows. The resulting multisignature is simply a concatena-
tion of a description of the subgroup and of regular signatures computed by each
member of the subgroup using its own secret key. In fact this simple scheme will
meet the security requirements we formalize in Section 4 . Its main drawback,
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however, is that the signature length and verification time grows linearly with
the number of users in the subgroup.
Multisignature schemes are different from threshold signatures for several

reasons. The goal of a multisignature is to prove that each member of the stated
subgroup signed the message and the size of this subgroup can be arbitrary,
whereas in the latter setting the goal is to prove that some subgroup of sufficient
size signed the message, and the minimal size is a parameter of the scheme
and should be known in advance. As opposed to multisignatures, a threshold
signature does not reveal identities of individual signers. Another difference is
that the verification protocol of a threshold signature scheme does not depend
on the current subgroup of signers. Multisignatures are also different from group
signatures [13, 10] and ring signatures [42], where every individual member of
the group can produce a valid signature on behalf of the whole group. In the
latter two settings a signer remains anonymous with respect to a verifier. In the
group signature setting there is also a third party called a group manager which
can identify the identity of the signer.

Related work. Multisignatures have been introduced in [28] and have been
the topic of many other works such as [24, 31, 27, 34, 35, 36, 33]. The schemes
of [35, 36] do not support subgroups of signers, they allow only the case where
each player of the group signs the document. The solutions of [28, 34] are not
very efficient: multisignature generation and verification time grows linearly with
the number of players. But most importantly, until recent works of Ohta and
Okamoto and of Micali et al. [36, 33] there were no formal notions of security
for multisignatures and therefore there were no provably secure multisignature
schemes. As a result, the proposals of [31, 24] have been successfully attacked.
The notion of security of [36] is not strong enough since it does not consider the
possibility of adversarial attacks during key generation.
Micali et al. [33] first formalize the strong notion of security for multisig-

natures (they call them “accountable-subgroup multisignatures.”) They modify
the Schnorr-signature-based multisignature scheme originally proposed by Ohta
and Okamoto in [36] and prove its security. The model of security and the mul-
tisignature scheme of [33] assume that the subset of signers L is known a priori.
Each signer has to know all participants of the current subgroup of signers L,
a description of which is hashed and signed along with a message. The authors
of [33] state it as an interesting open problem to find a provably secure multisig-
nature scheme where the composition of the subgroup can be decided after the
signature shares are computed.
In their independent work Boneh et al. [7] propose a new aggregate signa-

ture scheme based on the GS signature scheme. Unlike multisignatures, aggre-
gate signature schemes permit a group of users to aggregate multiple signatures
of different messages. The scheme of [7] requires GDH groups with a special
structure provided by bilinear maps.

The new GDH multisignature scheme. In Section 4 we give precise def-
initions of multisignature schemes and their security. Our model of security is
very similar to the simplified model of security of [33], but it is more general,



Threshold Signatures, Multisignatures and Blind Signatures 35

it does not have the restriction that the subset of signers should be known in
advance. We then propose the new GDH multisignature scheme MGS. It works
in any GDH group. Our MGS scheme solves the open problem stated in [33]:
it does not require a priori knowledge of a subgroup of signers and is provably
secure. We state the security result and provide a proof in [5] . Moreover,MGS
is more efficient than the one of [33] which requires three rounds of communica-
tion for the multisignature generation protocol, where MGS requires only one,
it is basically non-interactive. Similarly to their scheme, the signature length
and verification time for MGS is independent of the size of the subgroup and is
almost the same as for the base signature scheme. In fact each signature share of
our multisignature scheme is the standard GDH signature. In the scheme of [33]
a signer is not allowed to begin a new signing protocol until the previous one
has completed. This is because their proof of security uses rewinding which is
incompatible with concurrency. Our scheme does not have such restriction not
only because our proof does not use rewinding but mostly because the signing
protocol is non-interactive.
We note that the approach underlying the construction of the multisigna-

ture scheme MGS can be used to achieve efficient batch verification of GDH
signatures of the same message under different public keys.

The new GDH blind signature scheme. Blind signatures are the basic tool
of digital cash schemes. Using a blind signature protocol a user can obtain from
a bank a digital coin, that is a token properly signed by the bank. The goal of
blind signature protocols is to enable a user to obtain a signature from a signer so
that the signer does not learn information about the message it signed and so that
the user cannot obtain more than one valid signature after one interaction with
the signer. Chaum [11] first proposed the RSA-based blind signature scheme.
However, it has been proved secure only recently by Bellare et al. [2]. The reason
for this time gap is that it appears impossible to prove security of Chaum’s
scheme based on standard RSA assumptions. The approach taken by [2] is to
introduce the new plausible computational assumption, namely, “chosen-target-
one-more-RSA-inversion” and to prove security of Chaum’s RSA blind signature
based on this assumption. In [2] the authors suggest that an analogue of this
assumption can be formulated for any family of one-way functions.
In Section 5 we define the new blind signature scheme BGS that works in

GDH groups. The protocol is very similar to the RSA blind signature protocol.
Namely, a user multiplies hash of the message with a random group element,
submits it to the bank and later “derandomizes” the signature obtained from
the bank using knowledge of the public key and of the random factor. In order
to prove the security of BGS we follow the approach of [2] and define a new
computational problem, the Chosen-target Computational-Diffie-Hellman prob-
lem. In [5] we prove the security of the blind signature BGS scheme under the
Chosen-target CDH assumption.
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2 Background

Signature schemes and their security. A signature scheme S consists of
three algorithms. The randomized key generation algorithm K takes a global
information I and outputs a pair (sk, pk) of a secret and a public keys. The
global information can contain, for example, a security parameter, a description
of the group and its generator, and the description of the hash function. We do
not focus on who generates these parameters and assume that they are pub-
licly available. A (possibly) randomized signature generation algorithm S takes
a messageM to sign and global info I and a secret key sk and outputs M along
with a signature σ. A deterministic verification algorithm V takes a public key
pk, a message M and a signature σ and outputs 1 (accepts) if the signature
is valid and 0 (rejects) otherwise. In the random oracle model [1] both sign-
ing and verification algorithms have access to the random hash oracle. Usually
M ∈ {0, 1}∗. The common requirement is that V(pk,S(I, sk,M)) = 1 for all
M ∈ {0, 1}∗.
The widely-accepted notion of security for signature schemes is unforgeability

under chosen-message attacks [23]. We recall this notion adjusted to the random
oracle model in the full version of this paper [5].
We now recall the basic signature scheme of [8]. It uses Gap-Diffie-Hellman

groups, so accordingly we first provide the definitions for the latter.

Diffie-Hellman problems and GDH groups. Let G be a multiplicative
group of the prime order p. We consider the following two problems in G.

Computational Diffie-Hellman (CDH) problem. Given (g, u, v), the three ran-
dom elements of G, to compute h = glogg u·logg v.

Decisional Diffie-Hellman (DDH) problem. Given the four G elements (g, u,
v, h), which with equal probability can be either all random elements of G or
have the property that logg u = logv h, to output 0 in the former case and 1
otherwise.
We will refer to any four elements of G with the property defined above as

a valid Diffie-Hellman (DH) tuple.
We now can define GDH groups. They are basically the groups where CDH

problem is hard, while DDH problem is easy.

Definition 1. A prime order group G is a GDH group if there exists an effi-
cient algorithm VDDH() which solves the DDH problem in G and there is no
polynomial-time (in |p|) algorithm which solves the CDH problem.

For the details on the existence and composition of GDH groups see [6, 8, 29, 30].

The GDH signature scheme GS. Let G be a GDH group. Let [{0, 1}∗→G∗]
be a hash function family, each member of which maps arbitrary long strings
to G∗ and H be a random member of this family. The global information I
contains the generator g of G, p and a description of H . The algorithms of
GS[G] = (K,S,V) are as follows.
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– K(I) : Parse I as (p, g,H). Pick random x
R← Z∗

p and compute y ← gx.
Return (pk = (p, g,H, y), sk = x).

– S(I, sk,M) : Parse I as (p, g,H). Compute σ = H(M)x. Return (M,σ).
– V(pk,M, σ) : Parse pk as (p, g,H, y). If VDDH(g, y,H(M), σ) = 1 then re-
turn 1, else return 0.

In [8] the authors state and prove the following result.

Theorem 1. Let G be a GDH group. Then GS[G] is a secure signature scheme
in the random oracle model.

3 Robust Proactive Threshold GDH Signature Scheme

We present a threshold version of GDH signature scheme which is robust, proac-
tive and does not require a trusted dealer. The construction is very simple, since
the structure of the base scheme permits to avoid many difficulties one needs to
overcome while making threshold versions of many standard signature schemes,
such as RSA, DSS, etc.
We now recall the basic setting and notions of threshold signature schemes.

Communication model. As usual, the participants in our scheme are the set
of n players {P1, . . . , Pn}. All players are connected by a broadcast channel as
well as by secure point-to-point channels.

Threshold secret sharing. The set of values (s1, . . . , sn) is said to be a (t, n)-
threshold secret sharing of the value s if any k ≤ t values from this set does not
reveal any information about s and there exists an efficient algorithm which takes

as input any t+1 values from this set and outputs s. We write (s1, . . . , sn)
(t,n)−→ s.

Threshold signature schemes and their security. Let S = (K,S,V)
be a signature scheme and let I be the associated global information. A corre-
sponding (t, n)-threshold signature scheme TS = (T K, T S,V) consists of three
algorithms, where the verification algorithm is the same as of S. A randomized
distributed threshold key generation algorithm T K is an interactive protocol
that takes I and is run by the players P1, . . . , Pn. The protocol returns the pub-
lic key pk, and the private output of each player Pi is a value xi such that

(x1, . . . , xn)
(t,n)−→ sk, where sk is a secret key corresponding to pk. T K is said to

complete successfully if it outputs (sk, pk) having the distribution the same as the
output of K. The distributed possibly randomized threshold signature generation
algorithm T S is an interactive protocol run by the subset of the players, where
the input of each player Pi is a message M , the global info I and the player’s
private input xi. The algorithm can be considered as consisting of two interac-
tive protocols: a signature share generation and signature reconstruction. At the
end of the signature share generation protocol each player outputs its signature
share. All signature shares are then combined using the signature reconstruction
protocol. The output of the algorithm is a message-signature pair (M,σ). T S is
said to complete successfully if it outputs (M,σ) such that (M,σ) = S(I, sk,M),
for all M ∈ {0, 1}∗.
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Definition 2. Let I be the global info, S = (K,S,V) be a signature scheme and
let TS = (T K, T S,V) be the corresponding threshold signature scheme. TS is
called secure robust threshold signature scheme if the following conditions hold:

1. Unforgeability. No polynomial-time adversary which is given I, is allowed
to corrupt up to t players and given the view of the protocols T K, T S, the
latter being run on the input messages of the adversary’s choice, can produce
the valid pair (M,σ) such that M has not been submitted by the adversary
as public input to T S.

2. Robustness. For every polynomial-time adversary that is allowed to corrupt
up to t players, the protocols T K, T S complete successfully.

In the above definition corruption means that an adversary chooses the players
it wants to corrupt in advance and is allowed to alter the computation of the
corrupted player in any way and to see their private inputs. If the above definition
is adjusted to the random oracle model, then all the parties are given access to
the random hash oracle.

TGS, the threshold GDH signature scheme. Let G be a GDH group,
I = (p, g,H) be the global info and let GS[G] = (K,S,V) be the GDH signature
scheme as defined in Section 2 . The algorithms T K, T S of the corresponding
threshold GDH signature scheme TGS[G] = (T K, T S,V) are defined as follows.
T K is exactly the distributed key generation protocol DKG for discrete-log

based systems of Gennaro et al. [22]1. It is jointly executed by a set of paries
{P1, . . . , Pn} It takes as input I and outputs a public key y. The private output
of each player Pi is a share xi such that (x1, . . . , xn)

(t,n)−→ x, where x = logg y.
Any subset R of t+ 1 players can reconstruct x using well-known techniques of
Lagrange interpolation: x =

∑
i∈R Lixi, where Li is the appropriate Lagrange

coefficient for the set R. As [22] shows, for each xi, the value Bi = gxi can
be computed from publicly available information. Hence, we assume that these
values are publicly available and will use them to achieve robustness.
In order to execute the signature share generation protocol of T S each

player Pi in any subset of more than t players takes input a message M and
its share xi, computes the signature share σi = H(M)xi and broadcasts σi. The
signature reconstruction protocol can be performed by any player or a set of play-
ers. We will assume for simplicity that it is run by some designated player D. In
order to achieve robustness D checks that VDDH(g,Bi, H(M), σi) = 1 for each i.
1 We are interested in verifiable threshold key generation algorithms without a trusted
dealer producing Shamir’s secret sharing of a secret [43]. Some threshold signature
scheme, e.g. threshold DSS proposed in [21] use the distributed key generation pro-
tocol (DKG) of Pedersen [38]. The intuition behind the latter protocol is to have n
parallel executions of Feldman’s verifiable secret sharing protocol [18], such that
each player acts as a dealer. However, [22] point out the weakness of DKG of [38].
Namely, it is possible for a corruptive adversary to prevent the protocol from com-
pleting correctly by manipulating the distribution of the shared secret key. DKG
protocol of [22] is based on the ideas similar to the protocol of [38], has comparable
complexity, but provably fixes the weakness of the latter.
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If this does not hold, new output requested from the corresponding player or it
is assumed malicious. Assuming wlog that R is a set of t + 1 honest players, D
computes the resulting signature σ = Πi∈R(σLi

i ), where Li is the appropriate
publicly known Lagrange coefficient for the set R. The output of the protocol is
(M,σ).

Theorem 2. Let G be a GDH group. Then TGS[G] is a secure threshold signa-
ture scheme in the random oracle model against an adversary which is allowed
to corrupt any t < n/2 players.

The proof of the above theorem is in the full version of this paper [5].

Adding proactive security. The idea of the proactive approach is to peri-
odically renew shares of a secret such that information gained by an adversary
learning some number of shares (less than a threshold) in one time period be use-
less for the adversary’s next attacks in the future time periods when all shares are
renewed. Proactive secret sharing algorithm PSS has been proposed in [26]. In
order to simplify an application of PSS [25] state the requirements on a threshold
signature scheme for proactivization with the help of the PSS protocol. Namely,
the authors prove that the security of the robust threshold signature scheme will
be preserved when used with PSS protocol if it is a discrete-log based robust
threshold signature scheme, which threshold key generation protocol implements
Shamir’s secret sharing of the secret key x corresponding to the public key y = gx

and outputs verification information (gx1 , . . . , gxn), where (x1, . . . , xn) are secret
shares of the players and if the threshold signature protocol is simulatable. Note
that TGS meets all these requirements (recall that the verification information
mentioned above is not explicitely output by T K but can be computed using
publicly available information.) Thus TGS can be proactivized using PSS and
methods of [26, 25]. We add that PSS outputs the verification information after
each share update, hence the verification of signature shares can be conducted
as before.
We now briefly summarize the properties of TGS. It is robust and can tolerate

any t < n/2 malicious parties. Its key generation protocol does not require
a trusted dealer. Its signature share generation protocol is basically the signing
algorithm of the base scheme and the signature reconstruction requires only
multiplication of shares. Therefore the signature generation protocol does not
require interaction or any zero-knowledge proofs, and has a minimal overhead
compared to that of the base scheme. The shares are short and their length does
not depend on the number of parties. We also showed how proactive security
can be added to our scheme. We compared the new GDH threshold signature
scheme with some other existing constructions in Section 1.

4 The GDH Multisignature Scheme

Multisignature schemes. Let P = {P1, . . . , Pn} be a group of n players. Let I
be the global information string. The algorithms of a multisignature scheme
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MS = (MK,MS,MV) are defined as follows. A randomized key generation
algorithmMK takes a global information I and outputs a pair (sk, pk) of a se-
cret and a public keys. Each player Pi ∈ P runs MK and as a result obtains
a pair of secret and public keys (ski, pki). A possibly randomized multisignature
generation algorithmMS is an interactive protocol run by an arbitrary subset
of players L ⊆ P . The input of each Pi ∈ L is a messageM ∈ {0, 1}∗, the global
info I and the player’s secret key ski. The output of the algorithm is a triple
T = (M,L, σ) consisting of the message, description of the subgroup L and the
multisignature. A deterministic verification algorithm MV takes M,L, σ and
public keys of all players in L and T and outputs 1 (accepts) or 0 (rejects).
Note that it is up to a particular application to decide what subgroup is

required to sign a message. A person who verifies the validity of a multisignature
might reject it not because it’s invalid but because she is not satisfied with the
subgroup which signed the message. We leave it to applications to agree each
time on the desired subgroup of signers and for the analysis we do not take this
problem into account.

MGS, the GDH multisignature scheme. We now describe the new mul-
tisignature scheme MGS which is based on the GS signature scheme of [8] we
recalled in Section 2 . The construction is very simple and efficient, and it also
solves an open problem stated in [33], namely, to find a provably secure mul-
tisignature scheme where the composition of the subgroup can be decided after
the signature shares are computed by the signers.
Let G be a GDH group and let I be the global information that consists of

a generator g of G, p = |G| and a description H of a random member of the
family of hash functions [{0, 1}∗→G∗]. Let P = {P1, . . . ,Pn} be the group of
players. The key generation algorithm of MGS[G] = (MK,MS,MV) is the
same as the one of GS[G]. The rest of the algorithms are as follows.
MS: Any player Pj ∈ P with a secret key skj = xj , that wishes to par-

ticipate in signing takes M , computes and broadcasts σj ← H(M)xj . Let L =
{Pi1 , . . . , Pil

} be a subgroup of players contributed to the signing. Let J =
{i1, . . . , il} denote the set of indices of such players. The designated signer D
(which can be implemented by any player) that we assume wlog knows the signer
of each signature computes σ = Πj∈J (σj) and outputs T = (M,L, σ).
MV: The verifier takes T = (M,L, σ) and the list of public keys of the players

in L: (pki1 , . . . ,pkil
), where pkij

= gxij for each ij ∈ J . The verifier computes
pkL = Πj∈J (pkj) = Πj∈J (gxj) and outputs VDDH(g, pkL, H(M), σ).
The robustness property can be added to MGS if D verifies the validity

of each signature it receives. We provided the comparison of MGS with other
multisignature schemes in Section 1.

Batch verification of GS signatures. The approach underlying the above
multisignature scheme can easily be applied to provide efficient batch verifica-
tion of several GS signatures of the same message under different public keys2.
2 This problem is orthogonal to the problem of batch verification of signatures of the
different messages under the same key, which has been addressed in [3].
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A verifier needs first to play the role of D above to multiply the given signatures
and then continue the verification according to the verification algorithm above.

Security of multisignatures. The notion of security for multisignatures
has to capture the possibility of an adversary to “forge” a subgroup L and
a multisignature of some message such that the latter is accepted by a verifier
when not all players of the subgroup L did sign the message. In other words, no
valid multisignature should keep an honest player that part of L accountable if
it did not participate in signing.
In order to achieve its goal an adversary might corrupt players, send arbi-

trary messages during multisignature generation protocol, etc. We also allow an
adversary to create arbitrary keys for corrupted players, possibly dependent on
the keys of honest players, in order to model well-known rogue-key attacks. With
respect to these attacks we put only one limitation on the adversary, namely we
require it to prove knowledge of secret keys during the public key registration,
which is (or should be) the standard practice. We model this for simplicity by
asking the adversary to output public and secret key of corrupted users in key
generation algorithm. Alternatively we could ask the adversary to provide proofs
of knowledge so we be able to extract secret keys, however, this would unneces-
sary complicate the model. We allow an adversary to corrupt all but one player
and its goal is to “frame” the honest player. We note that such a powerful ad-
versary can always deviate from the protocol thus preventing generating a valid
multisignature. Similarly to [33] we do not focus on the robustness property in
this work. We will sketch, however, how our multisignature scheme can be made
robust.
We now formalize the notion of security for multisignatures. It is similar to

the one given in [33], however, our definition is more general in that an idividual
signer does not have to know the subgroup of co-signers.

Definition 3. An adversary A learns the global info I and a randomly generated
public key pk1 corresponding to a single honest player. Wlog we refer to the
honest player P1. A generates and outputs the rest of n − 1 pairs of public and
secret keys and is allowed to run multisignature generation protocol with the
honest player on behalf of n − 1 corrupted players on the messages chosen by
the adversary. The advantage of the adversary Advmult

MS,I(A) is defined as the
probability of A to output the valid message–subgroup-signature triple (M,L, σ),
such that P1 ∈ L, MV(M,L, σ) = 1 and P1 did not complete the multisignature
generation protocol on the input message M .

We say that a multisignature scheme MS is secure against existential forgery
under chosen message attack (or just secure multisignature scheme) if there does
not exist a polynomial-time adversary A with non-negligible advantage
Advmult

MS,I(A).

As usual, in order to adjust the above definition to the random oracle model
all parties and the signing oracle are given access to the random hash oracle.

Security of the MGS multisignature scheme.
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Theorem 3. Let G be a GDH group. Then MGS[G] is a secure multisignature
scheme in the random oracle model.

The proof of the above theorem is in the full version of this paper [5].

5 The Blind GDH Signature Scheme

The syntax of the key generation and verification algorithms BK,BV of a blind
signature scheme BS = (BK,BS,BV) is the same as the one of the corresponding
algorithms of a regular signature scheme. The blind signing algorithm BS is an
interactive protocol between a user and a signer, where the former knows the
public key and the latter is given the global info and the secret key. And the end
of the protocol the user outputs a message-signature pair (M,σ). It is required
that if (M,σ) is the output of the blind signing algorithm, then V(pk,M, σ) = 1.

BGS, the blind GDH signature. We now propose a new blind signature
scheme based on GDH signature scheme.
Let G be a GDH group. Let I = (p, g,H) be the global info. Let GS[G]

be the GDH signature scheme of [8] we recalled in Section 2 . The blind GDH
signature scheme BGS[G] = (BK,BS,BV) is defined as follows. The algorithms
BK,BV are the same as those of GS. The blind signing protocol BS is defined
as follows. The user holds a public key pk = (p, g,H, y). In order to “blindly”
sign a message M ∈ {0, 1}∗ the user picks a random number r R← Z∗

p , computes
M = H(M)·gr and sends it to the signer. The signer knows I = (p, g,H), sk = x.
The signer computes σ = (M)x and sends it to the user. The latter computes
σ ← σ · y−r and outputs (M,σ).
Note that above σ = H(M)x, that is a valid signature on M .

Security of blind signatures. The notion of security of blind signatures
captures two properties. The first property is “blindness”, meaning the signer
in the blind signing protocol should not learn any information about the mes-
sages the user obtained signatures on. The second property is a special form of
unforgeability, namely, the user that has been engaged in l runs of the blind sign-
ing protocol should not be able to obtain more than l signatures. The standard
notion of unforgeability under chosen-message attack of digital signatures [23]
cannot be used as a notion of unforgeability for blind signatures since by their
construction a user has to be able to produce a valid signature of a previously
unsigned message. The accepted formalization of security for blind signature is
security against one-more-forgery [39, 40].

Definition 4. Let S be a signature scheme and let BS = (BK,BS, BV) be the
corresponding blind signature scheme. An adversary A learns the public key pk
randomly generated by BK. A is allowed to play the role of a user in the runs
of the blind signing protocol. After interactions with the signer A outputs some
number of message-signature pairs. The advantage of the adversary Advblind

BS,I (A)
is defined as the probability of A to output a set L of valid message-signature
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pairs, such that the number of invoked blind signing protocols with the signer is
strictly less than the size of L.

We say that the blind signature scheme BS is secure against one-more forgery
under chosen message attack or just secure blind signature scheme if there does
not exist a polynomial-time adversary A with non-negligible advantage
Advblind

BS,I(A).

First we claim that BGS has the blindness property. This is because the signer
receives only random elements in G which are independent of the outputs of the
user.

Chosen target CDH assumption.Similarly to the proof of security of the
Chaum’s RSA-based blind signature scheme [11] given in [2] we reduce the se-
curity in the sense of unforgeability of the blind signature scheme to the chosen-
target version of the appropriate computational assumption. Security of the RSA
blind signature is proven secure assuming hardness of the chosen-target RSA in-
version problem [2]. Namely, the assumption states that for a randomly generated
RSA key pair pk = (N, e), sk = (N, d)3 no polynomial time adversary which is
given pk, the “target” oracle which outputs random target points in Z∗

N and the
“helper” RSA inversion oracle (·)d mod N can invert (compute (·)d mod N) any
subset of the target points such that the number of queries to the helper RSA
inversion oracle is strictly less than the number of queries to the target oracle.
It is suggested in [2] that an analogue of this assumption can be formulated for
any family of one-way functions. We propose the following analogous problem
and the assumption.

Definition 5. Let G =< g > be a group of a prime order p. Let x be a random
element of Z∗

p and let y = gx. Let H be a random instance of a hash function
family [{0, 1}∗ → G∗] The adversary B is given (p, g,H, y) and has access to
the target oracle TG that returns random points zi in G and the helper oracle
(·)x. Let qt, (resp. qh) be the number of queries B made to the target (resp.
helper) oracles. The advantage of the adversary attacking the chosen-target CDH
problem Advct−cdh

G (B) is defined as the probability of B to output a set V of, say, l
pairs ((v1, j1), . . . (vl, jl)), where for all 1 ≤ i ≤ l ∃ 1 ≤ ji ≤ qt such that vi = zx

ji
,

all vi are distinct and qh < qt.
The chosen-target CDH assumption states that there is no polynomial-time

adversary B with non-negligible Advct−cdh
G (B).

Note that if the above adversary makes one query to the target oracle then the
chosen-target CDH assumption is equivalent to the standard CDH assumption.
We assume that the chosen-target CDH problem is hard for all groups where
CDH problem is hard; this includes GDH groups.

3 Here N = pq is a product of two random primes, e is a random element of Z∗
φ(N)

and ed ≡ 1 mod φ(N), where φ(·) is a Euler’s totient function.
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Security of the BGS blind signature scheme.

Theorem 4. If the chosen-target CDH assumption is true in G then BGS[G]
is secure against one-more forgery under chosen message attack.

The proof of the above theorem is in the full version of this paper [5].
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