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Abstract. Ciphers that do not use S-boxes have been discussed for the
demand on lightweight cryptosystems, and their round functions con-
sist of and, rotation, and xor. Especially, the Simon family is one of
the most famous ciphers, and there are many cryptanalyses again the Si-
mon family. However, it is very difficult to guarantee the security because
we cannot use useful techniques for S-box-based ciphers. Very recently,
the division property, which is a new technique to find integral charac-
teristics, was shown in Eurocrypt 2015. The technique is powerful for
S-box-based ciphers, and it was used to break, for the first time, the
full MISTY1 in CRYPTO 2015. However, it has not been applied to
non-S-box-based ciphers like the Simon family effectively, and only the
existence of the 10-round integral characteristic on Simon32 was proven.
On the other hand, the experimental characteristic, which possibly does
not work for all keys, covers 15 rounds, and there is a 5-round gap. To fill
the gap, we introduce a bit-based division property, and we apply it to
show that the experimental 15-round integral characteristic always works
for all keys. Though the bit-based division property finds more accurate
integral characteristics, it requires much time and memory complexity.
As a result, we cannot apply it to symmetric-key ciphers whose block
length is over 32. Therefore, we alternatively propose a method for de-
signers. The method works for ciphers with large block length, and it
shows “provable security” against integral cryptanalyses using the divi-
sion property. We apply this technique to the Simon family and show
that Simon48, 64, 96, and 128 probably do not have 17-, 20-, 25-, and
29-round integral characteristics, respectively.

Keywords: Integral cryptanalysis, Division property, Provable security,
Simon family

1 Introduction

Non-S-box-based ciphers have been proposed for the demand on lightweight
cryptosystems [2,3]. Such ciphers are superior in lightweight environments be-
cause they are implemented by logical operations and do not have a lookup
table like S-boxes. In 2013, the NSA proposed a lightweight block cipher fam-
ily, called the Simon family, that follows this design principle [3]. However, it
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Table 1. Integral characteristics on Simon32

Methods #Rounds Balanced bit (right half) Reference

Experiment (no proof) 15 (?b??,????,b???,???b) [18]

Division 10 (bbbb,bbbb,bbbb,bbbb) [17]

Conventional bit-based division 14 (bbbb,bbbb,bbbb,bbbb) Sect. 3

Bit-based division using 3 subsets 15 (?b??,????,b???,???b) Sect. 4

is too difficult to guarantee the security against several cryptanalyses because
we cannot use many useful techniques for S-box-based ciphers. Therefore, many
cryptanalyses have been proposed against the Simon family, e.g., [1,5,6,10,15,18],
and the designers recently summarized cryptanalyses in [4]. In this paper, we in-
vestigate the security of non-S-box-based ciphers against integral cryptanalyses
and illustrate our methods on the Simon family.

Division Property Very recently, the division property, which is a new tech-
nique to find integral characteristics [9], was proposed in Eurocrypt 2015 [17].
The new technique permitted us to find a 6-round integral characteristic on
MISTY1 in CRYPTO 2015, leading to the first complete theoretical cryptanal-
ysis of the full MISTY1 [16]. Moreover, this technique was applied to general-
ized Feistel structures in [20], leading to improved integral cryptanalyses against
LBlock and TWINE. The division property also proves integral characteristics
on the Simon family in [17], and Simon32, 48, 64, 96, and 128 have 9-, 11-
, 11-, 13-, 13-round integral characteristics, respectively3. However, the round
function is regarded as any function of degree 2. Therefore, we can expect that
integral characteristics can be extended to more rounds if one is able to exploit
the concrete structure of the round function. In fact, the experimental integral
characteristic, which possibly does not work for all keys, covers 15 rounds [18],
and there is a large gap between the proved characteristic and experimental one.

Our Contribution The round function of the Simon family is regarded as any
function of degree 2 in [17] because we cannot decompose the round function into
several sub blocks like S-boxes. However, we can decompose the round function
into every bit, and we call the division property that focuses on every bit a
bit-based division property.

First, we apply the conventional bit-based division property to Simon32,
which is not against the definition of the division property. Therefore, we can
directly use the propagation rules of the division property. As a result, the
conventional bit-based division property proves that Simon32 has a 14-round
integral characteristic. However, there is still a gap of one round between the
proof and experiment. Namely, this means that either the experimental 15-round
characteristic does not work for all keys or the conventional bit-based division

3 Since the round key is XORed after the round function in Simon, we can trivially
get one-round extended integral characteristics.
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Table 2. Provable secure number of rounds for the Simon family

Ciphers Simon48 Simon64 Simon96 Simon128 reference

Vulnerable number 14 rounds 17 rounds 21 rounds 25 rounds [21]

Provable security 17 rounds 20 rounds 25 rounds 29 rounds this paper

property cannot find the accurate characteristic. As a result, we conclude that
the conventional bit-based division property is insufficient to find the accurate
characteristic. The conventional division property divides the set of u according
to whether the parity becomes 0 or unknown [17]. However, we should divide
the set of u according to whether the parity becomes 0, 1, or unknown because
we can also exploit the fact that the parity is not only 0 but also 1. To exploit
this fact, we newly introduce a variant of the bit-based division property, which
divides the set of u into three subsets. Since the variant is completely different
from the definition of the conventional division property, we show the propaga-
tion characteristic also. Finally, we apply the variant to Simon32 and show that
the experimental 15-round characteristic always works for all keys. The proved
characteristic is the completely same as the experimental one including the po-
sition of balanced bits. Table 1 shows the comparison of integral characteristics,
where balanced and unknown bits are labeled as b and ?, respectively.

Although the bit-based division property can find more accurate integral
characteristics, their propagations require much time and memory complexity.
When we evaluate the propagation for n-bit block ciphers, it roughly requires
2n complexity because the bit-based division property has to manage the set
of n-dimensional vectors whose elements take values in F2. This is feasible for
Simon32 because the block length is 32 bits, but it is infeasible for other Si-
mon family members. Therefore, we introduce a new technique, which is useful
for designers but is not useful for attackers. We call this technique a lazy prop-
agation, where we evaluate only a part of all propagations. The lazy propaga-
tion cannot find the integral characteristic, but it can evaluate the number of
rounds that the bit-based division property cannot find integral characteristics
even if we can evaluate the accurate propagation. Namely, the technique shows
“provable security” for the integral cryptanalysis using the division property,
and we expect that it becomes a useful technique for designers. Our provable
security guarantees the security against only the integral cryptanalysis using
the division property, and it does not always guarantee the security against all
integral-like cryptanalyses. However, for Simon32, the bit-based division prop-
erty can find the accurate integral characteristic. Therefore, we expect that it
also finds the best integral characteristic for the other Simon family if it is fea-
sible. Table 2 shows the number of rounds of Simon48, 64, 96, and 128, where
the division property never finds integral characteristics. As a result, we expect
that Simon48, 64, 96, and 128 do not have 17-, 20-, 25-, and 29-round integral
characteristics, respectively4. Moreover, as the comparison, Table 2 also shows

4 If we truly guarantee the security against integral attack, we have to consider the
key recovery part.
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the number of rounds that Simon48, 64, 96, and 128 have integral characteris-
tics [21].

2 Preliminaries

2.1 Notations

We make the distinction between the addition of Fn2 and addition of Z, and we
use ⊕ and + as the addition of Fn2 and addition of Z, respectively. For any a ∈ Fn2 ,
the ith element is expressed in a[i], and the Hamming weight w(a) is calculated
as w(a) =

∑n
i=1 a[i]. For any a ∈ (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2 ), the vectorial Hamming

weight of a is defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Zm. Moreover,
for any k ∈ Zm and k′ ∈ Zm, we define k � k′ if ki ≥ k′i for all i. Otherwise,
k � k′. In this paper, we often treat the set of k, and K denotes this set. Then,
let |K| be the number of vectors. We simply write K ← k when K := K ∪ {k}.
Moreover, we simply write K x←− k, where the new K computed as

K :=

{
K ∪ {k} if the original K does not include k,

K \ {k} if the original K includes k.

2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the security
of Square [7], and then it was formalized by Knudsen and Wagner [9]. Attackers
first prepare N chosen plaintexts and encrypt them R rounds. If the XOR of
all encrypted texts becomes 0, we say that the cipher has an R-round integral
characteristic with N chosen plaintexts. Finally, we analyze the entire cipher by
using the integral characteristic. Therefore, it is very important to find integral
characteristic. There are two main approaches to find integral characteristics.
The first one is the propagation of the integral property [9] and the second one
is based on the degree estimation [8,11].

2.3 Division Property

The division property, which was proposed in [17], is a new method to find in-
tegral characteristics. This section briefly shows the definition and propagation
rules. Please refer to [17] in detail.

Bit Product Function The division property of a multiset is evaluated by
using the bit product function defined as follows. Let πu : Fn2 → F2 be a bit
product function for any u ∈ Fn2 . Let x ∈ Fn2 be the input, and πu(x) is the AND
of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=

n∏
i=1

x[i]u[i].
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Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2

be a bit product function for any u ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ). Let x ∈ (Fn1

2 ×
Fn2

2 × · · · × F
nm
2 ) be the input, and πu(x) is defined as

πu(x) :=

m∏
i=1

πui
(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f is represented as

f(x) =
⊕
u∈Fn

2

afu

(
n∏
i=1

x[i]u[i]

)
=
⊕
u∈Fn

2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

Definition of Division Property

Definition 1 (Division Property [17]). Let X be a multiset whose elements
take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ). When the multiset X has the division

property Dn1,n2,...,nm

K , where K denotes a set of m-dimensional vectors whose ith
element takes a value between 0 and ni, it fulfils the following conditions:⊕

x∈X
πu(x) =

{
unknown if there are k ∈ K s.t. W (u) � k,

0 otherwise.

See [17] to better understand the concept in detail, and [14] and [16] help readers
understand the division property. In this paper, the division property for (Fn2 )m

is referred to as Dnm

K for the simplicity5. If there are k ∈ K and k′ ∈ K satisfying
k � k′ in the division property Dn1,n2,...,nm

K , k can be removed from K because
the vector k is redundant.

Propagation Rules of Division Property Some propagation rules for the
division property are proven in [17], and the rules are summarized in [16] as
follows.

Rule 1 (Substitution) Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of the ith S-box is ni bits and di,
respectively. The input and output take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ),

and X and Y denote the input multiset and output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2,...,nm

K , the
division property of the multiset Y is Dn1,n2,...,nm

K′ as

K′ ←
(⌈

k1

d1

⌉
,

⌈
k2

d2

⌉
, . . . ,

⌈
km
dm

⌉)
, ∀k ∈ K.

Here, when the ith S-box is bijective and ki = ni, the ith element of the
propagated property becomes ni not dni/die.

5 In [17], the division property was referred to as Dn,m
K .
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Rule 2 (Copy) Let F be a copy function, where the input x takes a value
of Fn2 and the output is calculated as (y1, y2) = (x, x). Let X and Y be the
input multiset and output multiset, respectively. Assuming that the multiset
X has the division property Dnk , the division property of the multiset Y is
Dn,nK′ as

K′ ← (k − i, i), for 0 ≤ i ≤ k.

Rule 3 (Compression by XOR) Let F be a function compressed by an XOR,
where the input (x1, x2) takes a value of (Fn2 × Fn2 ) and the output is calcu-
lated as y = x1⊕x2. Let X and Y be the input multiset and output multiset,
respectively. Assuming that the multiset X has the division property Dn,nK ,
the division property of the multiset Y is Dnk′ as

k′ = min
(k1,k2)∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation charac-
teristic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is
0 for all v ∈ Fn2 .

Rule 4 (Split) Let F be a split function, where the input x takes a value of
Fn2 and the output is calculated as x = y1‖y2, where (y1, y2) takes a value
of (Fn1

2 × F
n−n1
2 ). Let X and Y be the input multiset and output multiset,

respectively. Assuming that the multiset X has the division property Dnk , the
division property of the multiset Y is Dn1,n−n1

K′ as

K′ ← (k − i, i), for 0 ≤ i ≤ k.

Here, (k− i) is less than or equal to n1, and i is less than or equal to n−n1.
Rule 5 (Concatenation) Let F be a concatenation function, where the input

(x1, x2) takes a value of (Fn1
2 × F

n2
2 ) and the output is calculated as y =

x1‖x2. Let X and Y be the input multiset and output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2

K , the division
property of the multiset Y is Dn1+n2

k′ as

k′ = min
(k1,k2)∈K

{k1 + k2}.

2.4 Simon Family

The Simon family is a lightweight block cipher family [3] based on the Feistel
construction. Let Simon2n be the Simon block ciphers with 2n-bit block length,
where n is chosen from 16, 24, 32, 48, and 64. Moreover, Simon2n with mn-bit
secret key is referred to as Simon2n/mn. Since we only care about integral
characteristics on the Simon family, this paper only uses Simon2n.

The output of the ith round function is denoted by (Li, Ri) and is calculated
as

(Li, Ri) = (L≪1
i−1 ∧ L≪8

i−1 )⊕ L≪2
i−1 ⊕Ri−1 ⊕ ki, Li−1),



Bit-Based Division Property and Application to Simon Family 7

Li-1 Ri-1

Li Ri

ki

1

8

2

n

Fig. 1. Round function of Simon2n

where L≪j denotes the j-bit left rotation of L, and ki denotes the ith round
key. Moreover, (L0, R0) denotes a plaintext. The round function consists of and,
rotation, and xor, and Fig. 1 shows the round function. For more details, please
refer to [3].

2.5 Known Integral Characteristic on Simon Family

It is difficult to find effective integral characteristics on ciphers which consist of
and, rotation, and xor. In [18], authors experimentally showed that Simon32
has the 15-round integral characteristic with 231 chosen plaintexts. Since their
characteristic is confirmed under 213 secret keys, they expected that the success
probability of this characteristic is at least 1 − 2−13. Therefore, this approach
does not guarantee that the characteristic works for all secret keys. Moreover,
it is practically infeasible to find integral characteristics of other Simon family
members because the block length is too large for proceeding to an experimental
evaluation.

Integral characteristics proved under all secret keys are shown in [17], but in
this approach the round function of Simon2n is seen as any n-bit function of
degree 2. Therefore, the detailed structure of the round function is not exploited.
As a result, it shows that Simon32, 48, 64, 96, and 128 has 9-, 11-, 11-, 13-, and
13-round integral characteristic, respectively. Since the round key is XORed after
the round function, we can trivially get one-round extended integral characteris-
tics using the same technique in [18]. Therefore, 10-, 12-, 12-, 14-, and 14-round
integral characteristics are proved in Simon32, 48, 64, 96, and 128, respectively.
Thus, there is a 5-round gap between the proved characteristic and experimental
one.

3 Conventional Bit-Based Division Property

This paper introduces a bit-based division property. When n-bit block ciphers
are analyzed, the conventional division property uses D`1,`2,...,`mK , where `i and
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x1

w1

w2 w4

w5w3

x2 x3 x4

y1 y2 y3 y4

Fig. 2. Core operation of the Simon family.

m are chosen by attackers in the range of n =
∑m
i=1 `i. This section considers

the conventional bit-based division property, i.e., D1n

K . Since it is not against
the definition of the conventional division property, we can directly use the five
propagation rules shown in Sect. 2.3.

3.1 Comparison between Conventional Bit-Based Division Property
and Solving Algebraic Equations

Before the introduction of the conventional bit-based division property, we roughly
show the relation between the bit-based division property and the resolution
of algebraic equations by brute force. When entire ciphers are represented by
algebraic equations, such equations involve both the plaintext and secret key.
Therefore, if we solve such equations for an n-bit block cipher with a k-bit se-
cret key, this roughly requires 2k+n complexity. On the other hand, XORing
with a constant value does not change the conventional bit-based division prop-
erty because such XORing is a linear function [16]. Therefore, the propagation
of the conventional bit-based division property does not involve the secret key.
It may miss some useful cryptographic properties, but it dramatically reduces
the complexity.

3.2 Propagation for Core Operation of Simon

As an example, we analyze Simon2n by using the conventional bit-based division
property. We focus on only one bit of the right half in Simon2n. The core
operation of the round function is represented by Fig. 2. Since the input and
output bit length is 4 bits, we use the division property D14

K .
We consider the propagation characteristic. For instance, let assume that the

input multiset has D14

[k1,k2,k3,1], where ki denotes any value, i.e., 0 or 1. Then, if

the multiset of (y1, y2, y3, w5, x4) has D15

[∗,∗,∗,1,1], where ∗ is propagated values,
the propagation always abort in the XOR, x4⊕w5. Consequently, the bit-based
division property of (y1, y2, y3, y4) is the same as that of (x1, x2, x3, x4). On

the other hand, assuming that the input multiset has D14

[k1,k2,k3,0], the output
property is different from the input one.
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Table 3. Propagation of the conventional bit-based division property for the core
operation in the Simon family

Input D14

k Output D14

K
k = [0, 0, 0, 0] K = {[0, 0, 0, 0]}
k = [1, 0, 0, 0] K = {[1, 0, 0, 0], [0, 0, 0, 1]}
k = [0, 1, 0, 0] K = {[0, 1, 0, 0], [0, 0, 0, 1]}
k = [1, 1, 0, 0] K = {[1, 1, 0, 0], [0, 0, 0, 1]}
k = [0, 0, 1, 0] K = {[0, 0, 1, 0], [0, 0, 0, 1]}
k = [1, 0, 1, 0] K = {[1, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1]}
k = [0, 1, 1, 0] K = {[0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]}
k = [1, 1, 1, 0] K = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1]}

k = [k1, k2, k3, 1] K = {[k1, k2, k3, 1]}

Table 4. Size of K in D132

K for the integral characteristic on Simon32

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|K| 1 1 3 11 65 774 18165 587692 5191387 1595164 95768 5894 682 136 32

Let D14

K and D14

K′ be the division property of the input and output, respec-
tively. When we get K′ from K, we first independently calculate vectors belonging
to K′ by evaluating the propagation from every vector in K. Then, K′ is rep-
resented as the union of all calculated vectors. Finally, if there are k ∈ K′ and
k′ ∈ K′ such that k � k′, k is removed from K′ because the vector is redundant.

Table 3 summarizes the propagation characteristics from D14

k to D14

K . The
round function of Simon2n repeats the core operation for all n-bit values in the
right half. Therefore, we use D12n

K . In every core operation, we only focus on four
bits and evaluate the propagation independent of other (2n− 4) bits.

3.3 Application to Simon32

We evaluate the propagation characteristic of the conventional bit-based division
property on Simon32. We prepare chosen plaintexts such that the first bit is
constant and the others are active. Then, the set of chosen plaintexts has the
division property D132

K , where K = {[0, 1, 1, . . . , 1]}. Table 4 shows |K|, which is
the number of vectors, in every round, where we perfectly remove redundant
vectors from K. The output of the 14th round function has the division property
D132

K , where K has 32 distinct vectors whose Hamming weight is one. Therefore,
the conventional bit-based division property cannot show whether or not the
output of the 14th round function is balanced. On the other hand, the output of
the 13th round function has the division property D132

K , where K is represented
as 16 vectors, whose Hamming weight of the left half is 1 and that of the right
half is 0, and 120 (=

(
16
2

)
) vectors, whose Hamming weight of the left half is 0

and that of the right half is 2. This division property means that the output of
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the 13th round function takes the following integral property

(????,????,????,????, bbbb,bbbb,bbbb,bbbb),

where balanced and unknown bits are labeled as b and ?, respectively. In the
Simon family, since round keys are XORed with the right half only after the
round function is applied to the left half, we can easily get a 14-round integral
characteristic from the 13-round one. The same technique is used in [18]. There-
fore, we conclude that 14-round Simon32 has the integral characteristic with 231

chosen plaintexts.

4 Bit-Based Division Property using Three Subsets

4.1 Motivation

The conventional bit-based division property proved the existence of the 14-
round integral characteristic of Simon32. However, the experimental charac-
teristic covers 15 rounds [18], and there is still a one-round gap between the
experiment and proof. In [18], the authors experimentally confirm the character-
istic by randomly choosing 213 secret keys. Therefore, they concluded that the
success probability of the characteristic is at least 1 − 2−13. Thus, we consider
that this gap derives from either the experimental result does not work for all
keys or the conventional bit-based division property cannot find the accurate
characteristic.

We first show that the conventional bit-based division property is insufficient
to find integral characteristics on Simon32, and we then introduce a new variant
of the bit-based division property. The conventional bit-based division property
focuses on that the parity

⊕
x∈X πu(x) is 0 or unknown. On the other hand, the

new variant focuses on that the parity
⊕

x∈X πu(x) is 0, 1, or unknown. Therefore
we call the new variant the bit-based division property using three subsets. The
new variant can find more accurate integral characteristics and prove that the
experimental characteristic shown in [18] works for all keys.

4.2 Characteristic that Conventional Bit-Based Division Property
cannot Find

The conventional division property divides the set of u according to whether
the parity becomes 0 or unknown [17]. However, it sometimes overlooks useful
characteristics. We show it by using a simple example.

We again evaluate the propagation of the conventional bit-based division
property for the circuit in Fig 2, and F : F4

2 → F4
2 denotes the circuit. Moreover,

let X and Y be the input and output multiset, respectively. Assuming that X has
D14

{[1,1,0,0],[0,0,1,0]},
⊕

x∈X π[1,1,0,0](x) and
⊕

x∈X π[0,0,1,0](x) are unknown. Then,

the output multiset Y has D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]} from Table 3.
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Let us assume that both
⊕

x∈X π[1,1,0,0](x) and
⊕

x∈X π[0,0,1,0](x) are 1. Even

if we know the parity is always one, the division property of X isD14

{[1,1,0,0],[0,0,1,0]}.
However, we can get the following equation.⊕

x∈X
π[0,0,0,1](F (x)) =

⊕
x∈X

(x1x2 ⊕ x3 ⊕ x4)

=
⊕
x∈X

(x1x2)
⊕
x∈X

(x3)
⊕
x∈X

(x4)

=
⊕
x∈X

π[1,1,0,0](x)
⊕
x∈X

π[0,0,1,0](x)
⊕
x∈X

π[0,0,0,1](x)

= 1⊕ 1⊕ 0 = 0.

Therefore, ⊕x∈Xπ[0,0,0,1](F (x)) is always 0 not unknown, and the division prop-

erty of Y becomes D14

{[1,1,0,0],[0,0,1,0],[0,1,0,1],[1,0,0,1]} not D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]}.
Since the conventional division property focuses on the case the parity be-

comes 0, it cannot find characteristics that appear by cancelling like the above
example. Therefore, we newly introduce a variant of the bit-based division prop-
erty to exploit this fact. The variant divides the set of u into three subsets, i.e.,
0, 1, and unknown.

4.3 Definition of Bit-Based Division Property using Three Subsets

The conventional division property uses the set K to represent the subset of u
such that

⊕
x∈X πu(x) is unknown. The bit-based division property using three

subsets needs to represent not only the subset of u such that
⊕

x∈X πu(x) is
unknown but also the subset of u such that

⊕
x∈X πu(x) is one. Therefore, we

use the set K to represent the subset of u such that
⊕

x∈X πu(x) is unknown,
and we also use the set L to represent the subset of u such that

⊕
x∈X πu(x) is

one.

Definition 2 (Bit-based division property using three subsets). Let X
be a multiset whose elements take a value of (F2)m, and k is an m-dimensional
vector whose ith element takes 0 or 1. When the multiset X has the bit-based
division property using three subsets D1m

K,L, it fulfils the following conditions:

⊕
x∈X

πu(x) =


unknown if there are k ∈ K s.t. W (u) � k,

1 else if there is ` ∈ L s.t. W (u) = `,

0 otherwise.

If there are k ∈ K and k′ ∈ K satisfying k � k′, k can be removed fromK because
the vector k is redundant. Moreover, when there is k ∈ K satisfying W (u) � k,⊕

x∈X πu(x) is unknown even if there is ` ∈ L satisfying W (u) = `. Therefore,
if there are ` ∈ L and k ∈ K satisfying ` � k, the vector ` is redundant. Notice
that redundant vectors in K and L do not affect whether

⊕
x∈X πu(x) becomes

0, 1, or unknown for any u.
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Example 1. Let X be a multiset whose elements take a value of (F2)4. As-

sume the multiset X has the bit-based division property D14

K,L, where K =
{[0, 0, 0, 1], [0, 1, 1, 0]} and L = {[1, 0, 0, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1]}. Then,
every parity satisfies the following, where the value of u is represented as hex-
adecimal notation of (u1‖u2‖u3‖u4).

u 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

Parity 0 ? 1 ? 0 ? ? ? 1 ? 1 ? 0 ? ? ?

Notice that the parity of π[0,0,1,1](x) over all x ∈ X is unknown because there
is [0, 0, 0, 1] ∈ K and W ([0, 0, 1, 1]) � W ([0, 0, 0, 1]). Thus, [0, 0, 1, 1] ∈ L is
redundant.

4.4 Propagation Rules

We show propagation rules for the bit-based division property using three sub-
sets. There rules are very similar to those of the conventional division property.
Here, we show three rules, “Copy,” “Compression by AND,” and “Compression
by XOR,” because any Boolean function can be evaluated by using these three
rules. We omit the proof of three propagation rules in this paper because of the
page limit, and please see the full version of this paper.

Rule 1 (Copy) Let F be a copy function, where the input (x1, x2, . . . , xm)
takes values of (F2)m, and the output is calculated as (x1, x1, x2, x3, . . . , xm).
Let X and Y be the input multiset and output multiset, respectively. Assum-
ing that X has D1m

K,L, Y has D1m+1

K′,L′ , where K′ and L′ are computed as

K′ ←

{
(0, 0, k2, . . . , km), if k1 = 0

(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1
,

L′ ←

{
(0, 0, `2, . . . , `m), if `1 = 0

(1, 0, `2, . . . , `m), (0, 1, `2, . . . , `m), (1, 1, `2, . . . , `m) if `1 = 1
.

from all k ∈ K and all ` ∈ L, respectively.
Rule 2 (Compression by AND) Let F be a function compressed by an AND,

where the input (x1, x2, . . . , xm) takes values of (F2)m, and the output is
calculated as (x1 ∧ x2, x3, . . . , xm). Let X and Y be the input multiset and

output multiset, respectively. Assuming that X hasD1m

K,L, Y hasD1m−1

K′,L′ , where
K′ is computed from all k ∈ K as

K′ ←
(⌈

k1 + k2

2

⌉
, k3, k4, . . . , km

)
.

Moreover, L′ is computed from all ` ∈ L s.t. (`1, `2) = (0, 0) or (1, 1) as

L′ ←
(⌈

`1 + `2
2

⌉
, `3, `4, . . . , `m

)
.
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Rule 3 (Compression by XOR) Let F be a function compressed by an XOR,
where the input (x1, x2, . . . , xm) takes values of (F2)m, and the output is cal-
culated as (x1⊕x2, x3, . . . , xm). Let X and Y be the input multiset and output

multiset, respectively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is
computed from all k ∈ K s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L′ is computed from all ` ∈ L s.t. (`1, `2) = (0, 0), (1, 0), or (0, 1)
as

L′ x←− (`1 + `2, `3, `4, . . . , `m) .

4.5 Dependencies between K and L

Propagation for Public Function In the propagation rules shown in Sect. 4.4,
K′ and L′ are computed from K and L, respectively. Therefore, we can evaluate
the propagation from K and that from L independently. However, independent
propagations generate many redundant vectors in K′ and L′. Note that redun-
dant vectors in K′ and L′ do not affect whether the parity becomes 0, 1, or
unknown for any u. Therefore, when we consider the propagation for public
functions, we do not need to care about the dependencies between K and L.
On the other hand, if there are many redundant vectors, the propagation re-
quires much time complexity. Therefore, we should remove redundant vectors if
possible because of the reason of only complexity.

XORing with Secret Round Key For the public function, the propagation
from K and that from L are independently evaluated. However, if the secret
round key is XORed, every vector in L affects K.

Let X and Y be the input and output multiset, respectively. Then, y ∈ Y is
computed as y = x⊕ rk for x ∈ X, where rk is the secret round key. Moreover,
let D1m

K,L and D1m

K′,L′ be the bit-based division property using three subsets on X
and Y, respectively. We want to get K′ and L′ from K and L. We cannot know
the secret round key. Therefore, the parity

⊕
x∈X πv(x ⊕ rk) satisfying v � `

becomes unknown because the parity depends on the secret round key.
In many ciphers, round keys are XORed with a part of entire bits. Assuming

a round key is XORed with the ith bit, K′ is computed as

K′ ← (`1, `2, . . . , `i ∨ 1, . . . , `m)

for all ` ∈ L satisfying `i = 0.

4.6 Propagation for Core Operation of Simon

We search for integral characteristics on Simon32 by the bit-based division prop-
erty using three subsets. Similar to the conventional bit-based division property,
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Table 5. Propagation of the bit-based division property using three subsets for the
core operation in the Simon family

Input D14

K,{`} Output D14

K′,L′

` = [0, 0, 0, 0] L′ = {[0, 0, 0, 0]}
` = [1, 0, 0, 0] L′ = {[1, 0, 0, 0]}
` = [0, 1, 0, 0] L′ = {[0, 1, 0, 0]}
` = [1, 1, 0, 0] L′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}
` = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}
` = [1, 0, 1, 0] L′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}
` = [0, 1, 1, 0] L′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}
` = [1, 1, 1, 0] L′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}

` = [`1, `2, `3, 1] L′ = {[`1, `2, `3, 1]}

Table 6. Sizes of K and L in D132

K,L for the integral characteristic on Simon32

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|L| 1 1 5 19 138 2236 89878 4485379 47149981 2453101 20360 168 8 0 0 0

|K| 1 1 1 6 43 722 23321 996837 9849735 2524718 130724 7483 852 181 32 32

we focus on only one bit of the right half and consider the core operation of the
Simon family (see Fig. 2).

The core operation is a public function and it does not involve any secret
information. Therefore, we can evaluate the propagation from K and that from L
independently. Table 5 summarizes the propagation characteristics from D14

K,{`}

to D14

K′,L′ , where the propagation from K to K′ is the same as that in Table 3.
Next, the propagation on the round function can be evaluated by repeating for
all bits of the right half. Finally, when round keys are XORed with the right
half, new vectors are generated from L, and the new vectors are inserted into K.

4.7 Application to Simon32

We evaluate the propagation characteristic of the bit-based division property
using three subsets on Simon32. We prepare chosen plaintexts such that the
first bit is constant and the others are active, and the set of chosen plaintexts
has D132

{[1,1,1,...,1]},{[0,1,1,...,1]}.

Table 6 shows |K| and |L| in every round, where we perfectly remove redun-
dant vectors from K and L. As a result, the output of the 14th round function
has D132

K,φ, where vector in K are represented by hexadecimal notation as

(0001 0000)(0002 0000)(0004 0000)(0008 0000)(0010 0000)(0020 0000)(0040 0000)(0080 0000)
(0100 0000)(0200 0000)(0400 0000)(0800 0000)(1000 0000)(2000 0000)(4000 0000)(8000 0000)
(0000 0002)(0000 0004)(0000 0008)(0000 0010)(0000 0020)(0000 0040)(0000 0081)(0000 0100)
(0000 0200)(0000 0400)(0000 0800)(0000 1000)(0000 2000)(0000 4001)(0000 4080)(0000 8000),
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and φ denotes the empty set. This division property means that the output of
the 14th round function takes the following integral property

(????,????,????,????, ?b??,????,b???,???b),

where balanced and unknown bits are labeled as b and ?, respectively. In the
Simon family, we can easily get a 15-round integral characteristic from the 14-
round one, and this proved integral characteristic is completely the same as the
experimental one. Therefore, we conclude that the experimental characteristic
is not probabilistic characteristic, and it works for all keys.

4.8 Application to Simeck32

Simeck was recently proposed in [19], and its round function is very similar to
that of Simon. Let (Li, Ri) be the output of the ith round function, and it is
calculated as

(Li, Ri) = (Li−1 ∧ L≪5
i−1 )⊕ L≪1

i−1 ⊕Ri−1 ⊕ ki, Li−1).

The rotation number is changed from (1, 8, 2) to (0,5,1). Similar to Simon,
Simeck has different parameters according to the block length. Let Simeck2n
be the Simeck block ciphers with 2n-bit block length, where n is chosen from 16,
24, and 32.

We also evaluated the propagation of the bit-based division property using
three subsets against Simeck32. As a result, the output of the 14th round function
has D132

K,φ, where vectors in K are represented by hexadecimal notation as

(0001 0000)(0002 0000)(0004 0000)(0008 0000)(0010 0000)(0020 0000)(0040 0000)(0080 0000)
(0100 0000)(0200 0000)(0400 0000)(0800 0000)(1000 0000)(2000 0000)(4000 0000)(8000 0000)
(0000 0002)(0000 0004)(0000 0008)(0000 0011)(0000 0021)(0000 0030)(0000 0040)(0000 0080)
(0000 0100)(0000 0201)(0000 0210)(0000 0220)(0000 0401)(0000 0410)(0000 0420)(0000 0600)
(0000 0800)(0000 1000)(0000 2000)(0000 4001)(0000 4010)(0000 4020)(0000 4200)(0000 4400)
(0000 8001)(0000 8010)(0000 8020)(0000 8200)(0000 8400)(0000 C000).

This division property means that the output of the 14th round function takes
the following integral property

(????,????,????,????, bb??,?bb?,??bb,???b).

Since round keys are XORed after the round function in Simeck, we can triv-
ially get the 15-round integral characteristic. Here, 231 plaintexts are chosen as
(L0, F (L0)⊕R0), where the first bit of R0 is constant and the others are active.

5 Provable Security against Integral Cryptanalysis

We introduced the bit-based division property using three subsets in Sect. 4, and
we proved that this method can find more accurate integral characteristics than
those found by the conventional division property. In particular, we showed that
the new method can discover the tight characteristic on Simon32. However, a
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problem is left about the feasibility, i.e., the propagation of the division property
requires much time and memory complexity. For instance, if we want to evaluate
the propagation of the division property Dnm

K , the time and memory complexity
is upper-bounded by (n+1)m. Therefore, if the upper bound is too large, e.g., (n+
1)m � 232, it is difficult to evaluate the propagation 6. In the bit-based division
property, the time and memory complexity is upper-bounded by 2n, where n
denotes the block length. Moreover, the bit-based division property using three
subsets requires more complexity than that using two subsets. Therefore, we
cannot apply the bit-based division property to the Simon family except for
Simon32.

5.1 Provable Security for Designers

We cannot apply the bit-based division property to the Simon family except for
Simon32, but we can show the “provable security” alternatively. When we design
new symmetric-key primitives, we have to guarantee the security against several
cryptanalyses. Provable security has been discussed in detail for differential and
linear cryptanalyses [12,13], but such tools do not exist for integral cryptanalysis.

Let D1m

Ki,Li
denotes the division property of the output set of the ith round

function. We want to find R-round integral characteristics. Then, for any u with
w(u) = 1, we have to evaluate that there are not k ∈ KR satisfying W (u) � k
and ` ∈ LR satisfying W (u) = `. Therefore, we have to get all vectors in KR
and LR, and such vectors are searched by an algorithm like breadth-first search.
On the other hand, we want to show that an R-round integral characteristic
cannot exist. Then, it is enough to show that KR has m distinct vectors whose
Hamming weight is one, i.e., there is not balanced bits, and such vectors are
searched by an algorithm like depth-first search. In our provable security, we
aim to get such number of rounds efficiently, and a lazy propagation is useful to
find such number of rounds.

Definition 3 (Lazy propagation). Let D1m

Ki−1,Li−1
be the bit-based division

property of the input set of the ith round function. The ith round function is
applied, and let D1m

K̄i,L̄i
be the bit-based division property from the lazy propaga-

tion. Then, K̄i is computed from only a part of vectors in Ki−1, and L̄i always
becomes the empty set φ.

The lazy propagation first removes all vectors from Li−1. Moreover, it only eval-
uates the propagation from vectors with low Hamming weight in Ki−1 because
such vectors are more close to unknown. Therefore, it is more efficiently evalu-
ated than the accurate propagation.

Let us consider the meaning of the lazy propagation. Assuming the input set
of the (i − 1)th round function has D1m

Ki−1,Li−1
, we get D1m

Ki,Li
and D1m

K̄i,φ
by the

6 In [16], the propagation for MISTY1 was evaluated, and the division property
D7,2,7,7,2,7,7,2,7,7,2,7

K was used. Then, |K| is upper bounded by 88×34 = 1358954496 ≈
230.3, and it is feasible.
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Table 7. Accurate propagations up to six rounds

#rounds Simon48 Simon64 Simon96 Simon128
minw(L) minw(K) minw(L) minw(K) minw(L) minw(K) minw(L) minw(K)

0 47 48 63 64 95 96 127 128

1 47 48 63 64 95 96 127 128

2 46 47 62 63 94 96 126 128

3 45 46 61 62 93 94 125 126

4 43 44 59 60 91 92 123 124

5 40 41 56 57 88 89 120 121

6 35 36 51 52 83 84 115 116

accurate propagation and the lazy propagation, respectively. Then, the set of u
that the parity is unknown is represented as

SK := {u ∈ (F2)m | there are k ∈ Ki satisfying W (u) � k} .

On the other hand, SK̄i
cannot completely represent the set of u that the parity

is unknown. However, SK̄i
⊆ SKi always holds.

Next, we repeat the lazy propagation, and we assume that D1m

K̄i+1,φ
is propa-

gated from D1m

K̄i,φ
by the lazy propagation. Similarly, assuming that D1m

Ki+1,Li+1
is

the division property from D1m

Ki,Li
by the accurate propagation, SK̄i+1

⊆ SKi+1
al-

ways holds because SK̄i
⊆ SKi

. Therefore, if the lazy propagation creates D1m

K̄R,φ
,

where K̄R has m distinct vectors whose Hamming weight is one, the accurate
propagation also creates the same m distinct vectors in the same round.

5.2 Application to Simon Family

We evaluate the lazy propagation of the bit-based division property on Simon48,
Simon64, Simon96, and Simon128. Here, we only evaluate integral characteris-
tics when they use chosen plaintexts that only one bit of the left half is constant
and the other bits are active. We calculate the accurate propagation up to 6
rounds7 Table 7 shows minw(L) and minw(K) in the accurate propagation of

D12n

K,L up to 6 rounds, where minw(L) and minw(K) are calculated as

minw(K) = min
k∈K

(
2n∑
i=1

w(ki)

)
, minw(L) = max

`∈L

(
2n∑
i=1

w(`i)

)
.

From the 7th round function, we repeat the lazy propagation. We first remove
all vectors from L, and then the bit-based division property is represented as
D12n

K,φ, where φ denotes the empty set. Moreover, we remove vectors with high
Hamming weight from K. Table 8 shows the lazy propagation of the bit-based

7 In our implementation, we could not calculate the accurate propagation up to 7
rounds because of the limitation of the memory size.
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Table 8. Lazy propagation of the bit-based division property for the Simon family

#rounds Simon48 Simon64 Simon96 Simon128
minw(K) Limit minw(K) Limit minw(K) Limit minw(K) Limit

7 30 33 46 61 78 81 110 113

8 20 23 35 38 68 71 100 103

9 11 14 23 26 55 57 87 88

10 7 10 13 15 40 41 71 71

11 5 8 9 10 27 28 59 59

12 3 8 6 8 17 17 42 42

13 2 5 4 7 11 11 32 32

14 2 3 3 7 8 9 21 21

15 1 2 2 7 5 6 15 15

16 1(u) 1 2 4 4 6 10 10

17 1 3 3 6 8 8

18 1 1 2 6 5 6

19 1(u) 1 2 6 4 6

20 1 6 3 6

21 1 6 2 6

22 1 6 2 6

23 1 1 2 6

24 1(u) 1 1 6

25 1 6

26 1 6

27 1 6

28 1(u) 1

division property D12n

K,φ, where we only store vectors k ∈ K satisfying

minw(K) ≤
2n∑
i=1

w(ki) ≤ Limit.

Here, u means that the K has 2n distinct vectors whose Hamming weight is one,
and then, we simply say that the propagation reaches the unknown.

Even if there is a vector k ∈ K satisfying Limit <
∑2n
i=1 w(ki), we do not

evaluate the propagation from the k. Therefore, if the propagation from the
removed vector k immediately reaches the unknown, there is a gap between the
accurate propagation and the lazy propagation. However, if the lazy propagation
reaches the unknown in a specific number of rounds, the accurate propagation
at least reaches the unknown in the same number of rounds. Therefore, the lazy
propagation is not useful for attackers, but it guarantees the number of rounds
that the bit-based division property cannot find integral characteristics.

As a result, the lazy propagation shows that 16-, 19-, 24-, and 28-round
Simon48, 64, 96, and 128 probably do not have integral characteristics, respec-
tively. However, we can get (r + 1)-round integral characteristics from r-round
integral characteristics because round keys are XORed after the round function.
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Therefore, we expect that 17-, 20-, 25-, and 29-round Simon48, 64, 96, and 128
probably do not have integral characteristics, respectively.

5.3 Characteristics that Bit-Based Division Property cannot Find

We consider characteristics that the bit-based division property cannot find. Our
provable security supposes that all round keys are randomly and secretly chosen.
However, practical ciphers generate round keys from the secret key using the key
scheduling algorithm. Therefore, our provable security does not suppose integral
characteristics that exploit the key scheduling algorithm.

The bit-based division property using three subsets focuses on the parity⊕
x∈X πu(x), and divide the set of u into three subsets. Then, the propaga-

tion simply regard
⊕

x∈X πu1
(x)⊕πu2

(x) as unknown if either
⊕

x∈X πu1
(x) or⊕

x∈X πu2
(x) is unknown. For instance, if

⊕
x∈X πu1

(x)⊕ πu2
(x) is always 0 or

1 although
⊕

x∈X πu1
(x) and

⊕
x∈X πu2

(x) are unknown, the bit-based division
property cannot exploit such property.

6 Conclusions

The division property is a useful technique to find integral characteristics, but it
has not been applied to non-S-box-based ciphers effectively. This paper focused
on the bit-based division property. More precisely, this paper proposed a new
variant using three subsets. The conventional bit-based division property divides
the set of u into two subsets, but the new variant divides the set of u into three
subsets. The bit-based division property using three subsets can prove that the
experimental integral characteristic for Simon32 shown in [18] works for all
keys. Moreover, we focused on the propagation of the division property. Then,
we showed that the lazy propagation is useful to guarantee the security against
integral cryptanalyses using the division property. As a result, we showed that
17-, 20-, 25-, and 29-round Simon48, 64, 96, and 128 probably do not have
integral characteristics, respectively.
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References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer (2014)

2. Aumasson, J.P., Jovanovic, P., Neves, S.: Norx v2.0 (2015), submission to CAESAR
competition

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013), http://eprint.iacr.org/2013/404

http://eprint.iacr.org/2013/404


20 Yosuke Todo and Masakatu Morii

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: block ciphers for the internet of things. IACR Cryptology
ePrint Archive 2015, 585 (2015), http://eprint.iacr.org/2015/585

5. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer (2014)

6. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014 Part I. LNCS, vol. 8873, pp. 179–
199. Springer (2014)

7. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) FSE. LNCS, vol. 1267, pp. 149–165. Springer (1997)

8. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE.
LNCS, vol. 1008, pp. 196–211. Springer (1994)

9. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE. LNCS, vol. 2365, pp. 112–127. Springer (2002)

10. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015 Part I. vol. 9215, pp.
161–185. Springer (2015)

11. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography. The Springer International Series in Engineering and Computer
Science, vol. 276, pp. 227–233 (1994)

12. Matsui, M.: New structure of block ciphers with provable security against differ-
ential and linear cryptanalysis. In: Gollmann, D. (ed.) FSE. LNCS, vol. 1039, pp.
205–218. Springer (1996)

13. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J.
Cryptology 8(1), 27–37 (1995)

14. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. IACR Cryptology ePrint Archive 2015, 459 (2015), http://eprint.

iacr.org/2015/459
15. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation

and (related-key) differential characteristic search: Application to simon, present,
lblock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014 Part I. LNCS, vol. 8873, pp. 158–178. Springer (2014)

16. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO Part I. LNCS, vol. 9215, pp. 413–432. Springer (2015a)

17. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT Part I. LNCS, vol. 9056, pp. 287–314. Springer
(2015b)

18. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: INDOCRYPT. LNCS, vol. 8885, pp.
143–160. Springer (2014)

19. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of
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