
Automatic Search for Key-Bridging Technique:
Applications to LBlock and TWINE

Li Lin, Wenling Wu, and Yafei Zheng

1 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing, China

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
3 Graduate University of Chinese Academy of Sciences, Beijing 100190, China

{linli, wwl, zhengyafei}@tca.iscas.ac.cn

Abstract. Key schedules in block ciphers are often highly simplified,
which causes weakness that can be exploited in many attacks. At ASI-
ACRYPT 2011, Dunkelman et al. proposed a technique using the weak-
ness in the key schedule of AES, called key-bridging technique, to im-
prove the overall complexity. The advantage of key-bridging technique
is that it allows the adversary to deduce some sub-key bits from some
other sub-key bits, even though they are separated by many key mixing
steps. Although the relations of successive rounds may be easy to see, the
relations of two rounds separated by some mixing steps are very hard
to find. In this paper, we describe a versatile and powerful algorithm
for searching key-bridging technique on word-oriented and bit-oriented
block ciphers. To demonstrate the usefulness of our approach, we apply
our tool to the impossible differential and multidimensional zero corre-
lation linear attacks on 23-round LBlock, 23-round TWINE-80 and 25-
round TWINE-128. To the best of our knowledge, these results are the
currently best results on LBlock and TWINE in the single-key setting.

Keywords: Block Ciphers, Key-Bridging Technique, Automatic Search,
Impossible Differential Cryptanalysis, Zero-Correlation Linear Crypt-
analysis, LBlock, TWINE.

1 Introduction

A key schedule is an algorithm that expands a relatively short master key to
a relatively large expanded key for later use in encryption and decryption al-
gorithms. The key schedules in block ciphers are often highly simplified, which
causes weakness that can be exploited in many attacks, especially for lightweight
block ciphers. In these lightweight block ciphers, the security margin that con-
ventional block ciphers are equipped with is reduced as much as possible in order
to optimize the software and hardware efficiency. One obvious sacrifice is that the
key schedules are highly simplified for saving memory. Some key schedules have
round-by-round iterations with low diffusion [5,27,23]. Some key schedules do
simple permutations or linear operations with low diffusion [1,15]. Some have no
key schedules, and just use master keys directly in each round [13,17]. These key

2

schedules are succinct but responsible for many attacks, especially related-key
attacks [4,18] and meet-in-the-middle attacks [2,6].

AES [9] is the most significant standard for block ciphers, so its security is
of paramount importance. However, the key schedule of AES has clear weakness
that directly assists the execution of some effective attacks. Especially in recent
years, meet-in-the-middle cryptanalysis with differential enumeration technique
[12] has shown to be a very powerful form of cryptanalysis against 7-round
AES-128 [10], 9-round AES-192 [19] and 10-round AES-256 [20], which are the
best single-key attacks on all versions of AES so far. A technique using the
weakness of the key schedule on AES, called key-bridging technique, is used
in these attacks to improve the overall complexity. Key-bridging technique is
proposed by Dunkelman et al. at ASIACRYPT 2011 [12]. The advantage of key-
bridging technique is that it allows the adversary to deduce some sub-key bytes
from some other sub-key bytes, even though they are separated by many key
mixing steps. Although the relations of successive rounds may be easy to see,
the relations of two rounds separated by some mixing steps are very hard to find.
The main novelty in this observation is that it exploits the weak key schedule of
AES-192 in order to provide a surprisingly long “bridge” for two sub-keys which
are separated by 8 key mixing steps. The key-bridging technique considerations
reduce the time complexity in the online phase of the attack on 8-round AES-192
by a factor of 232 and 8-round AES-256 by a factor of 28. At FSE 2014, Li et
al. introduce a new application of key-bridging technique called key-dependent
sieve technique, which filters the wrong states based on the key relations, to
further reduce the complexity in the precomputation phase [19]. Besides, they
introduce another application of key-bridging technique to split the whole attack
into some weak-key attacks according to the relations between the sub-keys in
the online phase and the precomputation phase.

Besides AES, the key-bridging technique helps improve the attack complexi-
ties of other block ciphers. For example, at FSE 2015, Biryukov et al. apply the
key-bridging technique to 25-round TWINE-128, and get a meet-in-the-middle
attack and an impossible differential attack [2]. At ACISP 2014, Wang et al. give
multidimensional zero-correlation linear attacks on LBlock and TWINE. In the
online phase of their attacks, the key-bridging technique is used to improve the
attack complexity [24].
Our contribution. In this paper, we describe versatile and powerful algorithms
for searching key-bridging technique on word-oriented and bit-oriented block
ciphers. Our tool tries to find key-bridges automatically by dealing with a system
of equations. It takes as input a system of equations that describes the key
schedule and a set K0 of some key variables that we want to build key-bridges
among. It is made up of two phases: knowledge-propagation phase and relation-
derivation phase. In the knowledge-propagation phase, we can derive a set K
that K0 can propagate to. In the relation-derivation phase, the relations of the
variables in K0 can be known from K.

To demonstrate the usefulness of our approach, we apply our tool to LBlock
and TWINE. We automatize the search for the best impossible differential at-
tacks by combining our key-bridging tool with the tool of Wu et al. [26]. Using

3

Wu’s tool, we can get all the impossible differential distinguishers with certain
rounds [22]. Using our key-bridging tool, we can get all the key-bridges to reduce
the complexity in the key-sieving phase. With these two tools, we get a 23-round
impossible differential attack on LBlock with time complexity of 274.5 23-round
LBlock encryptions, memory complexity of 274.3 bytes and data complexity of
259.5 chosen plaintexts. For TWINE-128, we get in total twelve 25-round impos-
sible differential attacks with the same complexity as Biryukov et al.’s attack in
[2].

For multidimensional zero-correlation linear cryptanalysis, we use the same
attack model Wang et al. proposed in [24] and get more key-bridges to improve
the overall complexity with our key-bridging tool. For the 23-round attack on
TWINE-80, we find that the key-bridges Wang et al. used in their attack do not
exist. This will make the time complexity of their attack greater than exhaus-
tively search. We use another zero-correlation linear distinguisher to fix this error
and get an attack on 23-round TWINE-80 with time complexity of 273 23-round
TWINE-80 encryptions, memory complexity of 260 bytes and data complexity
of 262.1 known plaintexts. For the 25-round attack on TWINE-128, we first get
some more key-bridges to improve the time complexity of Wang’s work. Then,
we use another distinguisher with more key-bridges in the first two steps of the
attack, and get an attack with time complexity of 2119 25-round TWINE-128
encryptions, memory complexity of 260 bytes and data complexity of 262.1 known
plaintexts. For the 23-round multidimensional zero-correlation linear attack on
LBlock, we find a distinguisher with more key-bridges than Wang et al. in [26],
and get an attack with time complexity of 272 23-round LBlock encryptions,
memory complexity of 260 bytes and data complexity of 262.1 known plaintexts.
For 25-round TWINE-128, we also find some meet-in-the-middle attacks with
the same complexity as Biryukov et al.’s attack in [2], even with one attack
which starts with two inactive nibbles at the beginning of distinguisher. This
distinguisher is useful when we want to get less false positive. To the best of our
knowledge, these results are the currently best results on LBlock and TWINE.

We present here a summary of our attack results on LBlock and TWINE,
and compare them to the best attacks known for them. This summary is given in
Table 1. The source code of some of these attacks is available at http://1drv.
ms/1kHlhxt.
Organization of this paper. The rest of this paper is organized as follows.
Section 2 presents the input of our tool and the previous works on key-bridging
technique. Section 3 gives our automatic search tool for key-bridging technique.
Section 4 (resp. section 5) applies our tool to the impossible differential and mul-
tidimensional zero-correlation linear cryptanalysis on LBlock (resp. TWINE).
Finally, section 6 concludes this paper.

2 Preliminaries

In this section, we introduce the definitions and related works of key-bridging
technique. First of all, let’s give some notations used throughout this paper.

http://1drv.ms/1kHlhxt
http://1drv.ms/1kHlhxt

4

Table 1. Summary of the best attacks on LBlock and TWINE-80/128.

Cipher Attack type Rounds Data Memory (Bytes) Time (Enc) Source
LBlock Impossible Diff. 23 259 CPs 274 275.36 [7]

Impossible Diff. 23 259.5 CPs 274.3 274.5 Sec.4.2
Multidim. ZC 23 262.1 KPs 260 276 [24]
Multidim. ZC 23 262.1 KPs 260 272 Sec. 4.3

TWINE-80 Impossible Diff. 23 257.85 CPs 284.06 279.09 [28]
Multidim. ZC 23 262.1 KPs 260 273 Sec. 5.2

TWINE-128 Impossible Diff.F 25 259.1 CPs 278.1 2124.5 [2]
MITM F 25 248 CPs 2109 2124.7 [2]

Multidim. ZC 25 262.1 KPs 260 2122.12 [24]
Multidim. ZC 25 262.1 KPs 260 2119 Sec. 5.2

KPs: Known-Plaintexts. CPs: Chosen-Plaintexts.
F: Find the other attacks with the same complexity in Sec. 5.3.

2.1 Notations

In this paper, WKi denotes the ith round key register,WKj
i denotes the jth word

of WKi, WKj0−j1
i denotes the jth0 word to jth1 word of WKi, WKi[k] denotes

the kth bit of WKi, WKj
i [k] denotes the kth bit of WKj

i and WKi≪ b denotes
b-bit left cyclic shift of WKi.

2.2 The Key Schedule Functions

The input of our tool is a system of equations that describes the key schedule and
the key variables which we want to find relations among. Since our tool is useful
not only for the word-oriented key schedules (e.g., AES), but also for the bit-
oriented key schedules (e.g., PRESENT), we describe the systems of equations
for these two kinds of key schedules here. We take the key schedules of AES-192
and PRESENT-80 as examples.

The key schedule of AES-192 takes the 192-bit master key WK0 and extends
it into 9 key registers WK0,WK1, · · · ,WK8 of 192-bit each using a key schedule
algorithm given by the following equations [9]:

KSi :


WKj

i + WKj−4
i + WKj

i−1 = 0, j = 4, · · · , 23,
WK0

i + WK0
i−1 + S(WK21

i−1) + RCONi = 0,
WK1

i + WK1
i−1 + S(WK22

i−1) = 0,
WK2

i + WK2
i−1 + S(WK23

i−1) = 0,
WK3

i + WK3
i−1 + S(WK20

i−1) = 0,

where S represents the S-box of the SubBytes transformation and “+” represents
xor. These 9 key registers are used to get 13 sub-keys RK−1, RK0, · · · , RK11 of
128-bit each (only the first 128-bit of WK8 is used to get RK11).

In some cases, we are interested in interchanging the order of the MixColumns
and AddRoundKey operations. As these operations are linear, they can be inter-
changed by first xoring the data with an equivalent key ui and then applying
the MixColumns operation.

5

The key schedule of PRESENT-80 takes the 80-bit master key WK0 and
extends it into 32 key registers WK0,WK1, · · · ,WK31 of 80 bits each using a
key schedule algorithm given by the following equations [5]:

KSi :


WKi[0− 3] + S(WKi−1[61− 64]) = 0,
WKi[60− 64] + WKi−1[41− 45] + [i− 1] = 0,
WKi[j] + WKi−1[(j + 19)mod 80] = 0, j = 4, · · · , 40, 46, · · · , 79

At round i, the 64-bit round key RKi = RKi[0]RKi[1] · · ·RKi[63] consists
of the 64 leftmost bits of the current content of register WKi.

The key schedules of other bit-oriented and word-oriented block ciphers can
be treated as before. To simplify the statement, we ignore the round constants
in this paper since they are known to us.

2.3 Key-Bridging Technique on AES

In [12], Dunkelman et al. proposed the key bridging technique on AES-192. The
advantage of key-bridging technique is that it allows the adversary to deduce
some sub-key bytes from some other sub-key bytes, even though they are sep-
arated by many key mixing steps. Although the relations of successive rounds
may be easy to see, the relations of two rounds separated by some mixing steps
are very hard to find. The main novelty in this observation is that it exploits the
weak key schedule of AES-192 in order to provide a surprisingly long “bridge”
for two sub-keys which are separated by 8 key mixing steps (applied in reverse
direction). This observation is shown in Observation 1.

Observation 1 (Key-Bridging Technique on AES, [12]) By the key sched-
ule of AES-192, knowledge of columns 0, 1, 3 of the sub-key RK7 allows to deduce
column 3 of the whitening key RK−1 (which is actually column 3 of the master
key).

Given RK0−3
7 and RK4−7

7 , it is possible to compute RK12−15
5 ; given RK4−7

7

and RK12−15
7 , it is possible to compute RK12−15

4 . From these two values, it is
possible to compute RK12−15

−1 . We refer to [11] the detailed proof and reasoning.
The key-bridging technique considerations reduce the time complexity of the

online phase of the attacks on 8-round AES-192 by a factor of 232 and 8-round
AES-256 by a factor of 28 [11], and also improve the SQUARE attack and
related-key impossible differential attack on AES-192.

At EUROCRYPT 2013, Derbez et al. gave improved attacks on 7-round AES-
128, 8-round AES-192 and 9-round AES-256 [10]. In the online phase of their
attack on 8-round AES-192, the use of the key-bridging technique saves a large
amount of time.

At FSE 2014, Li et al. introduced a new application of key-bridging technique
called key-dependent sieve technique, which filters the wrong states based
on the key relations, to further reduce the complexity in the precomputation
phase [19]. Besides, they found that the whole attack can be split up into some
weak-key attacks according to the relations between the sub-keys in the online

6

phase and the precomputation phase. These can be seen as other applications
of key-bridging technique.

In [20], Li et al. gave an attack on 10-round AES-256. In their works, they use
key-bridging technique both in the precomputation phase and the online phase.

2.4 Key-Bridging Technique on Other Block Ciphers

At FSE 2015, Biryukov et al. applied the key-bridging technique to 25-round
TWINE-128, and got a meet-in-the-middle attack and an impossible differential
attack [2].

In the meet-in-the-middle attack, 58 state nibbles are needed to perform
the online phase. Hopefully, the key schedule equations reduce the amount of
possible values from 24×58 = 2232 to 2124. Indeed, knowing 23 out of 24 nibbles of
one sub-key leads to the knowledge of enough key material to partially encrypt
and decrypt the plaintext and the ciphertext in order to obtain the value of the
required state variables. This can be seen as 37 key-bridges among the 68 relevant
sub-key nibbles. The same technique is applied to the impossible differential
attack.

At ACISP 2014, Wang et al. gave multidimensional zero-correlation linear
attacks on LBlock and TWINE. In the online phase of their attacks, the key-
bridging technique is used to reduce the overall complexity [24].

Most attacks on block ciphers can be split into three consecutive parts of r1,
r2 and r3 rounds, r = r1 + r2 + r3, such that a particular set of messages may
verify a certain property in the middle r2 rounds by guessing some key-bits in
the first r1 and last r3 rounds. These key-bits may have some relations by the key
schedule. If we can get these relations automatically, it can not only give better
attacked-rounds and complexity, but also a better understanding of the design
of block ciphers. Therefore, we give our automatic search tool for key-bridging
technique in the next section.

3 An Automatic Search Tool for Key-Bridging Technique

In this section, we introduce our automatic search tool for key-bridging technique
on word-oriented and bit-oriented block ciphers.

3.1 Outline of the Tool

Let us denote by V(X) the vector space spanned by 1, x, S(x) for all x ∈ X, for
any set of variables X. If we denote by X the set of all internal key variables,
then the key schedule equations can be seen as a subspace of V(X). We introduce
the notation K0 to denote the set of original variables that we want to build key-
bridges among. We also introduce K to denote the set of variables that K0 can
propagate to. And |X| means the number of variables in a set X.

Our goal is to find relations among a set of variables. The difficulty in finding
such relations is how to get more information from K0 and how to use this

7

information to retrieve the relations. In this section, we present a tool that
finds such attacks automatically. It takes as input a system of equations E ⊆
V(X) that describes the key schedule and a set of variables K0 that we want to
find relations among. This tool consists of two phases: knowledge-propagation
phase and relation-derivation phase. In the knowledge-propagation phase, we
can derive a set K that K0 can propagate to. In the relation-derivation phase,
the relations of the variables in K0 can be known from K.

In the knowledge-propagation phase, if we substitute the values of K into
the original equations E, we would indeed get a system of equations with less
variables. In fact, this reduced system is the subspace (E + V(K))/V(K) of the
quotient space V(X)/V(K): starting from an equation f ∈ E, its equivalence class
[f] in the quotient contains a representative where all the variables in K have
disappeared. Let’s denote by L a linear combination of some variables in V(K).
The variable x can be deduced from K if there exists an L such that x+L ∈ E,
S(x) + L ∈ E or the linear combination of x, S(x) and L belongs to E, and we
will write x ∈ PROPAGATE(K) when it is the case. It follows that in any solution
of the equations E, the value of x (resp. S(x)) is the value of L . Therefore, it
just has to evaluate L to uniquely determine the value of x.

In the relation-derivation phase, the subspace E ∩ V(K) of V(K) should be
derived. Then the linear relations among K0 can be known by dealing with the
quotient space (E ∩ V(K))/V(K0).

3.2 A Tool for Word-Oriented Ciphers

Knowledge-Propagation Phase.4 Let’s denote by M the coefficient matrix
made by the key schedule equations E. Each row is a function, and each column
is a variable. The order of variables is (X − K,K, c), where X − K means the
supplementary set of K in X. We ignore the constant column in the matrix to
better describe and express our tool in the rest of this paper. We can also view
the constant column as a special column vector which always exists in the last
of the matrix.

Given K0, we may propagate knowledge and derive the values of new vari-
ables, and this yields a new set K. But it may turn out that new variables may
again be derived from K. The problem boils down to getting new variables and
using these variables to get more information.

Gauss-Jordan Elimination (GJE) is introduced to propagate knowledge [29,25].
GJE is an algorithm for solving systems of linear equations. It is usually under-
stood as a sequence of elementary row operations performed on the associated
matrix of coefficients. This method can also be used to find the rank of a matrix,
and to convert a matrix into reduced row echelon form. GJE(M) means that
we convert a matrix M into reduced row echelon form by Gauss-Jordan Elimi-
nation. GJEn(M) means that we only convert the first n columns into reduced
row echelon form by the row operations of the whole M.

4 A similar idea of this phase was proposed in [16] by Khovratovich et al..

8

Since the equations E can be completely linear (e.g., key schedule of Simon) or
partial-nonlinear (e.g., key schedule of AES), some variables appear both linearly
and under the S-box. The following three situations can be used to propagate
knowledge:

1. If either x or S(x) belongs to K, then the other one can be deduced.
2. If there exists a linear combination L of V(K) such that for one variable
x /∈ K , x+ L ∈ E , then x can be deduced from K.

3. If there is a linear combination L of V(K) such that there is a linear com-
bination of x (x /∈ K), S(x) (S(x) /∈ K) and L belonging to E, then x can
be deduced from K.

Gauss-Jordan Elimination is used to deal with situation 2 and situation 3
as follows. The proof of the following two lemmas will be presented in the full
version of this paper.

Lemma 1. Situation 2 holds if and only if there is only one non-zero variable
in the first |X−K| columns of one row in GJE|X−K|(M).

Lemma 2. Situation 3 holds if and only if one of the following two cases holds
in GJE|X−K|(M) (for x and S(x)):

(i) The coefficients of x and S(x) are both pivot elements, and the corresponding
rows are (0, · · · , 0︸ ︷︷ ︸

t1

, ex, et1+1, · · · , en−1) and (0, · · · , 0︸ ︷︷ ︸
t2

, e′S(x), e
′
t2+1, · · · , e′n−1)

(t1 < t2), where et1+1 = e′t1+1 = · · · = et2−1 = e′t2−1 = 0, ei = c · e′i for
i = t2 + 1, · · · , n− |K| − 1.

(ii) One of the coefficients of x and S(x) is pivot element (e.g., x) and the corre-
sponding row is (0, · · · , 0︸ ︷︷ ︸

t1

, ex, 0, · · · , 0︸ ︷︷ ︸
t2

, eS(x), 0, · · · , 0︸ ︷︷ ︸
n−2−t1−t2−|K|

, en−|K|, · · · , en−1).

When a new variable x (resp. S(x)) becomes a member of K, we have to
move the column that x (resp. S(x)) represents in M to the last few columns to
make the order of variables (X−K,K, c) unchanged. If one of these coefficients is
pivot element, then moving it may leave the matrix not in reduced row echelon
form. This can be fixed through simple column permutations in some cases. In
some other cases, a new column has to be recomputed. The following lemma
will make sure that the column operations don’t change the property of linear
relations.

Lemma 3. Column operations keep the linear relations we get from situation
2 and 3 unchanged, i.e., these relations can be recovered from the last |K| + 1
columns of GJE|X−K|(M).

Proof. If situation 2 holds, then there is one new x ∈ PROPAGATE(K). After
moving the corresponding column and getting a new K, there exists a vector α
such that K · αT = c and the component of α for x is non-zero (here we treat K
as a vector and α is not unique).

9

After GJE|X−K|, the matrix can be represented as block matrix

|X−K|︷︸︸︷ |K|︷︸︸︷()
A0 A1

0 A2

. Since K · αT has no variables in X−K, the row represents this equation must
exist in A2. If not, there must be a pivot element in X−K.

Situation 3 can be got for the same reason.
�

The pseudo-code of the knowledge-propagation phase is shown in Algorithm
1. The inputs are a set of all internal key variables, a set of original variables
that we want to build key-bridges among and a coefficient matrix made by the
key schedule equations. The algorithm returns a set of variables that K0 can

propagate to and a block matrix

|X−K|︷︸︸︷ |K|︷︸︸︷()
A0 A1

0 A2

in order to recover all the relations

in K0.
From Lemma 1 and Lemma 2, we can conclude that K is the maximum set

K0 can propagate to. From Lemma 3, all the relations can be recovered from M.

Relation-Derivation Phase. The input of this phase is the output of Al-
gorithm 1. First of all, we should derive the linear relations among K. Since

the output matrix M of Algorithm 1 has the form

|X−K|︷︸︸︷ |K|︷︸︸︷()
A0 A1

0 A2

, due to the

proof of Lemma 3, all the linear relations among |K| exist in A2. Meanwhile,
Rank(M) = Rank(A0) +Rank(A2). We should test the existence of linear rela-
tions among K by testing whether Rank(M) equals Rank(A0). If Rank(A2) 6= 0,
change the order of columns in A2 to make sure that the order of variables is
(K−K0,K0, c).

Denote by EK the subspace of K spanned by the row vectors of A2. Indeed,
EK is the subspace E ∩ V(K) of V(K). By Gauss-Jordan Elimination, the linear
relations among K0 can be known by block matrix. However, more information
can be known by S-box operations.

If there exist an x ∈ K − K0 and a linear combination L ′ ∈ V(K0) such
that x + L ′ ∈ EK, then one can get S(x) = S(L ′). Since L ′ ∈ V(K0), S(L ′)
can be also deduced by variables in K0. Add S(L ′) to K and K0 (also add
a new column corresponding to S(L ′)), and add a new row corresponding to
S(x) + S(L ′) to A2 at the same time (make sure the order of variables is still
(K−K0,K0, c)). The reason to do this is that if there is a linear combination of
L ′′ ∈ V(K0) such that S(x) + L ′′ ∈ EK, then S(L ′) and L ′′ can form a linear
relation we want. Besides, if there is a linear combination of L ′′ ∈ V(K0) such
that S(x) + ey · y+ L ′′ ∈ EK (y /∈ K0), then ey · y+S(L ′) + L ′′ ∈ EK. So y can

10

Algorithm 1 Pseudo-Code for Knowledge-Propagation Phase
1: function PROPAGATE(X, K, M)
2: Flag ← true
3: while Flag do
4: Flag ← false
5: M← GJE|X−K|(M)

6: for all rows r in M do
7: if only one non-zero variable in the first |X− K| columns then
8: Flag ← true . situation 2
9: if S(x) ∈ X then

10: Change columns for x and S(x) in M
11: K← K ∪ {x, S(x)}
12: go to line 3
13: else
14: Change columns for x in M
15: K← K ∪ {x}
16: go to line 3
17: end if
18: end if
19: if case (ii) of Lemma 2 happens in r then
20: Flag ← true . situation 3
21: Change columns for x and S(x) in M
22: K← K ∪ {x, S(x)}
23: go to line 3
24: end if
25: end for
26: for all pairs (x, S(x)) in X do
27: if case (i) of Lemma 2 happens in M then
28: Flag ← true . situation 3
29: Change columns for x and S(x) in M
30: K← K ∪ {x, S(x)}
31: go to line 3
32: end if
33: end for
34: end while
35: return (K, M)
36: end function

be used to gain more information just as x. This can be also applied to S(x).
This step is called new-variable-adding.

After the step above, a matrix as

|K−K0|︷︸︸︷ |K0|︷︸︸︷()
B0 B1

0 B2

can be known, Rank(B2)

linear independent relations among K0 can be recovered from B2.
The pseudo-code of the relation-derivation phase is shown in Algorithm 2.

The inputs are the outputs of Algorithm 1. The function returns a set of relations
among the variables of K0.

3.3 A Tool for Bit-Oriented Ciphers

The key schedules of some block ciphers have operations on word-level (e.g.,
S-box) and bit-level (e.g., cyclic shift), such as PRESENT, LBlock and so on.
This tool is slightly different from the tool for word-oriented ciphers since it has
operations both on words and bits. It also consists of two phases: knowledge-
propagation phase and relation-derivation phase.

11

Algorithm 2 Pseudo-Code for Relation-Derivation Phase
1: function Derivation(K0, K, A2)
2: Flag ← true
3: Change the order of columns in A2

4: while Flag do
5: Flag ← false
6: A2 ← GJE|K−K0|(A2)

7: for all rows r in A2 do . new-variable-adding
8: if only one non-zero variable x in the first |K− K0| columns then
9: Flag ← true

10: if x is input of S-box then
11: Let S(L ′) be a new variables
12: K← K ∪ {S(L ′)} and K0 ← K0 ∪ {S(L)}
13: Add a new column for S(L ′) and a new row for S(x) + S(L ,)
14: go to line 4
15: else
16: Let S−1(L) be a new variables

17: K← K ∪ {S−1(L ′)} and K0 ← K0 ∪ {S−1(L ′)}
18: Add a new column for S−1(L ′) and a new row for S−1(x) + S−1(L ′)
19: go to line 4
20: end if
21: end if
22: end for
23: end while
24: RelationSet← ∅
25: A2 ← GJE(A2)
26: for all row r in B2 do
27: Derive relation from r
28: Add this relation to RelationSet
29: end for
30: return RelationSet
31: end function

In the knowledge-propagation phase, since S-box permutation treats b bits as
a union, situations 1 and 3 of section 3.2 are no longer suitable for bit-oriented
ciphers. The following lemma is used to deal with this situation.

Lemma 4. Let S[wI0 · · ·wIb−1] = [wO0 · · ·wOb−1], where wIi and wOi are 1-bit vari-
ables, respectively. If the values in any b out of 2b input/output bits of one S-box
are known, then the values in the other b bits are uniquely determined, and can
be computed efficiently.

This situation can be dealt with by Gauss-Jordan Elimination as follows.

Lemma 5. Let S be a set of input and output bit-variables of one S-box. If the
order of variables in M is (X−K− S,S,K) and GJE(M) can be represented as:

|X−K−S|︷︸︸︷ |S|︷︸︸︷ |K|︷︸︸︷()
D0 D1 D2

0 D3 D4

then the bit-variables of S can be uniformly determined if and only if Rank(D3) ≥
b− nk, where nk is the number of bits in S which are already in K.

It is easy to see that since S is the set of input and output bit-variables of
one S-box, the entropy of these bits is b. Rank(D3) = b − nk means b − nk

12

linearly independent relations can be built among variables in S and K, and
these relations are enough to reduce the entropy to 0.

This property is used in Algorithm 1 to get more information from S-box
instead of situation 1 and 3 of section 3.2

In the relation-derivation phase, suppose the order of variables in K is (K−
K0 − S,S,K0) and GJE(A2) can be represented as:

|K−K0−S|︷︸︸︷ |S|︷︸︸︷ |K0|︷︸︸︷()
E0 E1 E2

0 E3 E4

If Rank(E3) ≥ b−nk, since b−nk linearly independent relations are enough
to reduce the entropy to 0, 2b − nk − Rank(E3) new functions with the form
xi + L ′ can be added to A2, where xi ∈ S is not a pivot element of E3 and L ′

is a variable denoting how xi can be known from S and K0. Add L ′ to K0 and
K at the same time. This step is used to replace the new-variable-adding step of
Algorithm 2.

If Rank(E3) > b−nk, since b−nk linearly independent relations are enough
to reduce the entropy to 0, the other Rank(E3)− (b− nk) relations can be used
to filter the variables in K0. Use the variables in K0 to deduce these relations,
only 2b−Rank(E3) of them can satisfy the S-box table. For example, if we can get
b+ 1 S-box input/output bit-variables from K0, we can get 1 bit relation among
the variables in K0, and it is obliviously one key-bridge we want. This property
is used to get key-bridges in Algorithm 2.

We apply our automatic search tool to the attacks on LBlock and TWINE
in the following sections.

4 Applications to LBlock

4.1 Description of LBlock

LBlock is a lightweight 64-bit block cipher designed by Wu et al. in 2011 [27]
and is based on a variant of Feistel Network. It supports key size of 80 bits and
the total number of iterations is 32. The Feistel function of LBlock is made up
of a key addition AK, an S-box layer S made up of 8 4-bit S-boxes and a nibble
permutation P . LBlock’s function design can be visualized in Fig. 1. The key
schedule of LBlock is rather simple. The 80-bit master key WK0 is stored in a
key register and represented as WK0 = WK0[0] · · ·WK0[79]. At round i, the
leftmost 32-bit of current content of register is output as round key. The key
schedule of round i can be shown as follows (i = 1, · · · 31):

WKi ←WKi−1 ≪ 29,

WKi[0− 3]← S9(WKi[0− 3]),

WKi[4− 7]← S8(WKi[4− 7]),

WKi[29− 33]←WKi[29− 33]⊕ [i]2.

4.2 Impossible Differential Cryptanalysis on 23-round LBlock

In INDOCRYPT 2012, Wu et al. presented an automatic search tool to search for
the best impossible differential distinguishers [26]. In CRYPTO 2015, Sun et al.

13

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

۹ܑ܅

 ܑ܆

൅૚ܑ܆

 ۹ۯ ܁

 ۾

⋘ ૡ

Fig. 1. Round function of LBlock block cipher

proved that this tool could find all impossible differentials of a cipher that are
independent of the choices of the S-boxes [22]. In this paper, we automatize the
search of the best impossible differential attacks by combining Wu’s tool with our
tool. Using Wu’s tool, we can get all distinguishers with certain rounds. Using
our key-bridging tool, we can get all the key-bridges to reduce the complexity in
key-sieving phase.

Recently, Boura et al. [8] proposed a generic version of impossible differential
attacks with the aim of simplifying and helping the construction and verification
of this type of cryptanalysis. In particular, they provided a formula to compute
the complexity of such an attack according to its parameters. To understand
the formula, we first briefly review how an impossible differential attack is con-
structed. It starts by splitting the cipher into three parts: E = E3 ◦E2 ◦E1 and
finding an impossible differential (∆X 9 ∆Y) through E2. Then ∆X (resp. ∆Y)
is propagated through E−1

1 (resp. E3) with probability 1 to obtain ∆in (resp.
∆out). We denote by cin and cout the log2 of the probability of the transitions
∆in → ∆X and ∆out → ∆Y , respectively. Finally we denote by kin and kout the
key materials involved in those transitions. All in all, the attack consists in dis-
carding the keys k for which at least one pair follows the characteristic through
E1 and E3 and in exhausting the remaining ones. The complexity of doing so is
as follows:

– data: CNα
– memory: Nα
– time: CNα + (1 + 2|kin∪kout|−cin−cout)NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα < (1 − 2−α), CNα is the number
of chosen plaintexts required to generate Nα pairs satisfying (∆in, ∆out), |k| is
the key size and CE′ is the ratio of the cost of partial encryption to the full
encryption.

We use this framework to mount an impossible differential attack on 23-
round LBlock. First we find an impossible differential distinguisher through 14
rounds of LBlock. The input (resp. output) inactive nibble of this distinguisher
is at position 12 (resp. 5). It is extended by 4 rounds at the beginning and by
5 rounds at the end in order to attack 23 rounds of the cipher. It can be seen
in Fig. 2 that the difference in the plaintexts has to be zero in 8 nibbles such
that cin + cout = 28 + 44 = 72. The key material kin ∪ kout is composed of

14

36 round-key nibbles which can assume 273 values thanks to our key-bridging
tool. Specifically, we can find 71 linear independent key-bridges among these 36
round-key nibbles. We show parts of the key-bridges we found in the full version
of this paper.

۹૙܅

P

 ૚܆

 ۹ۯ ܁

 ۾

⋘ ૡ

۹૚܅

 ૛܆

 ۹ۯ ܁

 ۾

⋘ ૡ

۹૛܅

 ૜܆

 ۹ۯ ܁

 ۾

⋘ ૡ

۹૜܅

 ૝܆

 ۹ۯ ܁

 ۾

⋘ ૡ

۹૚ૡ܅

૚ૡ܆

૚ૢ܆

۹ۯ ܁

 ۾

⋘ ૡ

۹૚ૢ܅

૛૙܆

۹ۯ ܁

 ۾

⋘ ૡ

۹૛૙܅

૛૚܆

۹ۯ ܁

 ۾

⋘ ૡ

۹૛૚܅

૛૛܆

۹ۯ ܁

 ۾

⋘ ૡ

۹૛૛܅

۱

۹ۯ ܁

 ۾

⋘ ૡ

Inactive nibbles. Active nibbles. Key nibbles we should guess. Inactive nibbles that we should know their values.

Fig. 2. Impossible differential attack on 23 rounds LBlock

As a consequence, and according to the above formula, the memory complex-
ity of our attack is α · 271.5, the time complexity is α · 273 · CE′ + 280−α. As we
estimate the ratio CE′ to 36/184 ≈ 2−2.4, the value of α minimizing the overall
complexity is 6.8. So the memory complexity of our attack is 274.3 bytes, the
time complexity is 274.5 23-round LBlock encryptions and the data complexity
is 259.5 chosen plaintexts.

Besides this attack, we can get another 2 impossible differential attacks on
LBlock with the same complexity, i.e., ((12, 0)5, 14, 4), ((12, 5)5, 14, 4), where
((la, lb)Rb, Rd, Re) means that the position of input (resp. output) inactive nibble
of Rd-round distinguisher is la (resp. lb), and the number of rounds before (resp.
after) the distinguisher is Rb (resp. Re).

4.3 Zero-Correlation Cryptanalysis on 23-round LBlock

At ACISP 2014, Wang et al. gave a multidimensional zero-correlation linear
attack on 23-round LBlock [24]. The main technique they used to improve the
overall complexity is the partial compression technique, i.e., they reduce the

15

complexity of online phase by guessing each sub-key nibble one after another.
Since the time complexity of this attack is still greater than exhaustive search,
they use 13 key-bridges to make this attack available.

According to their paper, for 14-round LBlock, if the input mask a of the
first round locates at the left branch and the output mask b of the last round
locates in the right branch, then the correlation of the linear approximation is
zero, where a, b ∈ F 4

2 , a 6= 0 and b 6= 0. Indeed, we find in total 21 key-bridges
to reduce the overall complexity.

Combining this observation with our key-bridging tool, we find that ((1, 12)4,
14, 5) can get a better overall complexity. This is for the reason that we find 21
key-bridges thanks to our key-bridging tool. Since the major complexity of this
attack comes from Step 4.1 and 4.2 of their paper, we explain the key-bridges of
these 2 steps in detail.

The nibble X1
4 corresponding to the input non-zero linear mask is affected

by 32 bits of plaintext X0 and 28 bits of round keys and the expression can be
shown as:

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕WK0
0)⊕WK2

1)⊕ S(X15
0 ⊕ S(X7

0 ⊕WK7
0)⊕

S(X4
0 ⊕ S(X10

0 ⊕ S(X1
0 ⊕WK1

0)⊕WK0
1)⊕WK2

2)⊕WK3
3)

Similarly, the nibble X12
18 corresponding to the output non-zero linear mask

is affected by 48 bits of plaintext X0 and 48 bits of round keys:

X12
18 = X6

23 ⊕ S(X12
23 ⊕WK4

22)⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕WK5

22)⊕WK6
21)⊕WK1

20)

⊕S(X12
23 ⊕ S(X3

23 ⊕ S(X10
23 ⊕WK2

22)⊕WK5
21)⊕ S(X0

23 ⊕ S(X9
23 ⊕WK1

22)⊕
S(X14

23 ⊕ S(X2
23 ⊕ S(X8

23 ⊕WK0
22)⊕WK4

21)⊕WK0
20)⊕WK4

19)⊕WK0
18)

Step 4.1. The guessed-keys of Step 4.1 are WK1
0 , WK7

0 , WK0
1 [3], WK0

0 and
WK1

22. Since WK7
0 ⇒ WK0

1 [0 − 2], WK0
1 can be known. Meanwhile, since

WK1
22, WK21[33], WK21[34], WK21[35] and WK21[36] are inputs/outpus bits

of one S-box, WK21[33], WK21[34], WK21[35] and WK21[36] can be known.
Since WK21[34] ⇒ WK11[4], WK21[35] ⇒ WK11[5], WK21[36] ⇒ WK11[6],
WK1

0 [0]⇒WK10[34], WK1
0 [1]⇒WK10[35], WK1

0 [2]⇒WK10[36], WK0
0 [3]⇒

WK10[33], and WK11[4], WK11[5], WK11[6], WK10[34], WK10[35], WK10[36],
WK10[33] are input/output bits of one S-box, we can get 3-bit information to
restrain the values of WK0

0 [3], WK1
0 [0 − 2] and WK1

22. This is easily done by
making a small lookup table.

As the following four equations:

X5
1 = X15

0 ⊕ S(X7
0 ⊕WK7

0),

X2
2 = X4

0 ⊕ S(X10
0 ⊕ S(X1

0 ⊕WK1
0)⊕WK0

1),

X2
1 = X12

0 ⊕ S(X0
0 ⊕WK0

0),

X10
22 = X0

23 ⊕ S(X9
23 ⊕WK1

22),

are true for LBlock, the 80-bit plaintext and ciphertext state value which affects
the value of X1

4 ||X14
18 can be reduced to 60-bit after guessing the 14-bit equivalent

key. The time complexity of this step is N · 214 · 5 S-box accesses.

16

Step 4.2. The guessed-key of Step 4.2 is WK0
22. Since WK0[2] ⇒ WK10[32],

WK0[1]⇒WK10[31], WK0[0]⇒WK10[30], WK19[11]⇒WK11[3], WK19[10]
⇒WK11[2], WK19[9]⇒WK11[1], WK19[8]⇒WK11[0] and WK10[32], WK10

[31], WK10[30], WK11[3], WK11[2], WK11[1], WK11[0] are input/output bits of
one S-box, 3-bit information of WK19[11], WK19[10], WK19[9] and WK19[8] can
be known. Meanwhile, WK1

22 ⇒ WK2
19[3], WK19[11], WK19[10], WK19[9] and

WK19[8] can be known.5 Since WK19[9] ⇒ WK21[32], WK19[8] ⇒ WK21[31],
WK19[7]⇒WK21[30], and WK22[0], WK22[1], WK22[2], WK22[3], WK21[32],
WK21[31], WK21[30] are input/output bits of one S-box, 3-bit information of
WK0

22 can be known. Since X12
22 = X2

23 ⊕S(X8
23 ⊕WK0

22), we can obtain a new
state with 56-bit length. The time complexity of this step is 260 · 214+1 S-box
accesses.

The time complexity of the following sub-steps will become less and less
thanks to our key-bridges. Let N = 262.1 as [24] shows, the time complexity of
this attack is manipulated by Step 4.1, which is about 262.1+14 ·5·1/8·1/23 ≈ 271.
The total time complexity is 271 + 271 = 272 23-round LBlock encryptions. The
data complexity and memory complexity are the same as [24], i.e., the data
complexity is N = 262.1 known plaintexts, the memory complexity is about 260

bytes.

5 Applications to TWINE

5.1 Description of TWINE

TWINE is a lightweight 64-bit block cipher designed by Suzaki et al. in 2013 [23]
and is based on a variant of Type-2 generalized Feistel structure. One version
of TWINE uses an 80-bit key, another uses an 128-bit key and we denote these
versions TWINE-80 and TWINE-128. The Feistel function of TWINE consists
of an xor of a sub-key and a call to a unique S-box. TWINE’s function design
can be visualized in Fig. 3. The key schedule of TWINE-80 is quite simple. The
80-bit master key WK0 is stored in a key register and represented as WK0 =
WK0

0 · · ·WK20
0 .

The key schedule of round i can be shown as follows (i = 1, · · · 35):

WK1
i−1 ←WK1

i−1 ⊕ S(WK0
i−1),WK4

i−1 ←WK4
i−1 ⊕ S(WK16

i−1),

WK7
i−1 ←WK7

i−1 ⊕ 0||CONSTH
i ,WK19

i−1 ←WK19
i−1 ⊕ 0||CONSTL

i),

WK0−3
i−1 ←WK0−3

i−1 ≪ 4,

WKi ←WKi−1 ≪ 16.

Then WK1
i ||WK3

i ||WK4
i ||WK6

i ||WK13
i ||WK14

i ||WK15
i ||WK16

i is used as the
8-nibble round key of round i. We use RKi to denote the round key of round i.
We refer to [23] for the 128-bit version of key schedule.

5 WK0
0 and WK1

22 are known from Step 4.1.

17

1514

S

1312

S

1110

S

98

S

76

S

54

S

32

S

10

S

1215851413107490361121

Fig. 3. Round function of TWINE block cipher

5.2 Zero-Correlation Cryptanalysis on TWINE

In [24], Wang et al. also gave multidimensional zero-correlation linear attacks on
23-round TWINE-80 and 25-round TWINE-128 using the partial compression
technique.

However, using our automatic search tool, we find that the key-bridges they
used in the attack on 23-round TWINE-80 do not exist. In their paper, they say
that RK5

3 ⇒ RK3
0 , RK6

2 ⇒ RK1
0 and RK1

20 ⇒ RK6
22. By the key schedule of

TWINE-80,

RK3
0 ⇒WK6

0 ⇒WK2
1 ⇒WK17

2 ⇒WK13
3 ⇒ RK4

3 ,

RK1
0 ⇒WK3

0 ⇒WK18
1 ⇒WK14

2 ⇒ RK5
2 ,

RK1
20 ⇒WK3

20 ⇒WK18
21 ⇒WK14

22 ⇒ RK5
22.

So the key-bridges they used are not true.
Since RK4

3 and RK5
2 do not exist in the set of related round keys, this will

make the time complexity of Step 4.1 in their paper greater than exhaustive
search. So their attack on 23-round TWINE-80 is not available.

According to their paper, if the input mask a of the first round locates at the
even nibble and the output mask b of the last round locates in the odd nibble
for 14-round TWINE, then the correlation of the linear approximation is zero,
where a, b ∈ F 4

2 , a 6= 0, b 6= 0. Among these distinguishers, we find 4 of them with
the minimal number of guessed-keys (with some key-bridges) by our automatic
search tool. We use ((6, 9)4, 14, 5) to get multidimensional zero-correlation linear
attack on 23-round TWINE-80.

Three key-bridges we found are RK5
22 ⇒ RK1

20, RK0
21 ⇒ RK4

18 and RK6
22⊕

S(RK2
22)⊕ S(RK5

22)⇒ RK6
2 .

Since the major complexity of this attack comes from Step 4.1 and 4.2 , we
explain the key-bridges of these 2 steps. Assuming N known plaintexts are used.

Step 4.1 The distinguisher input nibble X6
4 is affected by 32 bits of plaintext X0

and 28 bits of round keys, and the distinguisher output nibble X9
18 is affected

by 48 bits of ciphertext X23 and 48 bits of round keys. Since X11
22 = X2

23 ⊕
S(X9

23 ⊕ RK5
22), X9

23 and X2
23 can be compressed to X11

22 by guessing RK5
22.

Since X13
22 = X10

23 ⊕S(X15
23 ⊕RK6

22), X15
23 and X10

23 can be compressed to X13
22 by

guessing RK6
22. Since RK5

22 ⇒ RK1
20, let A = X8

23 ⊕ S(X5
23 ⊕ S(X12

23 ⊕ S(X7
23 ⊕

RK2
22) ⊕ RK0

21) ⊕ RK1
20), X8

23, X5
23, X12

23 and X7
23 can be compressed to A by

guessing RK2
22 and RK0

21. The time complexity of this step is N · 216 · 5 S-box
accesses.

18

Step 4.2 By guessing RK2
22, one more nibble can be compressed. The time

complexity of this step is 264+16 S-box accesses.
Let N = 262.1, the time complexity of this attack is 273 23-round TWINE-

80 encryptions, the data complexity is 262.1, and the memory complexity is 260

bytes.
For their attack on 25-round TWINE-128, we find another key-bridge besides

their four key-bridges, i.e., S(RK1
21⊕S−1(RK3

0⊕RK2
24))⇒ RK3

24. So after Step
4.3 of their attack, one more key nibble RK3

0 can be known, and one more state
nibble can be compressed in this step. The time complexity of the following steps
is much smaller than the above 3 steps, so the time complexity of this attack is
(262+60 · 17 + 2 · 2124)/(25× 8) + 2119 ≈ 2120.

Besides, if ((12,3)5,14,6) is used to mount this attack, a better result can
be got. Using our tool, four key-bridges can be found, i.e., RK3

0 ⇒ RK1
3 ,

RK3
21 ⇒ RK1

24, S(RK0
24 ⊕ S−1(RK5

2 ⊕RK7
23 ⊕ S(RK2

22)))⇒ RK1
22, S(RK3

22 ⊕
S(RK1

19))⊕S−1(RK7
0⊕RK6

24⊕S(RK7
24))⇒ RK2

22. The overall time complexity
is determined by searching the remaining key candidates. So the time complexity
becomes 2119.

5.3 Impossible Differential and Meet-in-the-Middle Cryptanalysis
on TWINE

At FSE 2015, Biryukov et al. gave impossible differential cryptanalysis and meet-
in-the-middle cryptanalysis on 25-round TWINE-128 [2].

Combining Wu’s tool for impossible differential distinguisher and our auto-
matic tool, we find in total 12 attacks with the same time complexity as [2].

Combining Lin’s propagate-then-prune tool for meet-in-the-middle distin-
guisher [21] and our automatic tool, we find some attacks with the same com-
plexity as [2]. One of these attacks is (6, 10) → 5, i.e., the distinguisher starts
with two inactive nibbles at position (6,10) and ends with one nibble at position
5. This attack is useful when we want to get less false positive.

6 Conclusions

In this paper, we studied the key-bridging technique Dunkelman et al. pro-
posed to deduce some sub-key bits from some other sub-key bits. We pre-
sented a versatile and powerful algorithm for searching key-bridging technique on
word-oriented and bit-oriented block ciphers. This tool can not only give better
attacked-rounds and complexity, but also a better understanding of the design
of block ciphers. To demonstrate the usefulness of our approach, we used our
tool to the impossible differential and multidimensional zero-correlation linear
attacks on 23-round LBlock, 23-round TWINE-80 and 25-round TWINE-128.
To the best of our knowledge, these results are the currently best results on
LBlock and TWINE in the single-key setting.

Acknowledgements

We would like to thank the anonymous reviewers for providing valuable com-
ments. The research presented in this paper is supported by the National Basic

19

Research Program of China (No. 2013CB338002) and National Natural Science
Foundation of China (No. 61272476, No.61232009 and No. 61202420).

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ci-
phers. Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.

org/.
2. Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential Analysis and Meet-in-

the-Middle Attack against Round-Reduced TWINE. In 22nd International Work-
shop on Fast Software Encryption, 2015.

3. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Advances in Cryptology–ASIACRYPT 2009, pages 1–18.
Springer, 2009.

4. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and Related-
Key Attack on the Full AES-256. In Advances in Cryptology-CRYPTO 2009, pages
231–249. Springer, 2009.

5. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007, pages 450–466.
Springer, 2007.

6. Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle At-
tack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Selected Areas
in Cryptography, pages 229–240. Springer, 2011.

7. Christina Boura, Marine Minier, Mara Naya-Plasencia, and Valentin Suder. Im-
proved Impossible Differential Attacks against Round-Reduced LBlock. Cryptology
ePrint Archive, Report 2014/279, 2014. http://eprint.iacr.org/.

8. Christina Boura, Maŕıa Naya-Plasencia, and Valentin Suder. Scrutinizing and
Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Advances in Cryptology–ASIACRYPT 2014, pages 179–
199. Springer, 2014.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES-the Advanced
Encryption Standard. Springer, 2002.

10. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recov-
ery Attacks on Reduced-Round AES in the Single-Key Setting. In Advances in
Cryptology–EUROCRYPT 2013, pages 371–387. Springer, 2013.

11. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-Round AES. Cryptology ePrint Archive, Report 2010/322, 2010. http:

//eprint.iacr.org/.
12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on

8-Round AES-192 and AES-256. In Advances in Cryptology-ASIACRYPT 2010,
pages 158–176. Springer, 2010.

13. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED Block
Cipher. In Cryptographic Hardware and Embedded Systems–CHES 2011, pages
326–341. Springer, 2011.

14. Yonglin Hao, Dongxia Bai, and Leibo Li. A Meet-in-the-Middle Attack on Round-
Reduced mCrypton using the Differential Enumeration Technique. In Network and
System Security, pages 166–183. Springer, 2014.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

20

15. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. HIGHT:
A New Block Cipher Suitable for Low-Resource Device. In Cryptographic Hardware
and Embedded Systems-CHES 2006, pages 46–59. Springer, 2006.

16. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding Up Collision
Search for Byte-Oriented Hash Functions. In Topics in Cryptology–CT-RSA 2009,
pages 164–181. Springer, 2009.

17. Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew JB Robshaw.
PRINTcipher: a Block Cipher for IC-Printing. In Cryptographic Hardware and
Embedded Systems, CHES 2010, pages 16–32. Springer, 2010.

18. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related
Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In Fast
Software Encryption, pages 299–316. Springer, 2004.

19. Leibo Li, Keting Jia, and Xiaoyun Wang. Improved Single-Key Attacks on 9-Round
AES-192/256. In Fast Software Encryption, pages 127–146. Springer, 2014.

20. Rongjia Li and Chenhui Jin. Meet-in-the-Middle Attacks on 10-Round AES-256.
Designs, Codes and Cryptography, pages 1–13, 2015.

21. Li Lin, Wenling Wu, Yanfeng Wang, and Lei Zhang. General Model of the Single-
Key Meet-in-the-Middle Distinguisher on the Word-oriented Block Cipher. In
Information Security and Cryptology–ICISC 2013, pages 203–223. Springer, 2014.

22. Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang,
Hoda Alkhzaimi, and Chao Li. Links Among Impossible Differential, Integral and
Zero Correlation Linear Cryptanalysis. In Advances in Cryptology–CRYPTO 2015,
volume 9215, page 95. Springer, 2015.

23. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In Selected Areas in
Cryptography, pages 339–354. Springer, 2013.

24. Yanfeng Wang and Wenling Wu. Improved Multidimensional Zero-Correlation Lin-
ear Cryptanalysis and Applications to LBlock and Twine. In Information Security
and Privacy, pages 1–16. Springer, 2014.

25. Wikipedia. Invariant Subspace —Wikipedia, The Free Encyclopedia. https://

en.wikipedia.org/wiki/Invariant_subspace, 2015.
26. Shengbao Wu and Mingsheng Wang. Automatic Search of Truncated Impossi-

ble Differentials for Word-Oriented Block Ciphers. In Progress in Cryptology-
INDOCRYPT 2012, pages 283–302. Springer, 2012.

27. Wenling Wu and Lei Zhang. Lblock: A Lightweight Block Cipher. In Applied
Cryptography and Network Security, pages 327–344. Springer, 2011.

28. Xuexin Zheng and Keting Jia. Impossible Differential Attack on Reduced-Round
TWINE. In Information Security and Cryptology–ICISC 2013, pages 123–143.
Springer, 2014.

29. Chen Zhijie. Higher Algebra and Analytic Geometry(In Chinese). Springer, 2001.

https://en.wikipedia.org/wiki/Invariant_subspace
https://en.wikipedia.org/wiki/Invariant_subspace

	Automatic Search for Key-Bridging Technique: Applications to LBlock and TWINE
	Introduction
	Preliminaries
	Notations
	The Key Schedule Functions
	Key-Bridging Technique on AES
	Key-Bridging Technique on Other Block Ciphers

	An Automatic Search Tool for Key-Bridging Technique
	Outline of the Tool
	A Tool for Word-Oriented Ciphers
	A Tool for Bit-Oriented Ciphers

	Applications to LBlock
	Description of LBlock
	Impossible Differential Cryptanalysis on 23-round LBlock
	Zero-Correlation Cryptanalysis on 23-round LBlock

	Applications to TWINE
	Description of TWINE
	Zero-Correlation Cryptanalysis on TWINE
	Impossible Differential and Meet-in-the-Middle Cryptanalysis on TWINE

	Conclusions

