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Abstract. While impossible di�erential cryptanalysis is a well-known
and popular cryptanalytic method, errors in the analysis are often dis-
covered and many papers in the literature present �aws. Wishing to solve
that, Boura et al. [1] presented at ASIACRYPT'14 a generic vision of
impossible di�erential attacks with the aim of simplifying and helping
the construction and veri�cation of this type of cryptanalysis. In partic-
ular, they gave generic complexity analysis formulas for mounting such
attacks and develop new ideas for optimizing them.
In this paper we carefully study this generic formula and show impossi-
ble di�erential attacks for which the real time complexity is much higher
than estimated by it. In particular, we show that the impossible dif-
ferential attack against 25-round TWINE-128, presented at FSE'15 by
Biryukov et al. [2], actually has a complexity higher than the natural
bound of exhaustive search.
Keywords: truncated impossible di�erential, cryptanalysis, block ci-
pher, TWINE, complexity

1 Introduction

Impossible di�erential cryptanalysis, which was independently introduced by
Knudsen [3] and Biham et al. [4], is well-known and popular cryptanalytic
method. Unlike di�erential attacks [5] that exploit di�erential characteristics
of high probability, the aim of impossible di�erential cryptanalysis is to use dif-
ferentials that have a probability of zero to occur in order to eliminate the key
candidates leading to such impossible transitions. The �rst step to mount an
impossible di�erential attack is to �nd an impossible di�erential covering a large
number of rounds. This is a procedure that has been extensively studied and
several approaches have been proposed to derive such impossible transitions ef-
�ciently [6,7,8]. Once an impossible di�erential has been chosen and placed, one
uses it to restrict the possible values of some key bits involved in outer rounds.
Indeed, if a candidate key partially encrypts/decrypts a given pair to the impos-
sible di�erential, then this key is wrong. In this way, we discard as many wrong
keys as possible and exhaustively search the rest of the keys. Organizing the
attack is usually done with the early abort technique [9], introduced by Lu et al.
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at CT-RSA 2008, originally to improve impossible di�erential attacks against
Camellia and MISTY1. With this technique, one does not guess all the involved
key material at once but step by step, discarding unwished pairs as soon as
possible to reduce the time complexity of the whole procedure.

While the attack principle is rather clear, errors in the analysis are often
discovered and many papers in the literature present �aws [9,10,11,12]. These
�aws include errors in the computation of the time or the data complexity, in
the analysis of the memory requirements or of the complexity of some inter-
mediate steps of the attacks. Wishing to solve that, Boura et al. [1] presented
at ASIACRYPT'14 a generic vision of impossible di�erential attacks with the
aim of simplifying and helping the construction and veri�cation of this type of
cryptanalysis. In particular, they gave generic complexity analysis formulas for
mounting such attacks and develop new ideas for optimizing them. These ad-
vances led to the improvement of previous attacks against well known ciphers
such as CLEFIA-128 and Camellia, while also to new attacks against 23-round
LBlock and all members of the Simon family.

Our Contribution. In this paper we carefully study the early abort technique
from Lu et al. and the generic formula given by Boura et al.. In particular we
build impossible di�erential attacks against a toy cipher for which the real time
complexity is much higher than estimated by the formula. Then we describe an
algorithm looking for optimal complexity of impossible di�erential attacks under
the early abort technique. We �nally apply it on an attack of Biryukov et al. [2]
presented at FSE'15 against round-reduced TWINE-128 [13] and show that its
complexity is higher than the natural bound of the exhaustive search.

Organization of the paper. In Section 2 we introduce the notations and give
the formula of Boura et al.. In Section 3 we highlight the computational prob-
lem behind the early abort technique and provide simple examples for which the
real complexity is far from the one given by the formula. Finally, in Section 4
we describe the algorithm we used to show that the complexity of the impos-
sible di�erential attack against 25-round TWINE-128 from Biryukov et al. was
underestimated and actually higher than 2128.

2 Preliminaries

2.1 Impossible Di�erential Attacks

We �rst brie�y remain how an impossible di�erential attack is constructed and
introduce our notations (for sake of simplicity we use the exact same ones than
in [1]).

Mounting an impossible di�erential attack starts by splitting the cipher E in
three parts E = E3 ◦E2 ◦E1 and by �nding an impossible di�erential transition
(∆X 9 ∆Y ) through E2. Then ∆X (resp. ∆Y ) is propagated through E−11

(resp. E3) with probability 1 to obtain ∆in (resp. ∆out). We denote by cin and
cout the log2 of the probability of the transitions ∆in → ∆X and ∆out → ∆Y

respectively. Finally we denote by kin and kout the key materials involved in



those transitions. All in all the attack consists in discarding the keys k for which
at least one pair follows the characteristic through E1 and E3 and in exhausting
the remaining ones.

2.2 A Generic Formula

At ASIACRYPT'14, Boura et al. proposed a generic vision of impossible dif-
ferential attacks with the aim of simplifying and helping the construction and
veri�cation of this type of cryptanalysis. In particular, they provided a formula
to compute the complexity of such an attack according to its parameters. Ac-
cording to notations introduced Section 2.1, their formula is:

� data: CNα
� memory: Nα
� time: CNα +

(
1 + 2|kin∪kout|−cin−cout

)
NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα = 2−α, CNα is the number of chosen
plaintexts required to generate Nα pairs satisfying (∆in, ∆out), |k| is the key size
and CE′ is the ratio of the cost of partial encryption to the full encryption.

This formula was given without proof but authors claimed that "it approxi-
mates really well the actual time complexity, as it can be seen in the applications,
and in particular, in the tight correspondence shown between the LBlock estima-
tion and the exact calculation from [14]".

3 Counter-Examples

3.1 The Problem

Computing the time complexity of an impossible di�erential attack based on the
early abort technique [9] is actually an optimization problem. Using notations
introduced in Section 2.1, and introducing k1, k2, . . . , kb as the key bits of the
key material kin ∪ kout involved in the attack, the best complexity reached with
the early abort technique is the minimal complexity of the following procedure
over all the permutations of {1, 2, . . . , b}:

0. Discard pairs which cannot follow the impossible di�erential.
1. Guess kσ(1)

(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

2. Guess kσ(2)
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

...
b. Guess kσ(b)

(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.



(c) if all pairs have been discarded then perform an exhaustive search over
remaining key bits.

Let rσi be the log2 of the number of pairs discarded after step i. Without taking
into account the exhaustive search part, the complexity of the procedure is∑

1≤i≤b

2|kσ(1)∪...∪kσ(i)|−
∑

0≤j<i r
σ
j ·NαCE′ .

As we see, computing a generic formula for such a problem is far from being
trivial.

3.2 A Simple Counter-Example

To highlight the main issue of the generic formula given in [1], let consider a toy
block cipher E de�ned as follows:

E = E′ ◦MC ◦ SR ◦ SB ◦AK,

where E′ is a 128-bit block cipher and where AK, SB, SR andMC respectively
are the AddRoundKey, SubBytes, ShriftRows and MixColumns operations from
the AES [15]:

� AddRoundKey (AK) adds a 128-bit subkey to the state.
� SubBytes (SB) applies the same 8-bit to 8-bit invertible Sbox S 16 times
in parallel on each byte of the state,

� ShriftRows (SR) shifts the i-th row left by i positions,
� MixColumns (MC) replaces each of the four column C of the state by
M × C where M is a constant 4 × 4 maximum distance separable matrix
over GF (28).

We remind that in the AES, the 128-bit internal state is seen as a 4× 4 matrix
of bytes where each byte is seen as an element of the �nite �eld GF (28).

Now, let us assume the existence of an impossible transition ∆X 6−→ ∆Y

over E′ where ∆X has only one active byte as depicted on Figure 1. We use this
impossible transition to mount an impossible di�erential against our toy cipher
E. We will show that, depending on the key schedule we choose, we are able to
make the real complexity of the attack non-marginally higher than the estimated
complexity obtained from the generic formula of Boura et al..

Independent key bytes. As a well-known fact, the probability of the transition
∆in −→ ∆X is 2−24 and exactly four key bytes are involved in the attack:
k0, k5, k10 and k15. For now let us assume those key bytes are independent.
As a consequence, and according to the generic formula, the complexity of the
impossible attack (without taking into account the pairs generation process and
the exhaustive search part) is:

(1 + 2|kin|−cin) ·N · C ′E = (1 + 232−24) ·N · C ′E = 257 ·N · C ′E ,
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Fig. 1: Impossible di�erential attack against the toy cipher E.

where N is the number of pairs available and C ′E is the ratio of the cost of partial
encryption to the full encryption. A common practice is to take for C ′E the ratio
between the active Sboxes during a partial encryption and the total number of
Sboxes (say SE). Hence, the approximated complexity is 4 · 257 ·N · S−1E .

Let us now compute the real complexity of the attack. Here the order in
which key bytes are guessed does not impact the resulting complexity so the best
procedure is as follows:

1. Guess k0
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

2. Guess k5
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

3. Guess k10
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

4. Guess k15
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible di�erential.

After performing step 1a), for each pair the di�erences in the three state variables
y5, y10 and y15 are known. Indeed, as the MixColumn matrix is MDS, they are
fully determined by the value of ∆y0. As a consequence ∆x5, ∆x10 and ∆x15
can assume only 27 values each and thus only 2−3 · N pairs remains after step
1b). Then, each of steps 2b), 3b) and 4b) decreases the number of pairs by a
factor 27. As a result, the complexity of this procedure is:

(28 + 28+8−3 + 28+8+8−3−7 + 28+8+8+8−3−7−7) ·N · S−1E = 57600 ·N · S−1E .

All in all the real complexity is higher than the estimated one by a factor
57600/1028 ≈ 25.8. This factor is non-negligible, especially when compared to
involved complexities.



Related key bytes. Let now study cases where k0, k5, k10 and k15 are related by
one linear equation, so they can assume only 224 values instead of 232. In that case
the generic formula estimates the complexity to (1+224−24)·N ·S−1E = 2·N ·S−1E ,
independently of the linear relation.

We �rst consider the case where the equation is k0 = k5. Thanks to the sym-
metry in the problem we only have six orders to try: [k0, k5, k10, k15], [k0, k10, k5, k15],
[k0, k10, k15, k5], [k10, k0, k5, k15], [k10, k0, k15, k5] and [k10, k15, k0, k5]. The corre-
sponding complexities are respectively:

� (28 + 28−3 + 28+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 28.9 ·N · S−1E
� (28 + 28+8−3 + 28+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 213.1 ·N · S−1E
� (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 214.6 ·N · S−1E
� (28 + 28+8−3 + 28+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 213.1 ·N · S−1E
� (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 214.6 ·N · S−1E
� (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 214.6 ·N · S−1E

As we can see the �rst order is much better than the other ones, as it leads to a
much smaller complexity. Thus the real complexity of the attack is 28.9 ·N ·S−1E ,
higher than the estimated one by a factor 27.9. We note that the deviation from
the expected complexity is bigger than in the independent subkey bytes case.

We now consider the case where the equation is k0 ⊕ k5 ⊕ k10 ⊕ k15 = 0,
or more generally, the case where the knowledge of three key bytes leads to the
knowledge of the fourth one but where there is no relation involving only three
key bytes. The real complexity of the attack becomes:

(28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) ·N · S−1E ≈ 214.6 ·N · S−1E ,

which is higher than for the equation k0 = k5 by a factor 25.7, increasing again
the deviation from the expected complexity.

A trick. One may note that after performing step 1b), we could directly retrieve
for each pair the 2 × 2 × 2 = 8 values of (k5, k10, k15) for which it follows the
impossible di�erential. This would be done at the low cost of 3 memory accesses
to a precomputed table. But only the values of (k5, k10, k15) for which no pair
follows the impossible di�erential matter. Thus we would have to make the list
of the 224 possible values of (k5, k10, k15) before to discard reached values. As a
consequence, the resulting complexity of this procedure is:

(28 ·N + 28 · 224 + 8 · 28−3 · 2|k0∪k5∪k10∪k15|−32 ·N) · S−1E .

As the number of pairs N should be at least close to 224, this procedure is better
than the basic early abort technique. If there is no equation between the four
key bytes then the complexity is very close to the one given by Boura et al 's
formula. On the other hand, if there is at least one equation then the complexity
is higher than expected due to the two �rst terms of the above formula.



3.3 Remarks

Those results highlight some issues with the generic formula of Boura et al..
Firstly, there exist impossible di�erential attacks for which the estimated time
complexity is too optimistic and thus attacks with estimated time complexity
close to the natural bound may actually not be faster than exhaustive search.
Secondly, the formula only takes into account the number of equations between
involved key bits while we showed that di�erent equations may lead to di�erent
time complexities. In particular, the correct sequence of guesses has to take into
account the fastest �ltering �rst. It seems Boura et al make the assumption
that the order of key guesses/�ltering does not matter as all key bits are equally
�ltering. But this is far from being correct, especially in the context of ARX
constructions.

4 Application to TWINE

At FSE'15, Biryukov et al. [2] used Boura et al. formula to compute the com-
plexity of their impossible di�erential attack against 25-round TWINE-128 [13].
The attack involves 52 key nibbles which can assume only 2124 values instead
of 2208 thanks to the key schedule and the resulting time complexity is 2124.5

encryptions, very close to the natural bound of the exhaustive search. As a con-
sequence, and according to remarks of the previous section, it seems probable
for the actual time complexity of this attack to be higher than 2128, making it a
non-valid attack.

4.1 Description of TWINE

This block cipher uses 16 branches of 4-bits and has a very simple round func-
tion: the Feistel function consists in a xor of a sub-key and a call to a unique
Sbox based on the inverse function in GF (24). Then, the branches are shu�ed
using a sophisticated nibble permutation ensuring faster di�usion than a simple
shift [16]. One version of TWINE uses an 80 bits key, another uses a 128 bits key
and we denote these versions as TWINE-80 and TWINE-128. They only di�er
by their key-schedule and both have 36 rounds. Both key schedules are sparse
GFN's using only 2 Sbox calls per round for TWINE-80 and 3 for TWINE-128.
At each round, some �xed nibbles of the key-state are used as round keys for
the block cipher. One round of TWINE is depicted on Figure 2.

Keyschedule. The keyschedule produces the 36 round keys from the master
key K. It is a variant of GFN with few application of the Sbox used in the round
function of TWINE. Two key lengths are available: 80 and 128 bits. In both cases,
the subkey WK0 is �rst initialized to K and then next subkeys are generated
using round constants and the same round function:WKi+1 = F (WKi, CON

i),
for 0 ≤ i ≤ 35. Finally the round key RKi is obtained by extracting 8 nibbles
from WKi. The function F used for 128-bit keys is depicted on Figure 3. We
refer the reader to [13] for the 80-bit version of the keyschedule.
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16 16 16 16 16 16 16 16

4 4 4 4

S

4 4 4 4

S

CON i
H

4 8 4 4 4 4 4

CON i
L

12 4

S

4 4 4 4

RKi[0]

RKi[7]

WKi

WKi+1

Fig. 3: Keyschedule of TWINE-128.

4.2 Biryukov et al. impossible di�erential attack

Biryukov et al. found a truncated impossible characteristic through 13 rounds of
TWINE that they extended by 4 rounds at the start and by 8 rounds at the end
in order to attack 25 rounds of the cipher. Their attack is depicted on Figure 4.

The di�erence in the plaintexts has to be zero in 11 nibbles such that cin +
cout = 16+60 = 76. The key material kin∪kout is composed of 7+45 = 52 round-
key nibbles which can assume only 2124 thanks to the keyschedule of TWINE-128
as they all can be computed from the whole subkey WK24 except nibble 1.

As a consequence, and according to formula of Boura et al., the complexity
of their attack is D = α · 275.5−39 · 220 = α · 256.5, M = α · 275.5 and T ≈
α · 2123.5 · CE′ + 2128−α, complexity parametrized by α. As they estimate the
ratio CE′ to 52/200 ≈ 2−1.9, the value of α minimizing the overall complexity is
5.87.

4.3 Real Complexity of the Attack

Computing the real complexity of Biryukov et al. attack seems impossible due to
the huge number of involved key nibbles. Indeed, there are 52 key nibbles leading



P x1 x2 x3 x4

p = 2−16

x17 x18 x19 x20 x21 x22 x23 x24 C

p = 2−60

Fig. 4: Impossible di�erential attack on 25 rounds. No di�erence in white nibbles.

to 52! ≈ 2225 orders for the early abort technique. Thus a naive approach would
fail and a clever one has to be used.

Pruning strategy. We note that for the early abort technique, if between two
guesses no pairs are discarded then the order in which they are guessed does
not matter. Thus key nibbles can be grouped so that at each step pairs are
discarded. So now the question becomes when do pairs are discarded? As saw
with our simple example this is related to knowing di�erences before and/or
after an Sbox. Since TWINE is a Feistel network things are a bit di�erent and
only one case has to be considered. Equations involved to describe round funtion
of TWINE all have the following shape:

y ⊕ z = S(x⊕ k),

where x, y and z are state variables while k is a round-key variable. We are
interested in the case where both ∆x and ∆y are known (obtained by partially
encrypting plaintexts (resp. decrypting ciphertexts)) and such that ∆z = 0.
In that case half of the pairs are discarded since the transition ∆x −→ ∆y
is possible with probability 2−1. Then if the actual value of x is obtained by
partially encrypting/decrypting plaintexts or ciphertexts then guessing k will
allow to reduce the number of pairs by a factor 23. So we only have to consider
groups of round key nibbles required to compute ∆x and ∆y, and the ones
required to compute x⊕ k. Finally, as we are only looking for the fastest attack
we can adopt a branch-and-bound strategy to accelerate the search.

Practice. For the considered attack there are 19 tuples (x, y, z) as expected.
Determining the corresponding groups of round key nibbles is an easy task.



However, computing the number of values those groups (and their unions) can
assume is more complicated while essential to the computation of the complex-
ity. To solve this we used the same approach Derbez et al. [17] used to exhaust
a particular kind of meet-in-the-middle attacks against the AES in a paper pre-
sented at FSE'13. Indeed, they provided a tool which takes as input a system
of equations E in variable X and a subset Y ⊆ X and gives as output a list of
optimal algorithms enumerating all the possible values of Y under constraint of
E with predictable time and memory complexities. The system of equations has
to be composed of equations with the following shape:∑

αixi ⊕
∑

βjS(xj)⊕ γ = 0,

where ai's, βj 's and γ are constant from a �nite �eld GF (2q) and S is an q-bit
Sbox. As the key schedule of TWINE is naturally described by such equations
we were able to use this tool. Note that the output of their tool is a list because
the number of possible values of Y enumerated by considered algorithms is not
necessary constant and if an algorithm is slower than an other but �nds less
possible values for Y than it then they had to study both of them. But in
our case we only care about the fastest algorithm, even if it enumerates more
solutions.

Our algorithm was able to �nd the optimal permutation (see Appendix A)
for the early abort technique in about 1h on a personal computer. As a result
we found that for all permutation σ:∑

1≤i≤38

2|kσ(1)∪...∪kσ(i)|−
∑

0≤j<i r
σ
j ·NαCE′ > 254 ·NαCE′ .

As Nα = α · 275.5, the time complexity of the whole attack is higher than:

CNα + α · 2127.6 + 2128−α,

where 2128−α corresponds to time complexity of performing an exhaustive search
on the remaining keys. Hence, if only based on the early abort technique, the
attack is actually slower than an exhaustive search for all value α > 0.

5 Conclusion

In this paper we have shown that the generic complexity analysis formula pre-
sented by Boura et al. at ASIACRYPT'14 does not always give a right estimation
of the time complexity of impossible di�erential attacks. As proof we constructed
simple counter-examples for which the real complexity is much higher than ex-
pected, one reaching a deviation of 213.6 from the formula. As a consequence the
formula is to use with caution, in particular when time complexity is close to
the natural bound of the exhaustive search.

While we searched for, we were unable to �nd an impossible di�erential
attack for which the real time complexity would be lower than the estimated



one. Finding such an attack or proving that the formula provides a lower bound
on the complexity would be an interesting future work.

Finally we also showed that, if using only the early abort technique, the time
complexity of the impossible di�erential attack against 25-round TWINE-128,
presented at FSE'15 by Biryulov et al., is higher than expected, and in particular,
higher than 2128.
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A Optimal sequence

We found the following permutation to be optimal for the early abort technique
applied to the 25-round impossible di�erential attack:

1. ∆x0[2], ∆x0[3]
2. ∆x0[6], ∆x0[7]
3. ∆x1[2], ∆x1[3]
4. ∆x2[0], ∆x2[1]
5. y0[2]
6. ∆x23[12], ∆x24[10]
7. y23[12]
8. ∆x22[12], ∆x23[10]
9. y22[12]
10. ∆x22[6], ∆x23[8]
11. y22[6]
12. ∆x22[2], ∆x23[4]
13. y22[2]
14. y0[6]
15. y1[2]
16. ∆x21[10], ∆x22[2]
17. y21[10]
18. ∆x20[10], ∆x21[2]
19. y20[10]

20. ∆x21[2], ∆x22[4]
21. y21[2]
22. ∆x21[0], ∆x22[0]
23. ∆x20[0], ∆x21[0]
24. y20[0]
25. ∆x19[0], ∆x20[0]
26. ∆x21[12], ∆x22[10]
27. y19[0]
28. y2[0]
29. ∆x19[12], ∆x20[10]
30. y19[12]
31. y21[12]
32. y21[0]
33. ∆x18[0], ∆x19[0]
34. ∆x20[12], ∆x21[10]
35. ∆x17[0], ∆x18[0]
36. y20[12]
37. y18[0]
38. y17[0]

Each item v has to be understood as guess the key material required to com-
pute v from the plaintexts/ciphertexts and yr[2i] = xr[2i]⊕ kr[i].
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