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Abstract. In recent work, Bellare, Hoang, and Keelveedhi (CRYPTO
2013) introduced a new abstraction called Universal Computational Ex-
tractors (UCEs), and showed how they can replace random oracles (ROs)
across a wide range of cryptosystems. We formulate a new framework,
called Interactive Computational Extractors (ICEs), that extends UCEs
by viewing them as models of ROs under unpredictable (aka. high-entropy)
queries. We overcome a number of limitations of UCEs in the new frame-
work, and in particular prove the adaptive RKA and semi-adaptive KDM
securities of a highly efficient symmetric encryption scheme using ICEs
under key offsets.

We show both negative and positive feasibility results for ICEs. On
the negative side, we demonstrate ICE attacks on the HMAC and NMAC
constructions. On the positive side we show that: 1) ROs are indeed
ICE secure, thereby confirming the structural soundness of our definition
and enabling a finer layered approach to protocol design in the RO
model; and 2) a modified version of Liskov’s Zipper Hash is ICE secure
with respect to an underlying fixed-input-length RO, for appropriately
restricted classes of adversaries. This brings the first result closer to
practice by moving away from variable-input-length ROs. Our security
proofs employ techniques from indifferentiability in multi-stage settings.

Keywords. Random oracle, Unpredictability, UCE, RKA security, KDM
security, Zipper Hash, Indifferentiability, Multi-stage security.

1 Introduction

1.1 Background

Since their formal introduction by Bellare and Rogaway [BR93], random oracles
(ROs) have found many applications across a wide range of cryptographic pro-
tocols. However, due to an uninstantiability result of Canetti, Goldreich, and
Halevi [CGH98], which shows that certain (artificial) protocols become insecure
as soon as the random oracle is replaced by any concrete hash function, reliance
on ROs has also become somewhat debatable.

Two lines of research have been directed at dealing with such uninstantiability
results. One is to construct standard-model counterparts of cryptographic primi-
tives designed in the RO model (ROM). This approach comes with the drawback
that the resulting cryptosystems often tend to be complex and achieve a lower level



of security and/or efficiency. A second, more modular, approach aims to formulate
abstractions of the proof-centric properties of random oracles such as extractabil-
ity, programability, or non-malleability [Can97,CD09,Nie02,CD08,BCFW09]. As-
suming that a hash function meets the introduced model, one proceeds to show
that it can safely replace the random oracle in a protocol. These formalizations,
however, have only been successful to a limited extent, and the question of finding
a flexible and general framework that could be applied across a broad range of
security goals and protocols remained open until recently.

1.2 UCE security

Bellare, Hoang, and Keelveedhi (BHK) [BHK13a] revisit the above questions
and present a powerful framework called Universal Computational Extractors
(UCEs) that allow to securely instantiate random oracles in an interesting and
diverse set of applications. These include, among other things, security under key-
dependent-message (KDM) attacks, security under related-key attacks (RKAs),
simultaneous hard-core bits, point function obfuscators, garbling schemes, proofs
of storage, deterministic encryption, and message-locked encryption, thereby
going far beyond what was previously possible.

Behind UCEs lies a new way to model the indistinguishability of a keyed hash
function from a random oracle. Indeed, there are two direct ways to (incorrectly)
model the security of a hash function:

(1) Provide the adversary with the hash key and ask it to distinguish an oracle
implementing the hash function from one implementing the random oracle.
This approach immediately fails as this game can be trivially won with the
knowledge of the hash key by computing a hash value and checking the
answer against the oracle’s answer for the same query.

(2) Adopt the above approach, but now hide the hash key. This leads to PRF
security—for which feasibility results are known—but is not useful in the
context of hashing as the hash key is typically publicly known.

BHK overcome the above shortcomings by splitting the attacker into two
parts and constraining the communication between the two. The first UCE
attacker does not get to see the hash key, but has oracle access to either the
hash function under a random key or the random oracle according to a random
bit. The second attacker, on the other hand, does get to see the hash key, but
can no longer access the oracle, and it has to guess the bit; see Figure 1 (left).
The two stages of the adversary can communicate only in restricted ways since
arbitrary communication would lead to an attack similar to that given above for
formulation (1).

More formally, for a keyed hash function H, UCE security is defined via a
two-stage game consisting of algorithms S and D, called the source and the
distinguisher respectively, as follows. In the first stage, the source is given access
to an oracle Hash that depending on a random bit b implements either the
random oracle or the concrete hash function H under a random hash key hk. The
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source terminates by outputting some leakage L, which is then communicated to
the second-stage distinguisher D. In addition to leakage L, the distinguisher also
gets the hash key hk as input. The distinguisher’s task is to guess b, i.e., guess
whether the source was talking to the random oracle or the hash function. The
UCE advantage of the pair (S,D) is defined as usual to be the probability of
correctly guessing the bit b scaled away from one-half. We refer the reader to the
original work [BHK13b] for an excellent overview of this approach to modeling
hash-function security.

To see that without further restrictions UCE security cannot be achieved,
consider a source that leaks one of its oracle queries together with the correspond-
ing oracle answer to the distinguisher. The distinguisher then simply recomputes
the hash value on the queried point—the distinguisher knows the hash key—and
compares it to the leaked value.

In their original work, BHK [BHK13a] define two restrictions on sources:
computational unpredictability and computational reset security. In the compu-
tational unpredictability game, it is required that when the source is run with
a random oracle its leakage does not computationally reveal any of its queries.
This is formalized by requiring that the probability of any efficient predictor P
in guessing a query of S when given L is negligible.

The class of computationally unpredictable sources is denoted by Scup, and
the resulting UCE security UCE[Scup] (aka. UCE1) of a hash function is defined
by requiring the advantage of any efficient pair (S,D) with an unpredictable
S ∈ Scup in the UCE game to be negligible. Reset security imposes a weaker
restriction on the source class and leads to the stronger UCE2 notion.

UCE security has been the subject of many recent studies. Brzuska, Farshim,
and Mittelbach (BFM) [BFM14] show that, under new cryptographic assump-
tions, these restrictions are insufficient for a feasible definition. More precisely,
assuming the existence of indistinguishability obfuscators [BGI+01,GGH+13],
BFM show that the UCE[Scup] security of any hash function can be broken in
polynomial time. To overcome this attack, BFM [BFM14] (and subsequently BHK
in an updated version of their paper [BHK13b]) propose a statistical notion of un-
predictability whereby the predictor can even run in unbounded time. Following
the attack, BHK also refine the UCE notions based on computational unpre-
dictability and introduce the classes of bounded parallel and split sources.3 BFM
show that security against bounded parallel source is also infeasible [BFM14],
and recently attacks against split sources have also been shown [BST15].

On the positive side, Brzuska and Mittelbach [BM14b,BM15] show how to con-
struct UCEs for the class of strongly unpredictable and statistically unpredictable
sources for bounded number of queries. Bellare, Hoang, and Keelveedhi [BHK14]
develop domain extenders for UCEs, and Bellare and Hoang [BH15] construct
deterministic PKEs from UCEs for statistically unpredictable sources and lossy
trapdoor functions. BFM [BFM14] have shown that the existence of obfuscation-
based attacks against statistically unpredictable sources violates well-known

3 Such computational UCE notions are intrinsically needed for applications such as
simultaneous had-core bits and deterministic PKEs.
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Fig. 1. The interactions in the UCE game (left) and the ICE game (right).

impossibility results. A number of recent works have shown how to use UCEs as
RO replacements in other protocols [MH14,BK15,DGG+15].

Despite the above advances, and irrespective of the restrictions imposed
on sources, the UCE framework is intrinsically limited in a number of aspects:
it only allows the source to place Hash queries which are independent of the
hash key; after leakage is communicated from the source to the distinguisher no
further Hash oracle queries can be made, and hence hash queries are inherently
non-adaptive; UCEs cannot model unkeyed hash functions nor hash functions
with weak keys where the key does not come from the uniform distribution.
Motivated by these shortcomings, and the ultimate goal of basing the security of
highly efficient and practical protocols on well-defined and feasible properties of
random oracles, we set out to formalize an enhanced framework for the study
ROM protocols.

1.3 Interactive computational extractors

Given the development of UCEs, defining an extended model which meets
the above-mentioned specifications is an intricate task. Indeed, well before the
emergence of obfuscation-based attacks, BHK [BHK13b, page 9] warned that
extending UCEs to an interactive setting is “a dangerous path to tread.” As
an example, assume that we introduce a bi-directional communication channel
between the distinguisher and the source so that our adaptivity targets are met.
This extension can be shown to fall prey to somewhat non-trivial attacks that
utilize general-purpose multi-party computation (MPC) protocols. Suppose the
source S holds a random input x whose hash is y, and D holds hk. The two
parties then run an MPC protocol to compute the Boolean value y = H(hk, x).
The distinguisher finally returns this value as its guess. This attack would meet
any reasonable notion of computational unpredictability since the security of the
MPC protocol would ensure that the parties learn no more than what can be
deduced from their individual private inputs.4 Allowing hash queries to depend
on the hash key hk is also challenging since similarly to approach (1) above access
to both hk and the hash oracle would trivialize the notion. For similar reasons,
formulating a UCE-like model for unkeyed hash functions is also non-trivial. As

4 This can be viewed as an interactive analogue of BFM’s attack [BFM14].
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we shall see, other forms of attacks also arise that should be ruled out for a
feasible model.

The ICE framework. Let us call an input (hk, x), consisting of the hash key
hk and a domain point x, to a hash function a full input. One way to view UCEs
is that they adopt the indistinguishability-based approach (1) above, but restrict
hash queries so that full inputs remain hidden from the attacker(s). It is clear that
such hidden queries are not meaningful in the presence of a single adversary—any
adversary knows its own queries—and hence UCEs come with two adversaries.
Unpredictability together with denial of oracle access to D ensures that the x
components of full inputs remain hidden from D. On the other hand, the hk
components of full inputs remain hidden from S as the source is denied access
to hk (and no communication from D to S is allowed). As a result, full inputs
(hk, x) remain hidden from both parties involved in a UCE attack.

This perspective allows us to build on UCEs and extend them as follows. In our
new framework, which we call Interactive Computational Extractors (ICEs),5 a
general mechanism for the joint generation of full inputs is enabled and adversarial
restrictions that formalize what it means for full hash inputs to have high entropy
are imposed.

We let two distinguishers (D1, D2) to take part in an attack, and allow them
to communicate via a bi-directional channel. Both distinguishers get access to a
challenge hash oracle, which depending on a challenge bit implements either the
real hash function or a (keyed) random oracle. To enable the two parties to make
hidden queries, we introduce a shared write-only tape that both D1 and D2 can
write onto. When a distinguisher queries the hash oracle, the (real or ideal) hash
of the full contents of the tape is returned. In contrast to UCEs, D1 or D2 can
generate a hash key and perhaps modify it throughout the attack. This attack
scenario is symmetric for D1 and D2 and, without loss of generality, the game
terminates by D2 outputting with a bit. (Our formal definition, however, comes
with a slightly more general return statement.) For a class C of distinguishers,
we define ICE[C] security by demanding that the probability of guessing the
challenge bit for any D = (D1, D2) ∈ C is negligibly close to 1/2. See Figure 1
(right) for a summary of this interaction.

Entropic queries. Similarly to UCEs, the ICE notion cannot be achieved
without constraining the way the two distinguishers communicate. The main
restriction that we introduce is analogous to statistical unpredictability for UCEs:
we demand the statistical unpredictability of full inputs to the hash function,
including the hash key hk, from each distinguisher’s point of view. We choose a
statistical, rather than a computational, notion so that our definitions do not
become subject to the interactive versions of the attacks highlighted in [BFM14].6

5 In UCEs, “universal” refers to the fact that extraction should work with respect to
universal (i.e., all admissible) sources. Analogously, “interactive” in ICEs refers to
the fact that extraction should work for sources that can interact.

6 This is also motivated by impossibility results for statistically secure two-party
protocols.
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More precisely, we require that when the hash oracle implements a keyed random
oracle, no (possibly unbounded) predictor can guess a full input (hk, x) used to
compute a hash value when it is provided with a distinguisher’s view consisting
of its inputs, random coins, and all incoming messages and oracle responses.

Since our framework allows oracle access to both parties, unlike UCEs the two
distinguishers can implicitly communicate via hash patterns as follows. Suppose
D2 wants to leak a bit d to D1. Algorithm D2 starts by writing a random string
onto the second half of the input and hands over the attack to D1. Algorithm
D1 writes a random value to the first half of the input, calls Hash to receive
a first hash value h1, and hands over the attack back to D2. Now algorithm
D2, according to the value of d, either modifies the contents of the second half
of the input tape or leaves them unchanged. D1 can recover d by obtaining a
second hash value h2 and checking if (h1 = h2). The two distinguishers can also
communicate via a bit-fixing attack: D2 samples many (unpredictable) random
values x conditioned on its hash value beginning with bit d, which D1 can then
recover via a hash query.

In our unpredictability definition the predictor gets to see all hash responses,
and hence if there are any repetitions they will be seen by the predictor. Un-
predictability will therefore ensure that such repetition patterns will not leak
any of the queries. Sometimes, however, we need to explicitly disallow any re-
peat queries to enable a security proof to go through. In such a scenario, we
can ensure that there is no leakage via hash patterns either. Repeat-freeness
appears in other related settings such as related-key attacks or correlated-input
hashing [BK03,GOR11].

1.4 Applications

BHK [BHK13a] use UCEs to show that the encryption scheme of Black, Rogaway,
and Shrimpton (BRS) [BRS03] is secure under related-key attacks (RKAs) and
key-dependent-message (KDM) attacks as long as the related keys/key-dependent
messages are derived non-adaptively at the onset and without access to the hash
key or previous ciphertexts.7

As we shall see, ICE encompasses UCE as a special case, and the BRS scheme
can also be instantiated under the above models using ICEs. We can however also
obtain feasibility results that are outside the reach of UCEs. A practically relevant
and desirable level of RKA security is that corresponding to key offsets (the
so-called xor-RKA security [LRW02,BK09]). We show that ICEs are sufficient
to prove the full xor-RKA security of the BRS scheme. Our formal result is
more general and applies to the larger class of split functions that take the form
φ(K1‖K2) = φ1(K1)‖φ2(K2). (Such functions have been used to build RKA-
secure PRFs [BC10], and also appear in other related contexts [CG14,LL12].)
In addition to achieving stronger security guarantees, ICEs allow instantiating

7 Recall that in RKA security the adversary can see encryptions of messages under keys
φ(K) for a random K and functions φ of its choice. In KDM security the adversary
can see encryptions of φ(K), under a random key K, for φ’s of its choice.
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the BRS scheme using unkeyed hash functions, which is arguably closer to the
original formulation of BRS.8

We also strengthen the attainable KDM security guarantees for BRS by
showing that adversaries can choose key-dependent messages adaptively based
on the hash key and also semi-adaptively depending on previous ciphertexts.
We prove that ICEs are adaptively correlated-input secure [GOR11] and that
they relate well to other standard security properties of random oracles, such
as pseudorandomness, randomness extraction, and one-way security (see full
version). We leave it as open questions to see if full RKA beyond xor offsets or
full KDM security can be established using extractor-like notaions.

1.5 Instantiations

BHK show that random oracles fulfill their strongest proposed UCE notion,
namely UCE security with respect to computationally unpredictable sources.9

We prove that random oracles are also ICE secure. The significance of these
results are twofold [BHK13a]: (1) there are no generic attacks on ICEs and the
model is structurally sound; and (2) a layered approach to security analysis can
be enabled, whereby one first proves the security of a scheme under an ICE
assumption and then applies the RO model feasibility result. The latter is akin
to security analyses carried out in the generic group model.

Practical hash functions, however, are not monolithic objects and often follow
an iterative procedure to convert a fixed-input-length random oracle (FIL-RO)
into a variable-input-length random oracle (VIL-RO). This, in turn, raises the
question whether or not the above result can be brought closer to practice by
demonstrating positive feasibility results for VIL-ICEs in the FIL-RO model.
A seemingly immediate way to establish this result would be to start with a
hash function that is known to be indifferentiable from a VIL RO (e.g., the
HMAC or the NMAC construction), and then apply the RO feasibility result
above to conclude. This argument, however, fails as the ICE game is multi-
staged and indifferentiability does not necessarily guarantee composition in such
settings [RSS11].

Motivated by the above observations, we show both positive and negative
feasibility results for ICEs. On the negative side, we show that the indifferentiable
HMAC and NMAC constructions are provably ICE insecure in the FIL-RO model.
On the positive side, and building on Mittelbach’s techniques [Mit14], we prove
that a keyed version of Liskov’s Zipper Hash [Lis07] is ICE secure (as a VIL
hash function) under the assumption that the underlying compression function
is a FIL-RO. Zipper Hash can be seen as a variant of the classical Merkle–
Damg̊ard [Dam90,Mer90] construction where the message blocks are processed
twice in the forward and backward directions. Hence our results strengthen

8 BRS [BRS03] analyze their scheme in the unkeyed RO model, which translates to
unkeyed instantiations in practice.

9 Note that this does not contradict the BFM attack as ROs do not have succinct
descriptions.
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the VIL-RO feasibility result above, and also provide formal evidence for the
(intuitive) added security guarantees that multi-pass hash functions seem to offer
over their single-pass counterparts. For instance, combined with our RKA and
KDM results, we may conclude that Zipper Hash can be safely used within the
BRS scheme with no adverse affects on its security.

The above analysis can be further strengthened in at least two directions.
First, one can weaken the underlying assumption and assume that the com-
pression function underlying Zipper Hash is only a FIL-ICE (rather than a
FIL-RO). To this end, BHK [BHK14] give domain extenders for UCEs. Second,
and motivated by the standard-model realizations of ICEs and UCEs, we ask if
these primitives can be based on plausible hardness assumptions. Brzuska and
Mittelbach [BM14a,BM15] have recently shown positive results for UCEs with
respect to restricted classes of sources.

2 Notation

We denote the security parameter by λ ∈ N, which is implicitly given to all
algorithms (if not explicitly stated so) in the unary representation 1λ. By {0, 1}`
we denote the set of all bit strings of length ` and {0, 1}∗ is the set of all
finite-length bit strings. For x, y ∈ {0, 1}∗ we denote their concatenation by x‖y,
the length of x by |x|, the ith bit of x by x[i], and the substring of x formed
using bits i to j by x[i..j]. We denote the empty string by ε. For X a finite
set, |X| denotes its cardinality, and x←$X denotes the action of sampling x
uniformly at random from X. If Q is a list and x a string then Q : x denotes
the list obtained by appending x to Q. Similarly, If Q1 and Q2 are lists, then
Q1 : Q2 denotes the concatenated list. Unless stated otherwise, algorithms are
assumed to be randomized. We call an algorithm efficient or PPT if it runs in
time polynomial in the security parameter. By y ← A(x; r) we denote that y
was output by algorithm A on input x and randomness r. If A is randomized
and no randomness is specified, then we assume that A is run with freshly
sampled uniform random coins, and write y←$A(x). We use Coins[A] to denote
the polynomially long string of random coins r used by a PPT machine A. We
say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1).
Hash functions. In the line with [BHK13a], we consider the following (sim-
plified) formalization of hash functions. A hash function consists of five PPT
algorithms H := (H.Kg, H.Ev, H.kl, H.il, H.ol) as follows. The key-generation
algorithm H.Kg gets the security parameter 1λ as input and outputs a key
hk ∈ {0, 1}H.kl(λ), where H.kl(λ) is the key-length function. Algorithm H.il(λ)
outputs the length of admissible inputs, which could take the special value ∗
denoting the variable-length input space {0, 1}∗. Algorithm H.ol(λ) outputs the
length of admissible outputs, which we assumed to be a fixed polynomial function
of the security parameter. The deterministic evaluation algorithm H.Ev takes as
input the security parameter 1λ, a key hk, a point x ∈ {0, 1}H.il(λ), and generates
a hash value H.Ev(1λ, hk, x) ∈ {0, 1}H.ol(λ). To ease notation, we often suppress
the security parameter and simply write H.Ev(hk, x).
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Main ICEDH (λ)

1 : b←$ {0, 1};L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : (b1, L2)←$DWrite,Hash
1 (L1)

4 : (b2, L1)←$DWrite,Hash
2 (L2)

5 : return (b1 ⊕ b2 = b)

Write(j, v)

(hk, x)[j..j + |v| − 1]← v

Hash()

if b = 1 then T [hk, x]← H.Ev(hk, x)

elseif T [hk, x] = ⊥ then

T [hk, x]←$ {0, 1}H.ol(λ)

return T [hk, x]

Fig. 2. The ICE game with respect to hash function H and distinguishers D = (D1, D2).
We have omitted the initialization of various variables for readability.

3 The ICE Framework

In this section we precisely define the ICE framework. We refer the reader to the
introduction for a high-level overview of the model.

The ICE game. Let H = (H.Kg,H.Ev,H.kl,H.il,H.ol) be a hash function and let
D = (D1, D2) be a pair of algorithms. We define the ICE advantage of D against
H as

Advice
H,D(λ) := 2 · Pr

[
ICEDH (λ)

]
− 1 ,

where game ICEDH (λ) is shown in Figure 2. As mentioned in the introduction, we
may assume, without loss of generality, that the game termites by D2 outputting
a bit. However, in order to preserve the symmetry of the definition (which will
simplify our adversarial restrictions later on) and for added generality, we let the
distinguishers jointly guess the challenge bit by computing b1 ⊕ b2, where bi is
Di’s guess. The interaction terminates when both distinguishers return non-⊥
values for b1 and b2. For a class C of distinguishers, we define ICE[C] security
by requiring the advantage of any adversary D ∈ C to be negligible in the ICE
game.

We require (D1, D2) not to leave any superfluous blank spaces on the joint
tape. That is, a Write call must ensure that before the Hash oracle is called
there do not exist indices i < j such that x[i] = ε 6= x[j] or hk[i] = ε 6= hk[j].
We also demand that the full inputs (hk, x) are valid in the sense that prior to a
Hash call hk ∈ {0, 1}H.kl(λ) and x ∈ {0, 1}H.il(λ). Although the distinguishers D1

and D2 are in general stateful algorithms, we omit the explicit handling of state
values from the inputs and outputs of Di.

Restrictions. As discussed in the introduction, the ICE model is not feasible
unless additional restrictions on the distinguishers are imposed. We formulate our
restrictions as joint properties of (D1, D2). Before presenting our main restrictions
corresponding to high-entropy queries, we give a set of basic classes that will
be useful in studying ICEs. As an example, for polynomials w, q, and r we
define Cw,q,ri to be the set of all (D1, D2) such that when (D1, D2) is run in the
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ICE game conditioned on b = 0 (i.e., with respect to the random oracle), the
distinguisher Di places at most w(λ) queries to Write, at most q(λ) queries to
Hash, and terminates after at most r(λ) invocations. We formalize a number of
other notions below and omit the preamble “The set of all (D1, D2) such that
when (D1, D2) is run in ICE with b = 0, we have with overwhelming probability
that” from their definitions. Note that the classes below depend on i ∈ {1, 2}. For
classes Clabeli we define Clabel := Clabel1 ∩ Clabel2 . In the following table we present
several restrictions that we will be using throughout this paper.

Class Description

Cw,q,ri Di places at most w(λ) queries to Write, at most q(λ) queries to Hash,
and terminates after at most r(λ) invocations.

Cpolyi Di makes polynomially many oracle queries.

Cppti Di runs in polynomial time on each invocation and terminates after a
polynomial number of rounds.

C0i Di sets bi := 0 in all invocations.

Cεi Di sets L3−i := ε in all invocations.

C0-hki Di never writes onto the hk part of the tape.

C1-hki On its first invocation, Di writes a random hk onto the hk-part of the
tape. In subsequent invocations, Di never writes onto the hk-part of
the tape.

Cdisti Di makes distinct queries to Hash. That is, for lists Q1 and Q2 defined
in Figure 3, the combined list Q1 : Q2 is repetition-free. Note that
Cdisti = Cdist3−i = Cdist.

Csupi The probability that any (possibly unbounded) predictor P can guess
a full query of Di is negligible. We call this the class of statistically
unpredictable Di. See Figure 3 for the formal definition. Class Ccupi is
the computational analogue, where P is restricted to be ppt.

An example: UCE within ICE. We describe how UCEs can be captured
within the ICE framework. Since ICE is more expressive a framework, we need
to (drastically) restrict the distinguishers. In modeling UCEs, we identify the
UCE distinguisher with D1 and the UCE source with D2. All parties typically
run in polynomial time and hence we restrict to Cppt := Cppt1 ∩ Cppt2 . In UCEs,
the source queries Hash on an unknown hash key. The distinguisher, on the
other hand, gets to see the hash key. Thus, we let D1 (which represents the
distinguisher) write a random hk to the joint input and then hand the attack to
D2 on the first invocation, i.e., D ∈ C1-hk1 . We further restrict to Cε1 , as a UCE
distinguisher does not leak. Since the UCE game only has a single round, we also
restrict to C1,0,21 (one round is used to write the hk). Finally, the source does not
take part in decision making and cannot modify the hash key: UCEs are modeled
by ICE[Cuce] where

Cuce := Cppt ∩ C1-hk1 ∩ Cε1 ∩ C1,0,21 ∩ C02 ∩ C0-hk2 .
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Main PredPi,D(λ)

1 : L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : k←1; (b1, L2)←$DWrite,Hash
1 (L1)

4 : Lki ← Lki : Li

5 : k←2; (b2, L1)←$DWrite,Hash
2 (L2)

6 : (hk, x)←$P (Coins[Di],Ai, Lki)

7 : return (hk, x) ∈ Q1 : Q2

Write(j, v)

(hk, x)[j..j + |v| − 1]← v

Hash()

if T [hk, x] = ⊥ then

T [hk, x]←$ {0, 1}H.ol(λ)

Qk ← Qk : (hk, x)

Ak ← Ak : T [hk, x]

return T [hk, x]

Fig. 3. The unpredictability game.

Note that the above models UCEs without any additional restrictions on
the source classes. Such requirements can be added on top by appropriately
restricting Cuce.
Unpredictability. We now formally define what we mean by a D that has
unpredictable (aka. high-entropy) queries. We focus on a statistical notion of
unpredictability [BFM14,BST15].10 We say D = (D1, D2) is statistically unpre-
dictable for the distinguisher i, and write D ∈ Csupi , if the advantage of any
unbounded predictor P defined by

Advpred
i,D,P (λ) := Pr

[
PredPi,D(λ)

]
,

is negligible, where game PredPi,D(λ) is shown in Figure 3.
Note that the predicator only gets to see the hash responses for distinguisher

Di—these are within Di’s view—and has to guess a query made by either
distinguisher in the concatenated list Q1 : Q2. It is easy to check that UCE security
with respect to statistically unpredictable sources is equivalent to ICE[Cuce∩Csup]
security.

Remark. Since predictor P receives the full view of a distinguisher Di, it
can perfectly simulate a run of Di in the ICE game with respect to a random
implementation of the hash oracle, without any need to see the view of the
partner distinguisher D3−i. We will rely on this observation in our proofs.

4 Example Applications

In this section we demonstrate two example use cases of ICEs. Further applications
are given in the full version and summarized in Table 2 below. These applications
serve to demonstrate that many properties of random oracles that are useful in

10 We emphasize that computational notions are still valuable as combined with our
feasibility results, they would enable easier and more modular security proofs in the
RO model.
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Goal/Model Class Used/Achieved

Split RKA C∗ ∩ Csup ∩ C02

Split KDM C∗ ∩ Csup ∩ C01

Split/claw-free CIH C∗ ∩ Csup ∩ C02

Extractor C∗ ∩ Csup ∩ C01 ∩ Cε ∩ C1,1,2

Weak PRF C∗ ∩ Csup ∩ C01 ∩ Cε ∩ Cpoly,poly,1

poly-regular OWF C∗ ∩ Csup ∩ C01 ∩ C1,1,1

VIL-ROM Cppt ∩ Ccup and Cpoly ∩ Csup; both contain C∗ ∩ Csup

FIL-ROM C∗ ∩ Ccup, which contains C∗ ∩ Csup

Table 2. Distinguisher classes used (above) and shown feasibility for (below). Here
C∗ := Cppt ∩ Cdist ∩ C1-hk1 ∩ C0-hk2 ∩ Cε2 .

analyses of ROM cryptosystems can be modeled in a unified way within the ICE
framework.

4.1 Split RKA security

We show that the symmetric encryption scheme proposed by Black, Rogaway, and
Shrimpton (BRS) [BRS03] is secure against related-key attacks (RKAs) when
instantiated with an ICE-secure hash function. The encryption algorithm of the
BRS scheme is implemented via EncH(K,M ;R) := (R,M ⊕ H(K‖R)), for a hash
function H, randomness R and key K. Recall that in an RKA, an adversary can
obtain encryptions of messages of its choice under correlated keys (e.g., under K
and K ⊕ 1).

Split related-key derivation (RKD) functions φ decompose into two sub-RKD
functions φ1 and φ2 that are applied in parallel to two (fixed) sub-strings of the
key: φ(K1‖K2) = φ1(K1)‖φ2(K2).11 Split functions capture many RKA cases of
interest including the case of xoring constants into keys. Without the minimal
assumption that φ’s have unpredictable outputs (i.e., the guessing probability of
the outputs of φ(K) over randomly chosen K is negligible) RKA security is not
achievable [BK03]. In our proof, we will require a slightly stronger condition that
the sub-RKD functions φ1(K1) and φ2(K2) are individually unpredictable. Note
that offsetting keys via xor enjoys this property as xor induces a permutation
over the two halves of the key.

BHK [BHK13a], by interpreting encryption randomness as hash keys, show
that BRS is selectively RKA secure using a multi-key extension of UCE[Scup].
In contrast, the adversary in our model retains its capability to adaptively query
RKD functions of its choice depending both on the hash key and the ciphertexts

11 For simplicity we assume that these are just the left and right halves of the key. Our
proof will however also apply to any two substrings of super-logarithmic lengths.
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that it has previously seen. For this result, although ICE[Cppt ∩Csup] is sufficient,
the assumption can be fine-tuned to ICE[C] where

C := Cppt ∩ Csup ∩ Cdist ∩ C1-hk1 ∩ C0-hk2 ∩ C02 ∩ Cε2 .

We defer the formal proof to the full version and give a detailed outline here.

The ICE adversary. Given an RKA adversaryA, we construct an ICE adversary
(D1, D2), where D1 handles the left components of A’s RKA queries and D2

handles the right components as follows.

D1(L1) : On initial invocation, generate a hash key hk, a random K1, and a
random bit b. Store these values and write hk onto the hk-part of the tape. Run
A(hk) to get an RKA query ((φ1, φ2),M0,M1). Output (b1, L2) := (⊥, φ2).
Proceed as follows in subsequent invocations. Generate and store a random R
and write φ1(K1) onto the 1st segment (out of three segments) of the x-part
of the tape and R onto its 3rd segment. Query Hash to get H. Recover R
and resume A on (R,H ⊕Mb) to get a new RKA query ((φ1, φ2),M0,M1),
or a bit b′. If A outputs a bit b′, return (b1, L2) := (b = b′, ε) and terminate.
Else output (b1, L2) := (⊥, φ2).

D2(L2) : When initially invoked, generate a random K2 and store it. In all
invocations (including the first), recover φ2 from L2. If φ2 = ε, return
(b2, L1) := (0, ε) and terminate. Else write φ2(K2) onto the 2nd segment of
the x-part of the tape. Output (b2, L1) := (0, ε).

Unpredictability. We show that D ∈ C for class C as defined above. To
this end, we only prove membership in Csup ∩ Cdist as other cases follow via
syntactic checks. This follows from the following two observations: (1) The Hash
queries are distinct with overwhelming probability since before each query a fresh
random value R is written onto the joint tape. (2) The functions φ1 and φ2 are
run on independently chosen substrings of the key. Since they are assumed to be
individually statistically unpredictable, D1 observing independently generated
random strings corresponding to hash values never gets to know the contents of
the tape written by D2, and vice versa, D2 never gets to know what is written
on to the tape by D1.

4.2 KDM security

When the random oracle in the BRS scheme is instantiated with an ICE-secure
hash function, we are able to show that the BRS scheme resists a partially adaptive
form of KDM security for split key-dependent-message derivation (KDMD)
functions φ. As for RKD functions, such KDMD functions consist of sub-KDMD
functions φ1 and φ2 of the form φ(K1‖K2) := φ1(K1)‖φ2(K2). The adaptivity
level that we can tolerate is as follows. In an initial phase of the attack, the
adversary can fully adaptively query split KDMD functions that do not depend
on K2. That is, for these functions φ2(K2) is constant and independent of K2

and its value can be predicted. In a second phase of the attack, the adversary can
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query split KDMD functions of its choice as long as either φ1(K1) is constant or
φ1(K1) was used in the first phase. (We emphasize that these functions are not
required to be unpredictable.) This model is strong enough to imply IND-CPA
security (without any restrictions), a case that could not be treated using UCEs.

The ICE adversary. Let A be a KDM adversary against the BRS scheme in
the model above. Our ICE[Cppt ∩ Csup ∩ Cdist] adversary corresponding to A is
as follows, where for simplicity we have assumed the lengths of keys, randomness
and messages are all `. (The ICE class can be further restricted as is shown in
Table 2.) In this reduction, D1 faithfully runs the first stage of the attack, while
D2 runs its second stage. To answer KDM queries, D2 relies on the “homomorphic”
property that H ⊕ (x1‖x2) = H ⊕ (x1‖0|x2|)⊕ (0|x1|‖x2).

D1(L1) : When initially invoked, generate a random hk, K1 and b and store them.
Write hk to the hk-part and K1 to the 1st (out of three) segments of the
x-part of the tape. (The segments are of lengths `/2, `/2 and ` corresponding
to K1, K2 and R respectively.) Output (⊥, ε). On the second invocation, run
A(hk) and answer its KDM queries ((φ01, φ

0
2), (φ11, φ

1
2)) as follows. Write a fresh

random value R onto the 3rd segment of the x-part of the tape. Call Hash
to get H, and resume A on (R,H ⊕ (φ1(K1)‖M∗2 )), where M∗2 := φ2(0`/2) is
the right K2-independent part of the message. Continue this process until A
decides to proceed to its second stage. Let stA denote A’s state. Generate
sufficiently many copies (R1, C

′
1), . . . , (Rq, C

′
q) of each of the KDM queries

made in the first phase. Let List1 denote the corresponding list of queried φb1.
Return (0, (b, stA, (R1, C

′
1), . . . , (Rq, C

′
q), List1)) and terminate.

D2(L2) : When initially invoked, generate a random K2, store it, and write it to
the 2nd segment of the x-part of the tape. Hand the attack back to D1, by
outputting (⊥, ε). On the second invocation, parse L2 appropriately as above.
Resume A on stA and answer its KDM queries ((φ01, φ

0
2), (φ11, φ

1
2)) as follows.

If φb1 ∈ List1 pick a fresh ciphertext (R,C ′) corresponding to φb1 and complete
the ciphertext preparation by setting C ← C ⊕ (0`/2‖φb2(K2)). Otherwise
generate a random R, write it onto the 3rd segment of the x-part of the
tape, query Hash to get H, and set C ← H ⊕ (φb1(0`/2)‖φb2(K2)). Resume A
on (R,C; stA) and continue in this manner until A outputs a bit b′. Return
(b = b′, ε) and terminate.

Unpredictability. D’s queries are distinct with overwhelming probability as
fresh randomness R is written on the tape before each query. Throughout the
attack, and when the hash oracle implements a random function, K2 remains
hidden from D1 as D1 only sees distinct random values as hash responses. Key
K1 also remains hidden from D2 as the (incomplete) ciphertext components
received from D1 are random strings. Hence D ∈ Cppt ∩ Csup ∩ Cdist.

5 Feasibility

In this section we start by showing that random oracles are ICE secure with
respect to interesting distinguisher classes (in particular, with respect to the
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restrictions needed for the presented applications). We then consider the ICE
security of practical hash constructions built from fix-input-length (FIL) ROs. In
particular, we look at a keyed variant of Liskov’s Zipper Hash [Lis07] and show
that it achieves ICE security in the FIL-RO model. Interestingly, we show that
both HMAC and NMAC constructions [BCK96], which were recently shown to
be UCE secure in FIL-ROM [Mit14], fail to be ICE secure. This result yields a
natural counterexample to the composability of HMAC in multi-stage settings,
similarly to that given by Ristenpart, Shacham, and Shrimpton in [RSS11].
Furthermore, it provides a separation between ICE and UCE. Our results also
demonstrate that Zipper Hash can provide a higher level of security compared to
HMAC when used in multi-stage settings.

5.1 ICEs from random oracles

BHK [BHK13b] show that UCE-secure hash functions can be provably constructed
in the RO model. The philosophical justifications of this result are that there are
no structural weaknesses in the definitional framework, and more importantly, a
layered approach to protocol design in the RO model can be enabled [BHK13b].
We show that ICEs also enjoy RO feasibility.

Let H.kl(·) and H.ol(·) be two arbitrary functions as in the syntax of a
hash function. Let R be a family of variable-input-length (VIL) ROs (i.e., with
domain {0, 1}∗) and range {0, 1}H.ol(λ). We construct the required hash function
HR by defining the key-generation algorithm H.Kg(1λ) to return a random
hk←$ {0, 1}H.kl(λ) and the evaluation algorithm H.EvR(hk, x) to return R(hk‖x).
Our first feasibility result is as follows.

Theorem 1 (ICE feasibility in ROM). The VIL hash function HR con-
structed above is ICE[C] secure in the VIL-RO model for R for the following
(incomparable) classes of adversaries:

C := Cpoly ∩ Csup and C := Cppt ∩ Ccup .

The proof of this theorem is similar to the proof of [BHK13b, Theorem
6.1] for UCEs, and we give the details in the full version. Intuitively, we rely on
unpredictability of queries to simulate the random oracles used in the construction
and implicit in the ICE game independently. Interestingly, distinctness of queries
will not be needed in this proof and we do not restrict the classes to Cdist. We
note that the above classes include all those needed for the applications, as listed
in Table 2. We also note that this theorem generalizes the feasibility of UCEs for
unpredictable sources in ROM [BHK13b] as it can be easily verified that

Cuce ∩ Ccup2 ⊆ Cppt ∩ Ccup and Cuce ∩ Csup2 ⊆ Cppt ∩ Csup .

5.2 VIL-ICEs from ideal compression

Practical variable-input-length (VIL) hash functions are not monolithic objects.
They often follow iterative modes of chaining that convert a fix-input-length (FIL)
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compression function to one that accepts variable-length inputs. This design
principle has been successfully validated via the indifferentiability framework of
Maurer, Renner, and Holenstein [MRH04,CDMP05], whereby an indifferentiable
hash-function construction is shown to securely compose when used in place of
a random oracle. As pointed out in [RSS11], the indifferentiability framework
only guarantees composition in single-stage environments. The ICE and UCE
games, however, are inherently multi-staged and lie outside the reach of (plain)
indifferentiability. Mittelbach [Mit14] develops new techniques to extend the
reach of (plain) indifferentiability to certain classes of multi-stage games. In
particular, he shows that the HMAC and NMAC constructions are UCE secure.
Interestingly, we show that these results do not carry over to the ICE model:
HMAC and NMAC provably fail to be ICE secure. On the other hand, we build on
Mittelbach’s techniques to prove that a variant of Zipper Hash [Lis07] is provably
ICE secure.

Attacks on HMAC and NMAC. The HMAC and NMAC constructions are shown
in Figure 4. If we denote the iterated compression function used in HMAC by
h, then it is easily seen that key hk is only used on the “outer” h-evaluations.
Consider an ICE distinguisher D1 which holds hk, computes the values

y1 := h(hk ⊕ ipad, IV) and y2 := h(hk ⊕ opad, IV)

and sends them to distinguisher D2. Given (y1, y2), distinguisher D2 can compute
the HMAC values for any x ∈ {0, 1}∗ under hk. Thus, in order to win the ICE
game, D2 simply chooses a random x and writes it on the input tape, and calls
Hash to receive a value y. It then locally recomputes H.Evh(hk, x) using the
compression function h and values (y1, y2). If the results match, it outputs 1, and
else it outputs 0. It is easily seen that this adversary wins ICE with overwhelming
probability. Furthermore, given (y1, y2), the hash key hk remains statistically
hidden from D2 (as the number of h queries is bounded by a polynomial). Value
x, being random, also remains statistically hidden from D1. Formally, this attack
breaks ICE[C] for

C := Cppt ∩ Csup ∩ C1,1,1 ∩ C1-hk1 ∩ C01 ∩ C0-hk2 ∩ Cε2 .

Zipper Hash. The above attack raises the question if any iterative hash function
can be ICE[C] secure for a meaningful class of distinguishers C. We show that a
hybrid construction of a keyed version of Liskov’s Zipper Hash construction [Lis07]
and chopped Merkle–Damg̊ard (chop-MD) of Coron et al. [CDMP05] is ICE
secure. Zipper Hash can be regarded as a basic Merkle–Damg̊ard scheme where
the message is processed twice, the second time in reversed block order. chop-
MD refers to the construction where a hash value consists only of the first half
of the output bits of the final compression function. Our hybrid construction
results from adding the chop step to Zipper Hash. Furthermore, we consider a
keyed variant of Zipper Hash by prepending the hash key to the message. We
assume that key length matches block length, which means that the first and last
evaluations of the compression function operate on the hash key. We denote this

16



hk ⊕ ipad

h

m1

h

m2

h

m`

h

h

IV

h
hk ⊕ opad

IV
H.Evh(hk,m)

replaced by k1 for NMAC

replaced by k2 for NMAC

Fig. 4. The HMAC construction. If the dashed boxes are exchanged for independent
keys k1 and k2, we obtain NMAC. Here we are ignoring padding.

keyed variant of Zipper Hash by chop-KZIP. Figure 5 shows a schematic diagram
of the construction.

Theorem 2 (Zipper Hash’s ICE security). The VIL hash function chop-KZIPh

constructed above is ICE[C] secure in the FIL-RO model for h : {0, 1}µ ×
{0, 1}n −→ {0, 1}n for the class

C := Cpoly ∩ Csup ∩ Cdist ∩ C1-hk1 ∩ C01 ∩ C0-hk2 ∩ Cε2 .

An analogous result holds for polynomial-time distinguishers that are only com-
putationally unpredictable.

In the full version, we give the proof, where we also present a self-contained
introduction to the unsplittability technique [Mit14].

Note that class C above contains that class used to attack HMAC and hence
chop-KZIPh provably achieves a higher level of security in multi-stage games.
We note that the reach of the above feasibility result includes all applications
scenarios listed in Table 2. In particular, chop-KZIPh can security replace the
random oracle in these applications. For this also note that we can easily drop C01
by requesting that in the last round D1 outputs a guess for b which D2 echoes.
With the other restrictions present this change is without loss of generality.

This result cannot be strengthened for the (large) adversarial classes that
were used in Theorem 1. To see this, consider two distinguishers that engage in
a distributed computation of chop-KZIPh hash values as follows. Distinguisher
D1 knows hk and m1 and D2 knows m2, where message m := m1‖m2 is being
hashed. Distinguisher D1 computes an intermediate hash digest using (hk,m1)
and forwards it to D2. Distinguisher D2 now computes another iteration of the
hash using m2 and forwards the result to D1. Distinguisher D1 can now complete
the hash computation using its knowledge of (hk,m1) and the intermediate hash
digest that it receives.

A straightforward generalization of this attack also rules out multi-pass
variants of chop-KZIPh (where messages are processed multiple times in the
forward and backward directions), including those whose number of passes is
not fixed a priori and can depend on the number of message blocks. This is due
to the fact that the number of rounds in an ICE attack is not fixed. This, in
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h g H.Ev(hk,m)

Fig. 5. The Zipper Hash construction merged with chop-MD [CDMP05] and keyed
with hk. The final node g corresponds to the projection to the first half of the output
of h.

turn, raises the question if ICE[Cpoly ∩ Csup] is feasible in the FIL-RO model. We
conclude the paper with a candidate construction that we conjecture to reach
this level of security.

Mix Hash. Let h : {0, 1}n × {0, 1}n −→ {0, 1}n be a compression function.
Let m := m1‖ · · · ‖m` ∈ ({0, 1}n)` be a message with ` blocks of length n each.
Let Mixh(m) denote the transformation that maps m to M := ‖i‖jMi,j where
Mi,j := h(mi,mj) for 1 ≤ i < j ≤ `. (Therefore M has `(`− 1)/2 blocks.) Now
let hk ∈ {0, 1}n be a hash key and define

MixHashh(hk,m) := HMACh(0n,Mixh(hk‖m)) .

Note that MixHashh places Θ(`2) calls to its compression function h.12 The design
rationale behind MixHashh is as follows. All intermediate digests values Mi,j are
needed in order to successfully compute a hash value. These values, however,
consist of all pairs (mi,mj) compressed through h. Since h is a monolithic object,
Mi,j cannot be computed in a distributed way, a strategy that was used in all
previous attacks. In other words, one of the distinguishers has to know (hk,m)
in full and hence will violate unpredictability. To see this, suppose D1 does not
know mj in full and D2 does not know mi in full for some i < j. Then there is no
way for these parties to learn Mi,j := h(mi,mj) without one of them explicitly
quarrying h on (mi,mj). This however means that both mi and mj are known
to the quarrying party, which leads to a contradiction. We leave a formal analysis
of MixHashh in the FIL-RO model for h as future work.
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