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Abstract. In the present paper, we investigate the problem of con-
structing MDS matrices with as few bit XOR operations as possible.
The key contribution of the present paper is constructing MDS matrices
with entries in the set of m ×m non-singular matrices over F2 directly,
and the linear transformations we used to construct MDS matrices are
not assumed pairwise commutative. With this method, it is shown that
circulant involutory MDS matrices, which have been proved do not exist
over the finite field F2m , can be constructed by using non-commutative
entries. Some constructions of 4 × 4 and 5 × 5 circulant involutory MDS
matrices are given when m = 4, 8. To the best of our knowledge, it is the
first time that circulant involutory MDS matrices have been constructed.
Furthermore, some lower bounds on XORs that required to evaluate one
row of circulant and Hadamard MDS matrices of order 4 are given when
m = 4, 8. Some constructions achieving the bound are also given, which
have fewer XORs than previous constructions.

Keywords: MDS matrix, circulant involutory matrix, Hadamard ma-
trix, lightweight

1 Introduction

Linear diffusion layer is an important component of symmetric cryptography
which provides internal dependency for symmetric cryptography algorithms. The
performance of a diffusion layer is measured by branch number. Using a diffusion
layer with bigger branch number in cryptography provides better resistance to
differential and linear attack. As for lightweight cryptography, which is aiming
to provide security in a limited resource environment, the cost of implementing
an linear diffusion layer is also of importance. With the rapid development of
lightweight cryptography, it is of particular interest to investigate the problem
of constructing lightweight linear diffusion with bigger branch number.

A linear diffusion layer is a linear transformation over (Fm
2 )n, where m is the

bit length of an S-box and n is the number of S-boxes that the linear diffusion
layer acts on. Note that every linear transformation can be represented by a



matrix, then a linear diffusion layer is often represented by a n× n matrix and
the entries can be viewed as linear transformations over Fm

2 . The maximum
branch number of a n × n matrix over (Fm

2 )n is n + 1. A linear diffusion layer
with maximum branch number is called a perfect diffusion layers or a Maximal
Distance Separable (MDS) matrix. An MDS matrix is a linear multipermutation
[22].

A common way to construct MDS matrices is using MDS codes over finite
fields. Multiplication with elements in finite fields is a basic operation in the
evaluation of a matrix over finite fields. Usually, this operation is heavy in im-
plementation. To improve its implementation efficiency, it is often constructing
a matrix with fewer different elements of finite fields and choosing elements of fi-
nite fields with lower Hamming weight. Therefore, some matrices can be defined
by fewer elements are preferred, such as circulant matrix and Hadamard matrix.
The diffusion layer of AES is an typical example of this construction method. It
is a 4× 4 circulant MDS matrix over F28 .

Another main method to construct lightweight MDS matrices is recursive
construction. The main idea is that firstly constructing a linear transformation
which is sparse and compact in implementation, and then composing it several
times to get an MDS matrix. This method is first used in the design of Pho-
ton lightweight hash family [10] and LED lightweight block cipher [9], and then
attracted lots of attentions. The method is extended by using linear transfor-
mations instead of multiplications of elements in finite fields in [20]. Then the
work is improved by using linear transformations with fewer XORs in [23], where
some extreme lightweight MDS matrices are given. A method is given to get rid
of expensive symbolic computations of the above method for constructing larger
recursive MDS matrices in [1]. The method is also further investigated in [12].
The construction of recursive MDS matrices also has a relation with coding the-
ory. It is shown that recursive MDS matrices can be constructed from Gabidulin
codes [4], and also can be obtained directly from shortened MDS cyclic codes
[2].

However, a recursive MDS matrix may leads to high latency since it has to run
several rounds to get outputs. Then how to construct lightweight MDS matrices
without using recursive construction is an interesting problem needs further
study. Some works revisit the method of constructing MDS matrices over finite
fields by choosing elements whose multiplication’s implementation efficiency can
be further improved. Recently, it is shown that the choice of the irreducible
polynomial used to compute multiplication with elements over finite fields has
a great influence of the efficiency [19]. This property is further investigated in
[21], where algorithms are designed to search lightweight MDS matrices with few
XORs that required to evaluate one row of the corresponding matrix. Several
constructions and their comparisons with previous constructions are also given
in [21].

Our Contributions. In the present paper, we investigate the problem of
constructing MDS matrices with as few bit XOR operations as possible. Note
that multiplication with elements of the finite field F2m is only a special type of



linear transformations over Fm
2 . Moreover, there exist many other linear transfor-

mations over Fm
2 which can not be represented by multiplication with elements

over F2m . Therefore, constructing matrices over the space of linear transforma-
tions over Fm

2 may leads to new constructions of lightweight MDS matrices.

In previous constructions, the entries used to construct MDS matrices are
pairwise commutative, such as MDS matrices over finite fields, or assumed pair-
wise commutative, such as recursive MDS matrices with elements being linear
transformations [20,23]. Note that a matrix over a commutative ring is non-
singular if and only if its determinant is a unity in the ring, then the assumption
is convenient for charactering MDS matrices since the determinants of square
sub-matrices can be computed.

However, the restriction of choosing commutative linear transformations may
lose MDS matrices with fewer XORs. Then we do not assume the linear transfor-
mations over Fm

2 that used to construct MDS matrices are pairwise commutative
in the present paper.

The strategy we used to determine whether a construction is MDS is comput-
ing all its square sub-matrices’ rank. Then it is too complex to construct MDS
matrices with larger order. In symmetric cryptography algorithms, the most of-
ten used S-boxes are 4-bit and 8-bit S-boxes, and it is often use diffusion layers
of order 4. Therefore, we focus on constructing 4× 4 MDS matrices with entries
in the space of linear transformations over F4

2 and F8
2 in the present paper.

The first result is that circulant involutory MDS matrices can be constructed
with our method. Circulant involutory MDS matrices can be implemented ef-
ficiently and the same circuit can be used both in encryption and decryption.
However, it has been proved in [16,13] that there do not exist circulant invo-
lutory MDS matrices over the finite field F2m . In fact, the proof is only valid
when the entries of the matrix are pairwise commute. This property is satisfied
by previous construction methods but not our method.

We show that there exist circulant involutory MDS matrices over the space of
linear transformations over Fm

2 . Some constructions are also given. To the best of
our knowledge, it is the first time that circulant involutory MDS matrices have
been constructed. For 4 × 4 circulant involutory MDS matrices constructed in
the present paper, the fewest sum of XORs of one row’s entries is m+1,m = 4, 8.
Moreover, we also construct 4 × 4 orthogonal circulant MDS matrix, which is
also proved do not exist over finite fields [13].

Lower bounds on XORs that required to evaluate one row of circulant (non-
involution) MDS matrices, involutory Hadamard MDS matrices and Hadamard
(noninvolution) MDS matrices are also investigated. We show that for circulant
MDS matrices with the first row’s entries are [I, I, A,B], the fewest sum of XORs
of A and B is 3. For involutory Hadamard MDS matrices, the fewest sum (the
fewest sum we get) of the XORs of entries in the first row is m + 2 for m = 4
(m = 8). For Hadamard MDS matrices, the fewest sum of XORs of one row’s
entries is 4 for m = 4 and the fewest sum we get of XORs of one row’s entries is
5 for m = 8. Lower bounds on the entries of “optimal” 4 × 4 MDS matrices is
also characterized.



Outline of This Paper. The present paper is organized as follows. In Sect.
2, we give some preliminaries. A general bound on XORs that required to eval-
uate one row of circulant and Hadamard MDS matrices is also given. In Sect.
3, we investigate the construction of lightweight involutory, non-involutory and
orthogonal circulant MDS matrices. In Sect. 4, we investigate the construction
of lightweight involutory and non-involutory Hadamard MDS matrices. Com-
parisons with previous constructions are given at the end of the section. In Sect.
5, we investigate the construction of lightweight “optimal” 4× 4 MDS matrices.
A short conclusion is given in Sect. 6.

2 Preliminaries and a general bound

A map A : Fm
2 → Fm

2 is called linear if A(x + y) = A(x) + A(y) for x, y ∈ Fm
2 .

Fixed a basis of Fm
2 over F2, a linear map over Fm

2 can be represented by an
m ×m matrix over F2, which is also denoted by A. Then A(x) = A · x, where
x = (x1, . . . , xm) ∈ Fm

2 is viewed as a column vector throughout this paper. A
linear map is a permutation over Fm

2 if and only if its matrix representation is
non-singular. The notation GL(m,S) denotes the set of all m×m non-singular
matrices with entries in S.

For a, b ∈ F2, a+ b is called the bit XOR operation. For A ∈ GL(m,F2), #A
denotes the number of XOR operations that required to evaluate A · x directly,
where x ∈ Fm

2 , and we call A has #A XOR operations. It is easy to see that #A
equals the number of XORs in A(x) and hence

#A =

m∑
i=1

(ω(A[i])− 1),

where ω(A[i]) means the number of nonzero entries in the i-th row of A. For A ∈
GL(m,F2), a simplified representation of A is given by extracting the nonzero
positions in each row of A. For example, [2, 3, 4, [1,4]] is the representation of
the following matrix 

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

 ,

and it is a matrix with 1 XOR operation.

Every linear diffusion can be represented by a matrix as follows

L =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
... · · ·

...
Ln,1 Ln,2 · · · Ln,n

 ,



where Li,j is an m×m matrix over F2 for 1 ≤ i, j ≤ n. For X = (x1, . . . , xn) ∈
(Fm

2 )n,

L(X) = (

n∑
i=1

L1,i(xi), . . . ,

n∑
i=1

Ln,i(xi)),

where Li,j(xk) = Li,j · xk, for 1 ≤ i, j ≤ n, 1 ≤ k ≤ m. A linear diffusion L
defined as above is called involutory if L ◦ L(X) = X for all X ∈ (Fm

2 )n, which
is equivalent to that L2 is the identity matrix of order mn.

For X = (x1, . . . , xn) ∈ (Fm
2 )n, the bundle weight of X, which is denoted by

ωb(X), is defined as the number of nonzero entries of X. This means

ωb(X) = |{xi : xi 6= 0, 1 ≤ i ≤ n}|.

The branch number of L is defined as

min{ωb(X) + ωb(L(X)) | X ∈ (Fm
2 )n, X 6= 0}.

The upper bound on the branch number of L is n + 1, and a matrix achieved
the bound is called an MDS matrix.

Square sub-matrices of L of order t means the following matrices

L(J,K) = (Ljl,kp
, 1 ≤ l, p ≤ t)

where J = [j1, . . . , jt] and K = [k1, . . . , kt] are two sequence of length t, and
1 ≤ j1 < . . . < jt ≤ n, 1 ≤ k1, . . . , kt ≤ n. Note that L(J,K) · (x1, . . . , xt) = 0
does not have nonzero solutions if and only if L(J,K) is of full rank. Then the
following result holds, which is proved in [5].

Theorem 1. Let L = (Li,j), 1 ≤ i, j ≤ n, and the entries of L are m × m
matrices over F2. Then L is an MDS matrix if and only if all square sub-matrices
of L of order t are of full rank for 1 ≤ t ≤ n.

According to Theorem 1, the computation would be complicated when n is
large. Then in the present paper we focus on 4 × 4 matrices, which are widely
used in cryptography. More precisely, we construct lightweight MDS matrices
using circulant matrix and Hadamard matrix. Both of them can be defined by
the first row’s entries and hence can be implemented efficiently.

2.1 A general bound

In this subsection, we give a general bound of XORs on circulant and Hadamard
MDS matrices.

A matrix is called circulant if each row is rotated to the right of the preceding
row by one entry. Then for a 4× 4 circulant matrix, we means

Circ(A,B,C,D) =


A B C D
D A B C
C D A B
B C D A

 ,



where A,B,C,D ∈ GL(m,F2).
A 2k × 2k matrix H is called a Hadamard matrix if it can be represented as(

H1, H2

H2, H1

)
,

where H1, H2 are two 2k−1×2k−1 Hadamard matrices. Then for a 4×4 Hadamard
matrix, we means

Had(A,B,C,D) =


A, B, C, D
B, A, D, C
C, D, A, B
D, C, B, A

 ,

where A,B,C,D ∈ GL(m,F2).
Remember that our aim is constructing MDS matrices with as few XOR

operations as possible. Then we prefer linear transformations with no XORs.
However, the following results limits the amounts of such linear transformations
used in our constructions.

Lemma 1. Let L =

(
L1, L2

L3, L4

)
, Li ∈ GL(m,F2), 1 ≤ i ≤ 4. If rank(L) = 2m,

then
4∑

i=1

#Li ≥ 1.

Proof. Assume #Li = 0, 1 ≤ i ≤ 4. Then for 1 ≤ i ≤ 4, each row and each
column of Li has exactly one entry equals 1 since Li are non-singular. This

means every entry of
m∑
j=1

Li[j] equals to 1. Therefore, every entry of
2m∑
i=1

L[i]

equals to 0, which means rank(L) < 2m and we complete the proof. ut

Then we have the following result.

Theorem 2. 1. Let L = Circ(A,B,C,D) be a circulant MDS matrix, where
A,B,C,D ∈ GL(m,F2). Then #A + #B + #C + #D ≥ 2.

2. Let L = Had(A,B,C,D) be a Hadamard MDS matrix, where A,B,C,D ∈
GL(m,F2). Then #A + #B + #C + #D ≥ 3.

Proof. Let L = Circ(A,B,C,D) be a circulant MDS matrix. Assume

#A + #B + #C + #D ≤ 1.

Then there are at least 3 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #B = #C = 0. Then according to Lemma 1, it
holds

rank(L([1, 2], [2, 3])) = rank(

(
B ,C
A ,B

)
) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly.



Let L = Had(A,B,C,D) be a Hadamard MDS matrix. Assume

#A + #B + #C + #D ≤ 2.

Then there are at least 2 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #C = 0. Then according to Lemma 1, it holds

rank(L([1, 3], [1, 3])) = rank(

(
A ,C
C ,A

)
) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly. ut

The above result means that there are at most two entries with no XORs in
one row of a circulant MDS matrix, and there are at most one entry with no
XORs in one row of a Hadamard MDS matrix. We suppose L[1, 1] = I in our
constructions, where I denotes the identity matrix throughout this paper.

3 Lightweight circulant MDS matrices

In this section, we investigate the construction of lightweight circulant involutory,
non-involutory and orthogonal MDS matrices respectively.

3.1 Constructing circulant involutory MDS matrices

First, we have the following result.

Lemma 2. Let L = Circ(I, A,B,C) be a circulant matrix, where A,B,C ∈
GL(m,F2). Then L is an involution if and only if the following equalities hold:

AB = BA,BC = CB,A2 = C2, AC + CA = B2.

Proof. By matrix multiplication, it can be checked that

L2 = Circ(I, A,B,C) · Circ(I,A,B,C)
= Circ(I + AC + CA + B2, BC + CB,A2 + C2, AB + BA).

On the other hand, L is an involution if and only if L2 = Circ(I, 0, 0, 0). There-
fore, L is an involution if and only if

AB = BA,BC = CB,A2 = C2, AC + CA = B2

hold simultaneously. ut

We give a general construction of circulant involutory matrix in the follow-
ing result. For A ∈ GL(m,F2), the multiplication order of A is defined as the
minimum positive integer d such that Ad = I.



Lemma 3. Suppose A,C ∈ GL(m,F2) with A2 = C2 = I, and the multiplica-
tion order of A+C equals 4k−2 for some integer k with k > 1. Let B = (A+C)2k.
Then the matrix Circ(I, A,B,C) is an involution.

Proof. Let B = (A + C)2k. Note that

A2 = C2 = I,

then according to Lemma 2, we only need to prove that A,B,C satisfy the
following equalities

AB = BA,BC = CB,AC + CA = B2.

First, it is easy to see that

(A + C)2 = A2 + AC + CA + C2 = AC + CA.

Then we have
B = (A + C)2k = (AC + CA)k.

Therefore,
AB = A(AC + CA)k

= A(AC + CA)(AC + CA)k−1

= (A2C + ACA)(AC + CA)k−1

= (CA2 + ACA)(AC + CA)k−1

= (CA + AC)A(AC + CA)k−1

= · · ·
= (AC + CA)kA
= BA.

Similarly, it can be checked that

BC = CB.

Note that (A + C)4k−2 = I, then we have

B2 = (A + C)4k = (A + C)2 = AC + CA.

According to Lemma 2, we have Circ(I, A, (A + C)2k, C) is an involution. ut

Remark 1. If k = 1, then the multiplication order of A+C equals 2 and B = (A+
C)2 = I. In this case, L = Circ(I, A, I, C) constructed as above is also a circulant
involution. However, it is not an MDS matrix since rank(L([1, 3], [1, 3])) < 2m.
Then we always suppose k > 1 since we want to construct circulant involutory
MDS matrices.

Using above results, our searching strategy is as follows. Firstly, we get the
set S which contains all involutory matrix from the set which we want to search.
Then for each pair of (A,C) ∈ S × S, we compute the multiplication order



d of A + C. If d mod 4 = 2, then let B = (A + C)
d
2+1, and test whether

Circ(I, A,B,C) is MDS by Theorem 1.
When m = 4, we search A,C over GL(4,F2). There exist A,C such that

Circ(I, A,B,C) is MDS. The fewest sum of XORs of one rows’ entries of an
MDS involutory Circ(I, A,B,C) constructed as above is 5. There are 48 pairs
of A,C with this property. These 48 matrices are of the type Circ(I, A,B,C)
and Circ(I, C,B,A) for 24 different pairs of A,C.

When m = 8, we search A,C over all 8×8 non-singular matrices over F2 with
less than or equal to 3 bit XOR operations. The fewest sum of XORs of one rows’
entries of an MDS Circ(I, A,B,C) constructed as above is 9. There are 40320
pairs of A,C satisfy this property. For all these pairs of A,C, Circ(I, C,B,A)
are also circulant involutory MDS matrices.

Theorem 3. Their exist A,B,C ∈ GL(m,F2), m = 4, 8, such that Circ(I,A,B,C)
is an involutory MDS matrix. Furthermore, the following statements hold.

1. When m = 4, circulant involutory MDS matrices constructed with the above
method satisfy #A + #B + #C ≥ 5.

2. When m = 8, if #A ≤ 3 and #C ≤ 3, then circulant involutory MDS
matrices constructed with the above method satisfy #A + #B + #C ≥ 9.

Example 1. Examples of A,B,C such that Circ(I, A,B,C) are circulant invo-
lutory MDS matrices with #A + #B + #C = m + 1.1

(1) m = 4, A = [1, 2, [1, 3], [1, 2, 4]], C = [4, 3, 2, 1], B = (A+C)4 = [2, [1, 2], [3, 4], 3].
(2) m = 8, A = [1, 2, [1, 3], [1, 2, 4], 6, 5, 8, 7], C = [5, 8, [2, 6], 7, 1, [3, 8], 4, 2], and

B = (A + C)16 = [[7, 8], 1, 7, [3, 8], [2, 4], [1, 4], 6, 5].

We further investigate the construction of 5 × 5 circulant involutory MDS
matrices. In order to simplify our characterization, we investigate 5×5 circulant
matrices of the type Circ(I, A,B,B,A), where A,B ∈ GL(m,F2). Concerning
the property of involutory of Circ(I, A,B,B,C), it is easy to prove the following
result.

Lemma 4. Let L = Circ(I, A,B,B,A) be a circulant matrix, where A,B ∈
GL(m,F2). Then L is an involution if and only if A2 = AB + BA = B2.

We give constructions by exhaustive searching for A,B with the following
method. The method is often used hereafter in the paper, and we give a detailed
general description here.

The following result is helpful. It can be proved via elementary linear algebra
and we omit the proof here.

Lemma 5. Suppose A,B,C ∈ GL(m,F2) are m×m non-singular matrices over
F2. Then the following statements hold.

1 More examples of circulant involutory MDS matrices with #A+ #B + #C = m+ 1
are given in the appendix of the extended version of the paper [14].



(1)

(
I, A
B, C

)
is of full rank if and only if rank(BA + C) = m.

(2)

(
A, I
B, C

)
is of full rank if and only if rank(CA + B) = m.

(3)

(
A, B
I, C

)
is of full rank if and only if rank(AC + B) = m.

(4)

(
A, B
C, I

)
is of full rank if and only if rank(BC + A) = m.

Let L = Circ(I, A,B,B,A). According to Theorem 1, if L is MDS, then all
its square sub-matrices are of full rank. According to Lemma 5, we have the
following fact by investigating all square sub-matrices of order 2. If L is MDS,
then the following matrices are non-singular:

A + I, A2 + I,B + I,B2 + I, A2 + B,A + B2, A + B.

Note that A2 + I is non-singular if and only if A + I is non-singular. Then the
conditions can be simplified as the following matrices are non-singular:

A + I,B + I, A + B2, A2 + B,A + B.

Based on the above observations, we have the following searching strategy.
First, note that both A and B should satisfy rank(X + I) = m,X = A,B. The
equalities that both A and B satisfied are called general rules. Then we can
select the candidate set of A and B from the set we want to search over by using
general rules, which means

SA,B := {X : X ∈ Ssearch | rank(X + I) = m}.

The for A ∈ SA,B , we can get the candidate set of B by using the other conditions
that should be satisfied, which means

SB := {B : B ∈ SA,B | rank(A + B) = m ∧ rank(A2 + B) = m ∧ rank(A + B2) = m
∧A2 = AB + BA ∧A2 = B2}.

At last, for B ∈ SB , we test whether L is MDS by Theorem 1.
When m = 4, we search A,B over GL(4,F2). The fewest XORs of one row’s

entries of an involutory MDS Circ(I,A,B,B,A) is 4. There are 24 pairs of
A,B such that Circ(I, A,B,B,A) are involutory circulant MDS matrices with
#A + #B = 2. These 24 MDS matrices are of the type Circ(I, A,AT , AT , A)
and Circ(I, AT , A,A,AT ) for 12 different A.

When m = 8, we search A,B over GL(8,F2) with #A + #B ≤ 3. No in-
volutory MDS matrix returns. Therefore, if Circ(I, A,B,B,A) is an involutory
MDS matrix, then #A + #B ≥ 4.

Then we have the following result.

Theorem 4. Their exist A,B ∈ GL(m,F2), m = 4, 8, such that Circ(I, A,B,B,A)
is an 5×5 involutory MDS matrix. Furthermore, if Circ(I, A,B,B,A) is an in-
volutory MDS matrix, then #A + #B ≥ m

2 .



Similar as the method “Subfield construction” that used in [6,19,21], it is
easy to construct involutory MDS Circ(I, A,B,B,A) over F8

2 with #A+ #B =
4, since we have constructed involutory MDS Circ(I, A,B,B,A) over F4

2 with
#A + #B = 2. Let X ∈ GL(4,F2), #X = 1 and Circ(I,X,XT , XT , X) is an
involutory MDS matrix. Then Circ(I, A,AT , AT , A) is also an involutory MDS
matrix, where A ∈ GL(8,F2) of the following form

A =

[
X, 0
0, X

]
.

Then we can construct 24 circulant involutory MDS by using the above method
and the searching result when m = 4.

In order to get more circulant involutory MDS matrices, we searching A over
GL(8,F2) with #A = 2. We get 20160 A such that Circ(I, A,AT , AT , A) are
involutory MDS matrices and #A + #AT = 4.

Example 2. Examples of A,B such that Circ(I, A,B,B,A) are circulant invo-
lutory MDS matrices with #A + #B = m

2 .

(1) m = 4, A = [2, 3, 4, [1, 3]], B = AT = [4, 1, [2, 4], 3].

(2) m = 8, X = [2, 3, 4, [1, 3]], A =

[
X, 0
0, X

]
= [2, 3, 4, [1, 3], 6, 7, 8, [5, 7]], B =

AT = [4, 1, [2, 4], 3, 8, 5, [6, 8], 7].
(3) m = 8, A = [[3, 5], 8, 1, 3, 4, 2, 6, [2, 7]], B = AT = [3, [6, 8], [1, 4], 5, 1, 7, 8, 2].

It is interesting that 5 × 5 circulant involutory MDS matrices can be con-
structed with only 3 different entries. We have tried some other methods to
construct circulant involutory MDS matrices with higher order. However, we do
not get an circulant involutory MDS matrix with order large than or equal to 6
until present. We leave it as an open problem.

Problem 1. Construct n× n circulant involutory MDS matrices over GL(m,F2)
or prove that they do not exist, where n ≥ 6, m = 4, 8.

3.2 Constructing circulant non-involutory MDS matrices

In this subsection, we want to construct non-involutory MDS matrices with as
few XORs as possible. We consider circulant matrices of the type

Circ(I, I, A,B),

since it has the most many entries with no XORs in one row.
The searching strategy is similar as previous subsection. If Circ(I, I, A,B)

is MDS, then the following matrices are non-singular:

A + I,B + I, A + B,AB + I,A2 + B,A + B2.

When m = 4, we search A,B over GL(4,F2). The fewest XORs of one row’s
entries of an MDS Circ(I, I, A,B) is 3. Their are 48 pair of (A,B) such that



Circ(I, I, A,B) are MDS matrices with #A + #B = 3. These 48 matrices are
of the type Circ(I, I, A,A−2) and Circ(I, I, A−2, A) for 24 different A.

When m = 8, we search A,B over all 8 × 8 non-singular matrices over F2

with 1 bit XOR. No MDS matrix returns. This means if Circ(I, I, A,B) is an
MDS matrix over GL(8,F2), then either A or B has at least 2 XORs, and hence
#A + #B ≥ 3. Therefore, the following result hold.

Theorem 5. Let L = Circ(I, I, A,B), where A,B ∈ GL(m,F2), m = 4, 8. If L
is an MDS matrix, then #A + #B ≥ 3.

In order to get circulant MDS matrix with the above equality holds when
m = 8, we let B = A−2 and search A over all 8×8 non-singular matrices over F2

with 1 bit XOR. At last, we get 80640 A such that Circ(I, I, A,A−2) are MDS
matrices with #A + #A−2 = 3. Furthermore, Circ(I, I, A−2, A) are also MDS
matrices for all these A.

Example 3. Examples of A,B such that Circ(I, I, A,B) and Circ(I, I, B,A) are
MDS matrices with #A + #B = 3.

(1) m = 4, A = [2, 3, 4, [1, 4]], B = A−2 = [[2, 3], [3, 4], 1, 2].
(2) m = 8, A = [2, 3, 4, 5, 6, 7, 8, [1, 3]], B = A−2 = [[1, 7], [2, 8], 1, 2, 3, 4, 5, 6].

3.3 Constructing circulant orthogonal MDS matrices

A square matrix L is called orthogonal if L−1 = LT , where LT is the transpose of
L. It is proven in [13] there do not exist 2d×2d circulant orthogonal MDS matrix
over finite fields. In this subsection, we show that 4×4 circulant orthogonal MDS
matrices can also be constructed with non-commutative entries.

Firstly, note that for L = Circ(I, A,B,C), where A,B,C ∈ F2m , it holds
LT = Circ(I, CT , BT , AT ). This means one have to implement new entries
AT , BT , CT in decryption circuit when L is orthogonal. In order to simplify im-
plementation, we let A,B,C ∈ GL(m,F2) are symmetric matrices, which means
A = AT , B = BT , C = CT . Then it holds

LT = Circ(I, CT , BT , AT ) = Circ(I, C,B,A),

and it is easy to prove the following result.

Lemma 6. Let L = Circ(I, A,B,C) be a circulant matrix, where A,B,C ∈
GL(m,F2) are symmetric matrices. Then L is orthogonal if and only if the fol-
lowing equalities hold:

A2 + B2 = C2, AC = CA,A + C = BA + CB,A + C = AB + BC.

If L = Circ(I,A,B,C) is MDS, then the following matrices are non-singular:

B + I,B + A2, B + C2, AC + I, AB + C.

When m = 4, we search symmetric A,B,C over GL(4,F2). The fewest XORs
of one row’s entries of an orthogonal MDS Circ(I, A,B,C) is 8. Their are 24
triples of A,B,C such that Circ(I, A,B,C) are orthogonal MDS matrices with
#A + #B + #C = 8. Then we have the following result.



Theorem 6. There exist symmetric A,B,C ∈ GL(4,F2) such that Circ(I, A,B,C)
is an orthogonal MDS matrix. Furthermore, if Circ(I, A,B,C) is an orthogonal
MDS matrix, then #A + #B + #C ≥ 8.

Example 4. Example of A,B,C such that Circ(I, A,B,C) is an orthogonal cir-
culant MDS matrix #A + #B + #C = 2m.

(1) m = 4, A = [1, 2, 4, [3, 4]], B = [[1, 4], [2, 3, 4], [2, 3], [1, 2, 4]], C = [2, [1, 2], 3, 4].

(2) m = 8, A =

[
A1, 0
0, A1

]
, B =

[
B1, 0
0, B1

]
, C =

[
C1, 0
0, C1

]
, where A1, B1, C1

are the A,B,C in the above item.

4 Lightweight Hadamard MDS matrices

In this section, we investigate the construction of lightweight Hadamard involu-
tory and non-involutory MDS matrices respectively.

4.1 Constructing Hadamard involutory MDS matrices

In the case of a, b, c are elements of finite fields, Had(1, a, b, c) is an involution
if and only if a2 + b2 = c2. In the case of A,B,C ∈ GL(m,F2), we have the
following result.

Lemma 7. Let A,B,C ∈ GL(m,F2). Then L = Had(I, A,B,C) is an involu-
tion if and only if A,B,C are pairwise commutative and A2 + B2 = C2.

Proof. By matrix multiplication, it can be checked that

L2 = Had(I, A,B,C) ·Had(I, A,B,C)
= Had(I + A2 + B2 + C2, BC + CB,AC + CA,AB + BA).

Therefore, L is an involution if and only if L2 = Had(I, 0, 0, 0), which is equiv-
alent to

AB = BA,BC = CB,AC = CA,A2 + B2 = C2

hold simultaneously. ut

When m = 4, we search A,B,C over GL(4,F2) as previous. The fewest XORs
of one row’s entries of an involutory MDS Had(I,A,B,C) is 6. There are 144
triples of A,B,C such that Had(I, A,B,C) are involutory MDS matrices with
#A + #B + #C = 6. These 144 matrices are of the type Had(I, A1, A2, A3),
where (A1, A2, A3) is a permutation of (A,A−1, A + A−1) for 24 different A.

When m = 8, we also consider Hadamard matrix of the type

L = Had(I, A,A−1, A + A−1),

where A ∈ GL(m,F2). According to the above lemma, L is an involution. We
use the method in [20,23] to characterize whether L is MDS. By computing the



determinants of all the square sub-matrices of L and factorizing these polyno-
mials, we get that L is an MDS matrix if and only if all the following matrices
are non-singular:

A,A + I, A2 + A + I,A3 + A + I, A3 + A2 + I.

Then we search A over GL(8,F2) with #A ≤ 3. The fewest XORs of one
row’s entries of an involutory MDS Had(I, A,A−1, A+A−1) is 10. We get 80640
A such that Had(I, A,A−1, A + A−1) are involutory MDS matrices with #A +
#A−1 + #(A + A−1) = 10.

We also have searched some other types of Hadamard matrices. However, we
do not get a Hadamard involutory matrix with one row’s XORs less then 10
until present.

Theorem 7. 1. Let A,B,C ∈ GL(4,F2). If L = Had(I, A,B,C) is an MDS
involution matrix, then #A + #B + #C ≥ 6.

2. Let A ∈ GL(8,F2) with #A ≤ 3. If L = Had(I, A,A−1, A+A−1) is an MDS
involution matrix, then #A + #A−1 + #(A + A−1) ≥ 10.

Example 5. Examples of A,B,C such that Had(I, A,B,C) are involutory MDS
matrices with #A + #B + #C = m + 2.

(1) m = 4, A = [2, [1, 3], 4, [2, 3]], B = A−1 = [[1, 2, 4], 1, [1, 4], 3], C = A+A−1 =
[[1, 4], 3, 1, 2].

(2) m = 8, A = [2, 3, 4, 5, 6, 7, 8, [1, 3]], B = A−1 = [[2, 8], 1, 2, 3, 4, 5, 6, 7], C =
A + A−1 = [8, [1, 3], [2, 4], [3, 5], [4, 6], [5, 7], [6, 8], [1, 3, 7]].

4.2 Constructing non-involutory Hadamard MDS matrices

In this subsection, we want to construct non-involutory Hadamard MDS matrix
with as few XORs as possible. The searching strategy is similar as previous. If
Had(I, A,B,C) is MDS, then the following matrices are non-singular:

A + I,B + I, C + I, AB + C,AC + B,BA + C,BC + A,CB + A,CA + B.

When m = 4, we search A,B,C over GL(4,F2). The fewest XORs of one
rows’ entries of an MDS Had(I,A,B,C) is 4. There are 72 triples of A,B,C
such that Had(I, A,B,C) are MDS matrices with #A+#B+#C = 4. These 72
matrices are of the type Had(I, A1, A2, A3), where (A1, A2, A3) is a permutation
of (A,AT , A + AT ) for 12 different A.

When m = 8, we search A over GL(8,F2) with #A ≤ 2. The fewest XORs
of one rows’ entries of an MDS Had(I, A,AT , A + AT ) is 8.

In order to get Hadamard MDS matrices with fewer XORs in one row, we
investigate Hadamard matrices of the type Had(I, A,AT , B). According to our
searching, if #A ≤ 1 and #B ≤ 2, then there are no MDS Had(I, A,AT , B).
Then we have the following result.

Theorem 8. 1. Let A,B,C ∈ GL(4,F2). If L = Had(I, A,B,C) is an MDS
matrix, then #A + #B + #C ≥ 4.



matrix type elements the first row XOR count Ref.

Circulant GL(8,F2) [I, I, A,B] 3 + 3 × 8 = 27 Subsection 3.2

Circulant F28/0x11b (0x02, 0x03, 0x01, 0x01) 14 + 3 × 8 = 38 AES [8]

Hadamard GL(8,F2) [I, A,AT , B] 5 + 3 × 8 = 29 Subsection 4.2

Hadamard F28/0x1c3 (0x01, 0x02, 0x04, 0x91) 13 + 3 × 8 = 37 [21]

Subfield-Hadamard F24/0x13 (0x1, 0x2, 0x8, 0x9) 2 × (5 + 3 × 4) = 34 [21]

Table 1. Comparisons with previous constructions of non-involutory MDS matrices

matrix type elements the first row XOR count Ref.

Circulant GL(8,F2) [I, A,B,C] 9 + 3 × 8 = 33 Subsection 3.1

Hadamard GL(8,F2) [I, A,A−1, A + A−1] 10 + 3 × 8 = 34 Subsection 4.1

Subfield-Hadamard F24/0x13 (0x1, 0x4, 0x9, 0xd) 2 × (6 + 3 × 4) = 36 [21]

Hadamard F28/0x165 (0x01, 0x02, 0xb0, 0xb2) 16 + 3 × 8 = 40 [21]

Hadamard F28/0x11d (0x01, 0x02, 0x04, 0x06) 22 + 3 × 8 = 46 [3]

Compact Cauchy F28/0x11b (0x01, 0x12, 0x04, 0x16) 54 + 3 × 8 = 78 [7]

Hadamard-Cauchy F28/0x11b (0x01, 0x02, 0xfc, 0xfe) 74 + 3 × 8 = 98 [11]

Table 2. Comparisons with previous constructions of involutory MDS matrices

2. Let A,B ∈ GL(8,F2). If L = Had(I, A,AT , B) is an MDS matrix, then
#A + #AT + #B ≥ 5.

In order to get MDS Had(I, A,AT , B) with #A+#AT +#B = 5, we choose
A with #A = 2 and rank(A + I) = 8 randomly, and then test whether there
exist B with #B = 1 such that Had(I, A,AT , B) is MDS. We repeat the process
several times and get 622 pairs of A,B ∈ GL(8,F2), such that Had(I, A,AT , B)
is MDS and #A + #AT + #B = 5.

Example 6. Examples of A,B,C such that Had(I, A,B,C) are MDS matrices
with the bounds in the above theorem hold.

(1) m = 4, A = [2, 3, 4, [1, 3]], B = AT = [4, 1, [2, 4], 3], C = A + AT =
[[2, 4], [1, 3], 2, 1].

(2) m = 8, A = [2, 3, 4, [1, 5], 8, 7, 5, [3, 6]], B = AT = [4, 1, [2, 8], 3, [4, 7], 8, 6, 5],
C = [[4, 7], 6, 5, 8, 7, 1, 2, 3].

We give comparisons of our constructions with previous constructions in
Table 1, Table 2 and Table 3 respectively.

The lower bounds on XORs of circulant and Hadamard MDS matrices given
in Section 3 and Section 4 are under the supposition L[1, 1] = I. Therefore, it
is possible to improve the previous lower bounds when L[1, 1] 6= I. However, we
have the following result with searching, which shows that the lower bounds can
not be improved when m = 4.



matrix type elements the first row XOR count Ref.

Circulant GL(4,F2) [I, I, A,B] 3 + 3 × 4 = 15 Subsection 3.2

Involutory circulant GL(4,F2) [I, A,B,C] 5 + 3 × 4 = 17 Subsection 3.1

Hadamard GL(4,F2) [I, A,B,C] 4 + 3 × 4 = 16 Subsection 4.2

Hadamard F24/0x13 (0x1, 0x2, 0x8, 0x9) 5 + 3 × 4 = 17 [21]

Involutory Hadamard GL(4,F2) [I, A,A−1, A + A−1] 6 + 3 × 4 = 18 Subsection 4.1

Involutory Hadamard F24/0x13 (0x1, 0x4, 0x9, 0xd) 6 + 3 × 4 = 18 [21,15]

Involutory Hadamard F24/0x19 (0x1, 0x2, 0x6, 0x4) 6 + 3 × 4 = 18 [18]

Table 3. Comparisons of MDS matrices over F4
2 and F24

Theorem 9. Let Ai ∈ GL(4,F2), and A =
4∑

i=1

#Ai. Then the following state-

ments hold.

1. If Circ(A1, A2, A3, A4) is a circulant MDS matrix, then A ≥ 3.
2. If Circ(A1, A2, A3, A4) is a circulant involutory MDS matrix, then A ≥ 5.
3. If Had(A1, A2, A3, A4) is a Hadamard MDS matrix, then A ≥ 4.
4. If Had(A1, A2, A3, A4) is a Hadamard involutory MDS matrix, then A ≥ 6.

5 Lightweight “Optimal” 4 × 4 MDS matrices

It is proven in [17] that the highest possible number of 1 and the lowest possible
number of different entries for a 4× 4 MDS matrix over finite fields are 9 and 3
respectively. The matrix with the two properties hold simultaneously are called
“optimal” in their presentation slides. The following matrix

a 1 1 1
1 1 b a
1 a 1 b
1 b a 1


is an example of “optimal” matrix which is given in [17]. Similarly as above, we
investigate the following special matrix,

L =


A I I I
I I B A
I A I B
I B A I

 ,

where A,B ∈ GL(m,F2) are m×m non-singular matrices over F2.
If L is MDS, then the following matrices are non-singular:

A + I,B + I, A + B,A + B2, A2 + B,AB + I.



When m = 4, we search A,B over GL(4,F2), which is the set of all 4 × 4
non-singular matrices over F2. The fewest XORs of “optimal” MDS matrices
is 13. There are 24 pairs of A,B ∈ GL(m,F2) such that the corresponding
constructions are MDS matrices with 4#A + 3#B = 13. All these pairs satisfy
B = A−2.

When m = 8, we search A,B over the set of all 8× 8 non-singular matrices
over F2 with 1 bit XOR operation. No MDS matrix returns. This means if L is a
“optimal” MDS matrix over GL(8,F2), then either A or B has at least 2 XORs,
and hence #L ≥ 10.

Then we have the following result.

Theorem 10. Let L be a matrix constructed as above, where A,B ∈ GL(m,F2),
m = 4, 8. If L is an MDS matrix, then

4#A + 3#B ≥
{

13, m = 4;
10, m = 8.

In order to get “optimal” matrices over GL(8,F2) with 10 XORs, we let
B = A−2 and search A over all 8 × 8 non-singular matrices over F2 with 1
bit XOR operation. We get 40320 A ∈ GL(8,F2) such that the corresponding
constructions are “optimal” MDS matrices with 10 XORs.

It is interesting that “optimal” 4×4 MDS matrices over GL(8,F2) has fewer
XORs than “optimal” 4× 4 MDS matrices over GL(4,F2).

Example 7. Examples of A,B such that L are “optimal” MDS matrices with the
bounds in the above result hold.

(1) Let A = [[2, 3], 4, 2, 1], B = A−2 = [2, [1, 3], [1, 3, 4], 3]. Then L constructed
as above is an MDS matrix with 4#A + 3#B = 13.

(2) Let A = [4, 5, 6, 8, 3, [4, 7], 1, 2], B = A−2 = [[1, 6], 4, 2, 7, 8, 5, [3, 7], 1]. Then
L constructed as above is an MDS matrix with 4#A + 3#B = 10.

6 Conclusion

In the present paper, we mainly investigate the construction of 4× 4 lightweight
MDS matrices with entries in the set of m ×m non-singular matrices over F2.
With this method, circulant, Hadamard and involutory Hadamard MDS matrices
with fewer XORs than previous constructions are given. Moreover, circulant
involutory MDS matrices are also constructed with our method. Constructing
lightweight MDS matrices of large order with the method of the present paper
is an interesting problem need further study.
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