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Abstract. In an order-preserving encryption scheme, the encryp-
tion algorithm produces ciphertexts that preserve the order of their
plaintexts. Order-preserving encryption schemes have been studied
intensely in the last decade, and yet not much is known about the se-
curity of these schemes. Very recently, Boneh et al. (Eurocrypt 2015)
introduced a generalization of order-preserving encryption, called
order-revealing encryption, and presented a construction which
achieves this notion with best-possible security. Because their con-
struction relies on multilinear maps, it is too impractical for most
applications and therefore remains a theoretical result.

In this work, we build efficiently implementable order-revealing en-
cryption from pseudorandom functions. We present the first efficient
order-revealing encryption scheme which achieves a simulation-based
security notion with respect to a leakage function that precisely
quantifies what is leaked by the scheme. In fact, ciphertexts in
our scheme are only about 1.6 times longer than their plaintexts.
Moreover, we show how composing our construction with exist-
ing order-preserving encryption schemes results in order-revealing
encryption that is strictly more secure than all preceding order-
preserving encryption schemes.

1 Introduction

A symmetric encryption scheme is order-preserving if the ciphertexts preserve the
numeric ordering of their underlying plaintexts. The notion of order-preserving
encryption (OPE) was introduced by Agrawal et al. [1] who showed how it could
be used to efficiently answer range queries over encrypted data, as well as sorting
queries, searching queries, and more. Indeed, existing OPE solutions have been
implemented in practice [46, 43] for these exact purposes. Since the introduction
of OPE, there has been a plethora of work on analyzing the security of various
OPE schemes, found both in the cryptography community and the database
community. However, it is troubling that in spite of the numerous practical
applications of OPE, the security of the best candidate OPE schemes is still not
well understood.



2

Prior work. The first OPE construction by Agrawal et al. [1] relied on heuristics
and lacked a formal security analysis. Subsequently, Boldyreva et al. [7] gave the
first formal security definitions for OPE schemes. Boldyreva et al. introduced two
primary notions for security of an OPE scheme. The first notion of security for
an OPE scheme is called indistinguishability under an ordered chosen plaintext
attack (IND-OCPA). The IND-OCPA definition can be viewed as a generalization
of semantic security [31], and effectively says that encryptions of a sequence of
messages should reveal nothing about the underlying messages other than their
ordering. However, in the same work, Boldyreva et al. showed that no efficient
order-preserving encryption scheme can be IND-OCPA secure, even in settings
where the size of the ciphertext space is exponentially larger than the size of the
plaintext space.

In light of this lower bound for OPE schemes that satisfy IND-OCPA security,
Boldyreva et al. introduced a weaker notion of security (POPF-CCA security)
where the encryption function for the OPE scheme is compared to a random
order-preserving function—that is, the encryption algorithm for an OPE scheme
behaves like a truly random order-preserving function. Under this definition, an
OPE scheme inherits the properties of a random order-preserving function.4 In
the same work, Boldyreva et al. gave an explicit construction of an OPE scheme
that satisfies POPF-CCA security. However, the POPF-CCA security definition
does not precisely specify the information that is leaked by an OPE scheme that
achieves this definition. In fact, a scheme that achieves this notion of security
does not even satisfy semantic security for a single encryption, and indeed, in
subsequent work, Boldyreva et al. [8] showed that ciphertexts in their OPE
scheme leak approximately the first half of the bits of the underlying plaintexts.
In addition, they introduce several new security definitions in order to better
quantify the information leakage of OPE schemes that are POPF-CCA secure.

Recently, Boneh et al. [9] proposed a generalization of OPE called order-
revealing encryption (ORE). In an OPE scheme, the ciphertexts are numeric-
valued, and the ordering of the underlying plaintexts is determined by numerically
comparing the ciphertexts. In contrast, in an ORE scheme, the ciphertexts
are not constrained to any particular form, and instead, there is a publicly
computable comparison function which takes two ciphertexts and outputs the
numeric ordering of the underlying plaintexts.5 Although this generalization may
at first seem subtle, Boneh et al. constructed an ORE scheme from multilinear
maps that achieves the “best-possible” notion of security, which is equivalent to
the IND-OCPA security notion for order-preserving encryption.

The main drawback of the Boneh et al. ORE construction is that it relies on
complicated tools and strong assumptions on these tools, and as such, is currently
impractical to implement.

4This definition is inspired by the similar definition for PRF security [28], which
compares the output of a keyed function to that of a truly random function.

5This application was also observed and independently achieved by Goldwasser et al. [29]
using indistinguishability obfuscation.
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1.1 Our Contributions

We now summarize the main contributions of this work, which include a new
simulation-based security notion for ORE, along with a practical construction of
an ORE scheme which achieves this security notion. We also show how our new
construction can be used to achieve a strictly stronger notion of security compared
to other stateless and efficiently implementable (e.g., constructions that do not
rely on powerful primitives such as multilinear maps and indistinguishability
obfuscation) OPE and ORE encryption schemes.

Security model. In our work, we take the general approach of Boneh et al. in
constructing an ORE scheme, except we take a more efficient route. Our first
contribution is a new security definition for order-revealing encryption schemes
that both allows for and explicitly models the leakage in the scheme. Our design
goals for introducing this new security model are twofold: first, the security model
should enable constructions that are efficiently implementable, and second, it
should provide a precise quantification of any information leaked by the scheme.
The two primary notions of security, IND-OCPA and POPF-CCA, introduced
by Boldyreva et al. [7] each satisfy one of these two properties. In particular, all
non-interactive, stateless6 ORE schemes that achieve IND-OCPA security require
strong cryptographic primitives such as multilinear maps or indistinguishability
obfuscation [29, 9], and thus, are not efficiently implementable today. At the other
end of the spectrum, it is difficult to precisely quantify the leakage of schemes
that satisfy POPF-CCA security. The work by Boldyreva et al. [8] provides some
concrete lower and upper bounds for the leakage under the strong assumption
that the plaintexts are drawn from a uniform distribution. For more general
distributions, the leakage remains unclear.

In our work, we give a simulation-based definition of security for ORE with
respect to a leakage function L. In other words, our definition states that whatever
an adversary is able to deduce from seeing encryptions of messages m1, . . . ,mt,
it could also deduce given only the leakage L(m1, . . . ,mt). The “best-possible”
security for ORE would correspond to the case where the leakage function simply
outputs whether mi < mj for all pairs of messages mi and mj . By allowing for
the possibility of additional leakage, it becomes possible to construct practical
ORE schemes from standard assumptions. Thus, our constructions provide a
concrete trade-off between security and efficiency. Our security definitions are
similar to the simulation-based definitions that have been considered previously
in the searchable symmetric encryption literature [14, 22].

Constructions. In our main construction, we show how to construct an ORE
scheme from one-way functions (more precisely, from pseudorandom functions
(PRFs) [28]). This particular ORE scheme reveals slightly more information
than just the ordering of the underlying messages. Specifically, two ciphertexts
encrypting messages m1 and m2 also reveal the index of the first bit in m1 and

6There are “mutable” order-preserving encryption schemes [42, 36, 35] that do satisfy
IND-OCPA, but they require stateful encryption, and oftentimes, an interactive
protocol to “update” ciphertexts. We survey some of these constructions in Section 1.2.



4

m2 that differ. In other words, our ORE scheme leaks some information about
the relative distance between the underlying messages.

We give a brief overview of our PRF-based construction. The secret key in our
scheme consists of a PRF key k. The output space of the PRF is the set {0, 1, 2}.
Each ciphertext consists of the bits of the message blinded by the outputs of
the PRF evaluated on the prefixes of the message. More precisely, to encrypt an
n-bit message m = m1m2 · · ·mn, the encryption algorithm effectively computes
the following for each i ∈ [n]:

ui = F (k,m1m2 · · ·mi−1) +mi (mod 3).

Note that to support variable-length PRF inputs, we simply pad the input. We
describe our construction in greater detail in Section 3. The ciphertext is then
the tuple ct = (u1, . . . , un) of blinded values.

To compare encryptions ct = (u1, . . . , un) and ct′ = (u′1, . . . , u
′
n) of messages

m and m′, the evaluator first finds the first index i for which ui 6= u′i. Since ui
and u′i are functions of just the first i bits of m and m′, respectively, the first
index i for which ui 6= u′i is the first bit of m and m′ that differ. After identifying
the ith bit that differs, the evaluator uses ui and u′i to determine which message
has 0 as the ith bit and which message has 1.7 Conversely, if ui = u′i for all i,
then cti = ct′i, and so m = m′. Security of this construction follows from the
security of the PRF (Theorems 3.2).

Ciphertexts in our candidate scheme are dn · log2 3e ≈ d1.6ne bits, where n is
the bit-length of the message. As a point of comparison, ciphertexts in the OPE
scheme of Boldyreva et al. [7] are only n+ 1 bits long. While the ciphertexts in
our scheme are longer (by a multiplicative factor log2 3), the authors of [8] note
that even if the size of the ciphertext space is increased beyond n+ 1 bits in the
Boldyreva et al. scheme, the security of their construction does not improve by
any noticeable amount.

We then explain in Section 3.2 how to convert our ORE scheme into an OPE
scheme, at the expense of longer ciphertexts. This is useful for applications where
it is more convenient to have a numeric ciphertext space and for order relations
to be computable without a “custom” comparison function. The transformation
we describe is natural and does not reduce the security of the original ORE
scheme. In particular, we note that the resulting OPE scheme does not behave
like a random order-preserving function (the ideal object from the POPF-CCA
security notion). Thus, the scheme is able to achieve stronger security than the
Boldyreva et al. OPE scheme.

Comparison with existing schemes. First, we note in Section 2.3 that the
security of any OPE scheme can be “augmented” by applying ORE encryption
on top of OPE encryption. The resulting scheme is at least as secure as the
underlying OPE scheme, and moreover, inherits the security properties of the
ORE scheme. Hence, by composing our ORE construction with existing OPE
constructions, we obtain ORE schemes that are at least as secure.

7Either ui + 1 = u′i (mod 3), in which case m < m′, or ui − 1 = u′i (mod 3), in which
case m > m′.
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While composing an OPE scheme with an ORE scheme yields a scheme that is
at least as secure as the underlying OPE scheme, we show that even without this
composition, our basic ORE scheme still achieves stronger security guarantees
according to the one-wayness metrics introduced by Boldyreva et al. [8] for analyz-
ing the leakage of random order-preserving functions (and by extension, any OPE
scheme that is POPF-CCA secure). In our work, we introduce two generalized
one-wayness notions and show that under a uniform plaintext distribution,8 our
basic ORE scheme achieves strictly stronger security compared to OPE schemes
that are POPF-CCA secure. Specifically, Boldyreva et al. [8] show that a random
order-preserving function leaks half of the most-significant bits of the messages
with probability close to 1. In contrast, under the same settings, we can show
that our basic ORE scheme will not leak any constant fraction of the message
bits with overwhelming probability.

1.2 Related Work

In recent years, there have been numerous works on order-preserving encryption
and related notions [1, 7, 8, 41, 42, 47, 36, 35, 38, 44]. In this section, we survey
some of these works.

Security definitions. Though the POPF-CCA security definition introduced
by Boldyreva et al. [7] is similar in flavor to PRF security, it is not immediately
evident what kind of information the output of a random order-preserving function
leaks about its input. In a follow-up work [8], Boldyreva et al. introduce several
notions (based on definitions of one-wayness [27] for one-way functions) to capture
the information leakage in schemes that are POPF-CCA secure. They show that
a random order-preserving function leaks at least half of the bits in each message.

Teranishi et al. [47] also introduce a stronger indistinguishability-based notion
(stronger than the one-wayness definitions from [8], but weaker than IND-OCPA)
for OPE schemes, as well as a construction that achieves these stronger notions.
Notably, their definition ensures that under a uniform message distribution, any
fraction of the low-order bits of the messages being encrypted are hidden.

Recently, Naveed et al. [40] analyzed the information leaked by order-preserving
encryption used in practical scenarios.

Modular OPE. Boldyreva et al. also introduced the notion of modular OPE
as a possible extension of standard OPE [8]. In modular OPE, a modular shift
is applied to each plaintext before applying OPE—so the scheme is not order-
preserving, but naturally supports “wrap-around” range queries. Their modular
OPE scheme adds an extra layer of security to vanilla OPE, but it is worth noting
that leakage of a small amount of information (say, a single plaintext-ciphertext
pair) reveals the shift value and nullifies this added security. Subsequently,
Mavroforakis et al. [38] designed several protocols to avoid leaking the shift value
while using modular OPE schemes in practice.

8This is the only distribution for which we have concrete analysis of the leakage in any
POPF-CCA secure scheme.
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Mutable OPE. Popa et al. [42] introduced a related notion of a mutable order-
preserving encoding scheme which can be viewed as a two-party protocol that
allows a user to insert and store encrypted values in a database such that the
database is able to perform comparisons and range queries on the encrypted values
without learning anything more about the values. Their construction is interactive
and leverages stateful encryption. By working in this setting, the authors are
able to circumvent the Boldyreva et al. [7] lower bound for order-preserving
encryption and show that their scheme is IND-OCPA secure.

In subsequent work, Kerschbaum and Schröpfer [36] improved on the commu-
nication complexity of the Popa et al. construction at the expense of increasing
the amount of client-side state. Specifically, in their construction, the amount
of persistent state the client has to maintain increases linearly in the number of
elements inserted into the database. More recently, Kerschbaum [35] introduced
a new notion of frequency-hiding OPE that introduces additional randomness to
hide whether multiple ciphertexts encrypt the same value. Their notions provide
a strictly stronger guarantee than IND-OCPA.

Very recently, Roche et al. [44] introduced the notion of partial order-
preserving encodings, which optimizes for the setting where there are a huge
number of insertion queries but only a moderate number of range queries. Their
protocol improves upon the round-complexity for insertions compared to the
Popa et al. protocol [42], and requires the client to maintain less state than
the Kerschbaum-Schröpfer construction [36]. All of the schemes described here
require stateful encryption and employ an interactive encryption procedure.

ORE. Order-revealing encryption schemes, as introduced by Boneh et al. [9]
provide another method of circumventing the Boldyreva et al. lower bound [7]. In
an ORE scheme, the public comparison operation is not required to correspond
to numerically comparing the ciphertexts, and in fact, the ciphertexts themselves
need not be elements of a numeric, well-ordered set. This type of relaxation
was previously considered by Pandey and Rouselakis [41] in the context of
property-preserving encryption. In a property-preserving encryption scheme,
there is a publicly computable function that can be evaluated on ciphertexts to
determine the value of some property on the underlying plaintexts. Order-revealing
encryption can thus be viewed as a property-preserving encryption scheme for
the comparison operation. Pandey and Rouselakis introduce and explore several
indistinguishability-based notions of security for property-preserving encryption;
however, they do not construct an order-revealing encryption scheme.

To the best of our knowledge, all existing ORE schemes that provide IND-
OCPA security either rely on very strong (and currently impractical) crypto-
graphic primitives such as indistinguishability obfuscation [29] and cryptographic
multilinear maps [9], or only achieve a weaker notion of security [3, 12] when
instantiated with simple cryptographic primitives such as public key cryptography.
For the constructions based on indistinguishability obfuscation or multilinear
maps [29, 9], security of the ORE scheme is conditional on the conjectured secu-
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rity of cryptographic multilinear maps [10, 23, 20, 37, 26, 21, 2].9 However, in the
last few months, numerous attacks [16, 11, 19, 33, 17, 39, 18] on these multilinear
maps have emerged, raising some doubts about the security of constructions that
leverage them.

To avoid multilinear maps in favor of more well-studied number-theoretic or
lattice-based assumptions, one can apply arity-amplification techniques [3, 12] to
a single-input functional encryption scheme based on simpler assumptions such
as learning with errors [30] or semantically-secure public-key encryption [45, 32].
However, due to limitations of the underlying functional encryption schemes,
the resulting ORE scheme only provides “bounded-message” security—that is,
security only holds if there is an a priori (polynomial) bound on the maximum
number of messages that will be encrypted. Moreover, the length of the ciphertexts
in this scheme grows polynomially in the bound on the number of messages that
will be encrypted. These constraints severely limit the practicality of the resulting
ORE scheme. To obtain full semantic security, it would be necessary to apply
the arity-amplification transformation to a more powerful functional encryption
scheme, but to date, the only known candidates of such schemes rely again on
indistinguishability obfuscation [24] or multilinear maps [25].

Recently, Bun and Zhandry [13] investigated the connection between order-
revealing encryption and problems in learning theory.

Other schemes. Numerous ad hoc or heuristic order-preserving encryption
schemes [6, 34, 48] have been proposed in the literature, but most lack formal
security analysis.

2 Order-Revealing Encryption

In this section, we establish and review some conventions that we use in this
work, and also formally define our security notions for our encryption schemes.

Preliminaries. For n ∈ N, we write [n] to denote the set of integers {1, . . . , n},
and Zn to denote the additive group of integers modulo n. If P(x) is a predicate
on x, we write 1(P(x)) to denote the indicator function for P : that is, 1(P(x)) = 1
if and only if P(x) = 1, and 0 otherwise. If x, y ∈ {0, 1}∗ are bit-strings, we write
x‖y to denote the concatenation of x and y. For a finite set S, we write Unif(S)
to denote the uniform distribution on S. We say a function f(λ) is negligible in
a security parameter λ if f = o(1/λc) for all c ∈ N. We write negl(λ) to denote a
negligible function in λ and poly(λ) to denote a polynomial in λ. We say an event
occurs with negligible probability if the probability of the event is negl(λ), and
it occurs with overwhelming probability if the complement of the event occurs
with negligible probability. Finally, we review the definition of a pseudorandom
function (PRF) [28]. Let Funs[D,R] denote the set of all functions from a domain
D to a range R. In this paper, we specialize the domain of our PRFs to {0, 1}n.

9To date, the only concrete instantiations of indistinguishability obfuscation [24, 5, 4, 49]
leverage multilinear maps.
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Definition 2.1 (Pseudorandom Function [28]). Fix a security parameter λ.
A PRF F : K × {0, 1}n → R with key space K, domain {0, 1}n, and range R is
secure if for all efficient adversaries A,∣∣∣Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
−

Pr
[
f

r←− Funs[{0, 1}n,R] : Af(·)(1λ) = 1
]∣∣∣ = negl(λ).

2.1 Order-Revealing Encryption

An order-revealing encryption (ORE) scheme is a tuple of algorithms Π =
(ORE.Setup,ORE.Encrypt,ORE.Compare) defined over a well-ordered domain D
with the following properties:

– ORE.Setup(1λ)→ sk. On input a security parameter λ, the setup algorithm
ORE.Setup outputs a secret key sk.

– ORE.Encrypt(sk,m)→ ct. On input the secret key sk and a message m ∈ D,
the encrypt algorithm ORE.Encrypt outputs a ciphertext ct.

– ORE.Compare(ct1, ct2)→ b. On input two ciphertexts ct1, ct2, the compare
algorithm ORE.Compare outputs a bit b ∈ {0, 1}.

Remark 2.2 (Public Parameters). In general, the setup algorithm of an
ORE scheme can also output public parameters pp which are then passed as
an additional input to the comparison algorithm, as is done in Boneh et al. [9].
However, none of our constructions require these public parameters, so we omit
them in this work for simplicity.

Remark 2.3 (Support for Decryption). As described, our definition of an
order-revealing encryption scheme does not include a “decryption” function.
However, this omission is without loss of generality. To decrypt a message, the
holder of the secret key can use the secret key to encrypt messages of her
choosing, apply the comparison algorithm, and perform binary search to recover
the message. An alternative method that avoids the need for binary search is to
augment each ORE encryption of a message m with an encryption of m under a
CPA-secure symmetric encryption scheme. The secret key of the ORE scheme
would also include the key for the symmetric encryption scheme. As long as the
underlying encryption scheme is CPA-secure, including this additional ciphertext
does not compromise security. For the remainder of this work, we use the schema
described above that does not explicitly specify a decryption function.

Correctness. Fix a security parameter λ. An ORE scheme Π = (ORE.Setup,
ORE.Encrypt,ORE.Compare) over a well-ordered domain D is correct if for sk←
ORE.Setup(1λ), and all messages m1,m2 ∈ D,

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1− negl(λ),

where ct1 ← ORE.Encrypt(sk,m1) and ct2 ← ORE.Encrypt(sk,m2), and the prob-
ability is taken over the random coins in ORE.Setup and ORE.Encrypt.
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Security. We now give our simulation-based notion of security for an ORE
scheme. As described in Section 1.1, our security definition is parameterized by a
leakage function L, which exactly specifies what is leaked by an ORE scheme.

Definition 2.4 (Security of ORE with Leakage). Fix a security parameter
λ ∈ N. Let Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE scheme.
Let A = (A1, . . . ,Aq) be an adversary for some q ∈ N. Let S = (S0,S1, . . . ,Sq)
be a simulator, and let L(·) be a leakage function. We define the experiments
REALoreA (λ) and SIMore

A,S,L(λ) as follows:

REALore
A (λ):

1. sk← ORE.Setup(1λ)
2. (m1, stA)← A1(1λ)
3. c1 ← ORE.Encrypt(sk,m1)
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) ci ← ORE.Encrypt(sk,mi)

5. output (c1, . . . , cq) and stA

SIMore
A,S,L(λ):

1. stS ← S0(1λ)
2. (m1, stA)← A1(1λ)
3. (c1, stS)← S1(stS ,L(m1))
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) (ci, stS)← Si(stS ,L(m1, . . . ,mi))

5. output (c1, . . . , cq) and stA

We say that Πore is a secure ORE scheme with leakage function L(·) if for all
polynomial-size adversaries A = (A1, . . . ,Aq) where q = poly(λ), there exists a
polynomial-size simulator S = (S0,S1, . . . ,Sq) such that the outputs of the two
distributions REALoreA (λ) and SIMore

A,S,L(λ) are computationally indistinguishable.

Remark 2.5 (IND-OCPA Security). We briefly note how the IND-OCPA
definition of security is captured by this definition. Let L be the following leakage
function:

L(m1, . . . ,mt) = {1(mi < mj) : 1 ≤ i < j ≤ t} .

If an ORE scheme is secure with leakage L, then it is IND-OCPA secure.

2.2 Order-Preserving Encryption (OPE)

An OPE scheme [1, 7] is a special case of an ORE scheme, where the ciphertext
space is required to be a well-ordered range R and moreover, for two ciphertexts
ct1, ct2 ∈ R, the comparison algorithm outputs 1 if ct1 < ct2. For simplicity, we
can write an OPE scheme as a tuple of algorithms Π = (OPE.Setup,OPE.Encrypt)
defined over a well-ordered domain D and well-ordered range R with the following
properties:

– ORE.Setup(1λ)→ sk. On input a security parameter λ, the setup algorithm
ORE.Setup outputs a secret key sk.

– ORE.Encrypt(sk,m)→ ct. On input the secret key sk and a message m ∈ D,
the encrypt algorithm OPE.Encrypt outputs a ciphertext ct ∈ R.
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Correctness. An OPE scheme Π = (OPE.Setup,OPE.Encrypt) over a well-
ordered domain D and well-ordered range R is correct if sk ← OPE.Setup(1λ),
and all messages m1,m2 ∈ D,

m1 < m2 ⇐⇒ OPE.Encrypt(sk,m1) < OPE.Encrypt(sk,m2)

with overwhelming probability.

2.3 Composing OPE with ORE

By composing an ORE scheme with an OPE scheme, we obtain an ORE scheme
whose security is at least as strong as the security of the underlying OPE
scheme. Let Πope = (OPE.Setup,OPE.Encrypt) be an OPE scheme and Π in

ore =
(OREin.Setup,OREin.Encrypt,OREin.Compare) be an ORE scheme. Consider the
following composed construction Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare)
of an ORE scheme with an OPE scheme:

– ORE.Setup(1λ). The setup algorithm runs sk1 ← OPE.Setup(1λ) and sk2 ←
OREin.Setup(1λ). The secret key is sk = (sk1, sk2).

– ORE.Encrypt(sk,m). The encryption algorithm outputs OREin.Encrypt(sk2,
OPE.Encrypt(sk1,m)).

– ORE.Compare(ct1, ct2). The compare algorithm computes and outputs the
value OREin.Compare(ct1, ct2).

Correctness of Πore follows immediately from the correctness of Π in
ore and Πope.

Furthermore, we note that under our simulation-based definition of security, the
composed scheme Πore is at least as secure as Πope. This intuition is formalized
in the following remark, whose proof follows immediately by construction.

Remark 2.6 (Security of Composed Scheme). For any leakage function
L(·), if the OPE scheme Πope is secure with leakage function L(·), then the ORE
scheme Πore is also secure with leakage function L(·).

3 Main Construction

In this section, we give a construction of an ORE scheme for the set of n-bit
positive integers with the following leakage function:

Lf(m1, . . . ,mt) := {(inddiff(mi,mj), 1(mi < mj)) : 1 ≤ i < j ≤ t}, (3.1)

where inddiff(x, y) gives the index of the first bit where x and y differ. If x = y,
we set inddiff(x, y) = n + 1. In other words, for x 6= y, if x = x1 · · ·xn and
y = y1 · · · yn, then inddiff(x, y) is the smallest index ` ∈ [n] for which x` 6= y`.

Construction. Fix a security parameter λ ∈ N, and take an integer M ≥ 3. Let
F : K × ([n]× {0, 1}n−1)→ ZM be a secure PRF. We define our ORE scheme
Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) as follows:
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– ORE.Setup(1λ). The setup algorithm chooses a uniformly random PRF key
k for F . The secret key is sk = k.

– ORE.Encrypt(sk,m). Let b1 · · · bn be the binary representation of m and let
sk = k. For each i ∈ [n], the encryption algorithm computes

ui = F (k, (i, b1b2 · · · bi−1‖0n−i)) + bi (mod M),

and outputs the tuple (u1, u2 . . . , un).
– ORE.Compare(ct1, ct2). The compare algorithm first parses

ct1 = (u1, u2, . . . , un)

ct2 = (u′1, u
′
2, . . . , un),

where u1, . . . , un, u
′
1, . . . , u

′
n ∈ ZM . Let i be the smallest index where ui 6= u′i.

If no such index exists, output 0. If such an index exists, output 1 if u′i = ui+1
(mod M), and 0 otherwise.

3.1 Correctness and Security

We now show that the above ORE scheme Πore is correct and secure against
the leakage function Lf from Equation (3.1). We give the proof of the following
theorem in the full version of this paper [15].

Theorem 3.1. The ORE scheme Πore is correct.

Next, we state and prove the security theorem for Πore.

Theorem 3.2. The order-revealing encryption scheme Πore is secure with respect
to leakage function Lf (Definition 2.4) under the PRF security of F .

Proof. Fix a security parameter λ and let A = (A1, . . . ,Aq) where q = poly(λ) be
an efficient adversary for the ORE security game (Definition 2.4). To prove security,
we give an efficient simulator S = (S0, . . . ,Sq) for which the outputs of the
distributions REALoreA (λ) and SIMore

A,S,Lf
(λ) are computationally indistinguishable.

We use a hybrid argument. We begin by defining the hybrid experiments:

– Hybrid H0: This is the real experiment REALoreA (λ).
– Hybrid H1: Same as H0, except during ORE.Setup, a random function

f
r←− Funs[([n]× {0, 1}n−1),ZM ] is chosen. In all invocations of ORE.Encrypt,

the function F (k, ·) is replaced by f(·).

Hybrids H0 and H1 are computationally indistinguishable under the PRF security
of F . Thus, it suffices to show that there exists a simulator S such that the distri-
bution of outputs in H1 is computationally indistinguishable from SIMore

A,S,Lf
(λ).

Description of the simulator. We now describe the simulator S = (S0, . . . ,Sq).
First, S0 initializes an empty lookup tables L : [q]× [n]→ ZM . It then outputs
stS = L. Then, for each t ∈ [q], after the adversary outputs a query mt, the
simulation algorithm St is invoked on input stS = L and Lf(m1, . . . ,mt). In
particular, Lf(m1, . . . ,mt) contains the values 1(mj < mt) and inddiff(mj ,mt)
for all j ∈ [t− 1], where inddiff(mj ,mt) is the index of the first bit in mj and mt

that differ. For each s ∈ [n], there are three cases to consider:
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– Case 1: There exists a j ∈ [t− 1] such that inddiff(mj ,mt) > s. If there are
multiple j for which inddiff(mj ,mt) > s, let j be the smallest one. Then, the
simulator sets us = L(j, s).

– Case 2: For each ` ∈ [t−1], inddiff(m`,mt) ≤ s, and there exists a j ∈ [t−1] for
which inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) = s,
let j be the smallest one. Then, the simulator sets us = L(j, s)−(1−2·1(mj <
mt)) (mod M).

– Case 3: For each ` ∈ [t− 1], inddiff(m`,mt) < s. In this case, the simulator

samples y
r←− ZM and sets us = y.

For each s ∈ [n], the simulator adds the mapping (t, s) 7→ us to L. Finally, the
simulator St outputs the ciphertext ctt = (u1, u2, . . . , un) and the updated state
stS = L. This completes the description of the simulator S.

Correctness of the simulation. We show that the simulator S = (S0, . . . ,Sq)
perfectly simulates the distribution in hybrid H2. Let (ct1, . . . , ctq) be the joint
distribution of the ciphertexts output in hybrid H2, and let (ct1, . . . , ctq) be
the joint distribution of the ciphertexts output by the simulator. We proceed
inductively in the number of queries q. The base case (q = 0) follows trivially.

Suppose now that (ct1, . . . , ctt−1) ≡ (ct1, . . . , ctt−1) for some t ∈ [q]. We
show that the statement holds for t + 1. Consider the distributions of ctt and
ctt. First, for any j ∈ [t], write ciphertext ctj as (uj,1, uj,2, . . . , uj,n) and ctj as
(uj,1, uj,2, . . . , uj,n). In addition, for j ∈ [t], we write bj,s to denote the sth bit of
mj . For each s ∈ [n], we consider three cases:

– Case 1: There exists a j ∈ [t− 1] such that inddiff(mj ,mt) > s. If there are
multiple j for which inddiff(mj ,mt) > s, let j be the smallest one. This means
that mj and mt share a prefix of length at least s. Let p ∈ {0, 1}s−1 be the
first s− 1 bits of this common prefix. Then, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s = uj,s.

In the simulation, ut,s = L(j, s) = uj,s. Since j < t, we conclude from the
induction hypothesis that ut,s and ut,s are identically distributed.

– Case 2: For each ` ∈ [t− 1], inddiff(m`,mt) ≤ s, and there exists a j ∈ [t− 1]
such that inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) =
s, let j be the smallest one. This means that mj and mt share a prefix
p ∈ {0, 1}s−1 of length s− 1. Then, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod M).

In the simulation,

ut,s = L(j, s)− (1−2 ·1(mj < mt)) = uj,s− (1−2 ·1(mj < mt)) (mod M).

In hybrid H2, uj,s = f(s, p‖0n−s) + bj,s. By assumption, bj,s 6= bt,s, so we can
write bt,s = bj,s − (1− 2 · 1(mj < mt)). Thus, in hybrid H2, we have

ut,s = f(s, p‖0n−s+1) + bt,s = uj,s − (1− 2 · 1(mj < mt)) (mod M).
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By the inductive hypothesis, uj,s and uj,s are identically distributed, so we
conclude that ut,s and ut,s are identically distributed.

– Case 3: For each ` ∈ [t − 1], inddiff(m`,mt) < s. Let p ∈ {0, 1}s−1 be the
first s− 1 bits of mt. In hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod M),

while in the simulation ut,s is a uniformly random string. By assumption,
none of the messages m1, . . . ,mt−1 begin with the prefix p. Since f is a truly
random function, the value of f(s, p‖0n−s) is uniform in ZM and independent
of all other ciphertexts. Thus, ut,s and ut,s are identically distributed.

We conclude that for all s ∈ [n], ut,s ≡ ut,s. Since the components of each
ciphertext are constructed independently in both hybrid H1 and in the simulation,
this suffices to show that ctt and ctt are identically distributed. The claim then
follows by induction on t. ut

Space usage. The order-revealing encryption scheme Πore on n-bit inputs pro-
duces encryptions of size dn · log2Me. By setting M = 3, an encryption of an
n-bit message under Πore consists of only dn · log2 3e ≈ 1.59n bits. In the full
version, we describe a “d-ary” generalization of Πore that further reduces the size
of the ciphertexts in the ORE scheme, but with a slight loss in security. Specifi-
cally, we construct an ORE scheme where an encryption of an n-bit message has
length approximately n · logd(2d−1) for any integer d ≥ 2. Since logd(2d−1) is a
monotonically decreasing function in d, larger values of d yield shorter ciphertexts,
but increased leakage.

3.2 Conversion to OPE

In this section, we explain how to convert Πore, an ORE scheme, into an OPE
scheme. This means that ciphertexts of the resulting OPE scheme can be compared
using the normal comparison function on numbers. To do this, we apply a simple
transformation of any ciphertext ct of Πore into a number c that lies in the range
[0,Mn−1] for which direct numeric comparisons of two numbers c1 and c2 reveal
the order relation of the underlying plaintexts.

Recall that in Πore, ciphertexts are of the form ct = (u1, u2 . . . , un), where
for each i ∈ [n], ui lies in the range ZM . The ciphertext in the resulting OPE
scheme is taken to be the dn · log2Me-bit number

c =

n∑
i=1

ui ·Mn−i ∈ [0,Mn − 1]. (3.2)

Intuitively, we view u1u2 · · ·un as a base-M representation of the OPE ciphertext.
Correctness follows similarly to Πore, except here, there is a non-zero probability
of error (as opposed to Πore where correctness held with probability 1). We claim
that for any two messages m1,m2 ∈ [0, 2n − 1],

m1 < m2 ⇐⇒ c1 < c2,
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with probability 1− 1/M , where c1, c2 ∈ [0,Mn− 1] are the ciphertexts obtained
by first invoking ORE.Encrypt on m1,m2, respectively, and then applying the
transformation in Equation (3.2). To see this, let i ∈ [n] be the first bit position
on which m1 and m2 differ. Observe that the numeric comparison of the OPE
ciphertexts behaves identically as the ORE comparison procedure, except when
the output of the PRF on the first i− 1 bits of the messages is the value M − 1.10

However, by PRF security, this event happens with probability 1/M , and thus,
correctness holds with probability 1− 1/M . For instance, if M = 2λ (that is, λ
bits), correctness holds with overwhelming probability. For practical scenarios,
it may be suitable to only take M ≈ 240 (the failure probability in this case is
2−40).

Security of the resulting OPE scheme follows identically from security of Πore,
as the transformation from ciphertexts ct to numbers c is bijective. We note
that while this scheme is order-preserving, it does not behave like a random
order-preserving function, and thus, does not inherit the security limitations
associated with such OPE schemes [8]. In fact, our simulation-based security
model and associated security theorem (Theorem 3.1) enables us to precisely
specify the information leakage in this order-preserving encryption scheme.

In the full version, we describe a “d-ary” generalization of Πore. While this
generalization does not reduce the size of the resulting ciphertexts in the ORE
scheme, it does yield shorter ciphertexts in the OPE instantiation (by approxi-
mately a log2 d multiplicative factor), with a slight loss in security. Correctness
in this generalized scheme holds with probability 1− d/M .

4 Comparison to Existing OPE Schemes

We now compare the leakage of our order-revealing encryption scheme to that
of existing order-preserving encryption schemes by Boldyreva et al. [7, 8]. As
explained in Section 2.3, composing any existing OPE scheme with an ORE
scheme results in a new ORE scheme which is at least as secure as the underlying
OPE scheme.11 In this section, we show that even without the composition, our
construction still achieves stronger security according to the metrics proposed by
Boldyreva et al.

The security definition achieved by an order-preserving encryption scheme is
that the encryption function behaves like a random order-preserving function
(ROPF) from the plaintext space to the ciphertext space. While this definition
has the same flavor as that for PRFs, the behavior of a truly random function
is very different from that of a random order-preserving function. In particular,
the output of an order-preserving function is not independent of its input, and

10If no reduction modulo M occurs in the ORE.Encrypt encryption, then numerically
comparing the transformed ciphertexts is identical to evaluating the ORE.Compare
procedure (since all relations hold over the integers).

11In most cases, the security of the composed scheme is strictly greater than that of
the base OPE scheme since our ORE construction provides semantic security for a
single ciphertext, whereas existing OPE schemes generally do not.



15

thus, reveals some information about the input. It turns out that quantifying
the exact information leakage is a non-trivial task in general. However, under
certain assumptions (for example, if the messages are drawn from a uniform
distribution), it is possible to obtain concrete upper bounds on the information
leakage [8]. In particular, Boldyreva et al. propose two security notions, window
one-wayness and window distance one-wayness, to analyze the security of an OPE
scheme. In our setting, the nature of our security definition allows us to analyze
the construction under a more generalized set of definitions compared to [8].
We present our analysis for window one-wayness here, and defer the analysis of
window distance one-wayness to the full version.

4.1 One-Wayness

One of the most basic requirements of an encryption scheme is that it is one-
way. Given a ciphertext, an adversary that does not have the secret key should
not be able to recover the underlying message. In the standard definition of
one-wayness [27], the adversary is given the encryption of a random message,
and its goal is to guess the message. This is a very weak notion of security, and
even if an encryption is one-way, the adversary might still be able to deduce
nontrivial information about the message given only the ciphertext. To address
this, Boldyreva et al. [7] introduce a more general notion of one-wayness where the
adversary is allowed to guess a contiguous interval (a window) in the one-wayness
challenge. The adversary succeeds if the message is contained within the interval.
Moreover, the adversary is given multiple encryptions (of random messages) and
succeeds if it outputs an interval that contains at least one of the messages.

The notion of window one-wayness is useful for arguing that an adversary
does not learn many of the most significant bits of the message, but if all bits of
the message are equally sensitive, then this definition is less useful. In our work,
we present a more general definition of one-wayness, where instead of outputting
an interval, the adversary is allowed to specify a set of guesses. To allow the
adversary to specify a super-polynomially-sized set of guesses, we instead require
the adversary to submit a circuit C that encodes its set (C(x) = 1 if and only if
x is in the set). By requiring that the circuit encodes a contiguous interval, we
recover the window one-wayness definition by Boldyreva et al. [8]. We now give
our generalized definition.

Definition 4.1 (Generalized One-Wayness). Fix a plaintext space D and
let Π = (ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE over D. The (r, z)-
generalized one-wayness advantage of an adversary A against Π is given
by

Advgow
r,z,Π(A)

def
= Pr[Exptgow

r,z,Π,A(1λ) = 1],

where the (r, z)-generalized one-wayness experiment Exptgow
r,z,Π,A(1λ) is defined as

follows:
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Experiment Exptgow
r,z,Π,A(1λ):

1. sk← ORE.Setup(1λ)
2. sample m1, . . . ,mz uniformly from D without replacement
3. for i ∈ [z], cti ← ORE.Encrypt(sk,mi)
4. C ← A(ct1, . . . , ctz), where C : D → {0, 1} is a circuit of size poly(λ)
5. output 1 if C(mi) = 1 for some i ∈ [z] and |{x ∈ D : C(x) = 1}| ≤ r;

otherwise, output 0

Remark 4.2 (Comparison with Existing One-Wayness Notions). By re-
stricting the parameters (r, z) and the classes of circuits the adversary is allowed
to output, Definition 4.1 captures many existing notions of one-wayness. For
example, when r = z = 1, we recover the usual notion of one-wayness [27]. When
the underlying plaintext space is the ring ZM for some integer M and we require
that the circuit output by the adversary encodes a contiguous interval of length
at most r in ZM , our definition corresponds to the notion of window one-wayness
introduced by Boldyreva et al. [8].

We now state our security theorem, but defer the proof to the full version.

Theorem 4.3. Fix a security parameter λ and a plaintext space {0, 1}n where
n = ω(log λ). Let Πore be the ORE scheme given at the beginning of Section 3.
Then, for any constant ε ∈ (0, 1], any z = poly(λ), and all efficient adversaries
A,

Advgow
r,z,Πore,A(1λ) = negl(λ),

where r = 2n(1−ε).

Comparison to existing schemes. When discussing the notion of one-wayness,
we will always assume that the message-space is super-polynomial in the security
parameter. Otherwise, the trivial adversary that just guesses a random point in
the message space will succeed with non-negligible probability.

In [8], Boldyreva et al. give an upper bound on the one-wayness advantage of
any (possibly computationally unbounded) adversary A against a random order-
preserving function ROPF. This corresponds to setting r = 1 in our definition.
They show [8, Theorem 4.1] that for z = poly(λ), Advgow

1,z,ROPF,A = negl(λ). The
same statement holds for our ORE construction assuming a computationally
bounded adversary: simply instantiate Theorem 4.3 with ε = 1.

In addition to giving an upper bound on an adversary’s ability to guess the
plaintext from the ciphertext, Boldyreva et al. also give a lower bound on the
advantage for the case when r is large. In particular, they exhibit an efficient
adversary A against an ROPF such that Advgow

r,z,ROPF,A(1λ) = 1− 2e−b
2/2 for a

constant b when r = O(
√

2n) and for any z [8, Theorem 4.2].12 In other words,

12Strictly speaking, the adversary they describe is for the window one-wayness experi-
ment, but any adversary that succeeds in the window one-wayness experiment also
succeeds in the generalized one-wayness experiment (Definition 4.1).
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the authors describe a concrete adversary that is able to break the generalized
one-wayness of any POPF-CCA-secure scheme (with probability close to 1) if
the adversary is allowed to specify a set with r = O(

√
2n) elements, even when

z = 1. An intuitive way to understand this result is that given the output of an
ROPF, an adversary can deduce roughly half of the bits of the associated input.
In contrast, in our ORE scheme, if the adversary only sees a polynomial number
of ciphertexts (z = poly(λ)), then invoking Theorem 4.3 with ε = 1/2, we have
that for all efficient adversaries A, Advgow

r,z,Πore,A(1λ) = negl(λ) where r =
√

2n. In
fact, as Theorem 4.3 demonstrates, the adversary’s advantage remains negligible
even if we further increase the size of the sets the adversary is allowed to submit.

Intuitively, our results show that if the adversary only sees a polynomial
number of ciphertexts, then it does not learn any constant fraction ε of the bits
in the underlying plaintext from each ciphertext. In contrast, with an ROPF,
and correspondingly, any OPE scheme that realizes a ROPF, each ciphertext
alone leaks half of the most-significant bits of the underlying plaintext.

Similarly, while the OPE scheme by Teranishi et al. [47] can be shown to
hide any constant fraction of the least significant bits of the plaintext, no such
guarantee exists for the other bits of the plaintext. Note though that the security
notion proposed in [47] is indistinguishability-based and hence, stronger than the
one-wayness security notions. In fact, our basic ORE construction (by itself) does
not achieve their indistinguishability-based definition. However, by composing
our ORE construction with their OPE construction, we obtain a resulting ORE
scheme which is strictly more secure, since it inherits the security properties of
the underlying OPE scheme as well as semantic security for a single ciphertext
(Section 2.3, Remark 2.6).

5 Conclusions

In this work, we introduced a new notion of security for order-preserving, and
more generally, order-revealing encryption. Our simulation-based security notion
is defined with respect to a leakage function which precisely characterizes what
the ciphertexts in the scheme leak about the underlying messages. We then
give a practical order-revealing encryption scheme which achieves this security
notion for a specific leakage function. By composing our ORE construction with
existing OPE schemes, we obtain an ORE scheme with increased security. It is
our hope that having a concrete leakage model will enable practitioners to make
better-informed decisions on whether an ORE scheme is appropriate for their
particular application. We conclude with several open problems:

1. Can we construct a practical ORE scheme with stronger security guarantees?

2. Can we reduce the ciphertext length of our ORE scheme while still maintaining
a similar level of security?

3. Is it possible to build a practical ORE scheme with best-possible security
from standard assumptions?



18

Acknowledgments

We would like to thank Sam Kim for helpful discussions about ORE, and Adam
O’Neill for useful insights in shrinking the ciphertext size of our main construction.
We also thank the anonymous reviewers for their helpful comments. This work
was partially supported by an NSF Graduate Research Fellowship. Opinions,
findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of Facebook.

References

[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
preserving encryption for numeric data. In SIGMOD, pages 563–574, 2004.

[2] Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia, and Ken-
neth G. Paterson. Multilinear maps from obfuscation. In TCC, 2016.

[3] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO, pages 308–326, 2015.

[4] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, pages 528–556, 2015.

[5] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In EUROCRYPT, pages 221–238,
2014.

[6] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based order-
preserving string compression for main memory column stores. In ACM SIGMOD,
pages 283–296, 2009.

[7] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, pages 224–241, 2009.

[8] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions. In
CRYPTO, pages 578–595, 2011.

[9] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. In EUROCRYPT, pages 563–594, 2015.

[10] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

[11] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[12] Zvika Brakerski, Ilan Komargodski, and Gil Segev. From single-input to multi-input
functional encryption in the private-key setting. IACR Cryptology ePrint Archive,
2015:158, 2015.

[13] Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of
private learning. IACR Cryptology ePrint Archive, 2015:417, 2015.

[14] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, pages 442–455, 2005.

[15] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical
order-revealing encryption with limited leakage. IACR Cryptology ePrint Archive,
2015:1125, 2015.



19

[16] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
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