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Abstract. Typical AE schemes are supposed to be secure when used
as specified. However, they can – and often do – fail miserably when
used improperly. As a partial remedy, Rogaway and Shrimpton proposed
(nonce-)misuse-resistant AE (MRAE) and the first MRAE scheme SIV
(“Synthetic Initialization Vector”). This paper proposes RIV (“Robust
Initialization Vector”), which extends the generic SIV construction by
an additional call to the internal PRF. RIV inherits the full security
assurance from SIV, but unlike SIV and other MRAE schemes, RIV is
also provably secure when releasing unverified plaintexts. This follows a
recent line of research on “Robust Authenticated Encryption”, similar to
the CAESAR candidate AEZ.
An AES-based instantiation of RIV runs at less than 1.5 cpb on current
x64 processors. Unlike the proposed instantiation of AEZ, which gains
speed by relying on reduced-round AES, our instantiation of RIV is
provably secure under the single assumption of the AES being secure.
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1 Introduction

Authenticated Encryption. A secure authenticated encryption (AE) scheme
generates ciphertexts that can not be efficiently distinguished from random bit-
strings of the same length as the ciphertext and are infeasible to forge. Typical
AE schemes are nonce-based [45], i.e., the user is responsible to supply an addi-
tional input that must be unique for every encryption. If a nonce ever repeats,
the scheme’s security may fully forfeit. While the concept of unique nonces is
simple in theory, it is hard to ensure in practice [19], which led to severe secu-
rity breaches in the past. Rogaway and Shrimpton [46] defined (nonce-)misuse-
resistant AE (MRAE) as notion with the goal of providing full authenticity, and
privacy up to the detection of repeated encryptions of the same associated data
and message under the same nonce and key. Since then, the topic received signif-
icant attention by the community, resulting in a large corpus of MRAE schemes,
e.g., [6,10,16,20,22,27,28,29,30,33,43,46].
Robustness aspects of AE are not limited to nonce reuse. “One shortcoming of AE
as commonly understood is its idealized, all-or-nothing decryption” [7]. Leaking
any information about the message before its authentication has been verified



breaks this assumption. At least five noteworthy recent works strengthened the
existing security definitions of robustness.1 Boldyreva et al. [15] (BDPS) studied
the effects when multiple distinct error messages are distinguishable in proba-
bilistic or stateful schemes. Andreeva et al. [4] formalized notions that capture
the remaining security under release of unverified plaintexts (RUP). Hoang et al.
[24] defined robust AE (RAE) as a notion for the best achievable security of an
AE scheme with a user-chosen ciphertext expansion. Badertscher et al. [5] inves-
tigated RAE with the frameworks by Maurer and Renner [38,39]. Barwell, Page,
and Stam [7] defined subtle AE (SAE) as a reference framework for the BDPS,
RUP, and RAE notions. The SAE definitions comprise leakage beyond informa-
tion about the invalid plaintext, which allows to model leakage as a property of
the decryption implementation rather than as a property of the scheme.

Previous Robust AE Schemes. In spite of so much progress regarding stricter
security definitions, the portfolio of dedicated robust AE schemes remains still
modest. Among the 57 CAESAR submissions, only four candidates consider ro-
bustness against leakage of invalid plaintexts: Julius [6] lacks a security proof;
POET [1] and APE [3] concern on-line confidentiality, which cannot provide
nonce-misuse resistance in the strong sense of Rogaway and Shrimpton, as has
been criticized, e.g., by [25]. Only AEZ [24] provides robust AE. Though, AEZ
follows a “proof-then-prune” approach: while the security proof assumes a strong
block cipher, the performant instantiation employs four-round AES instead.
Since AEZ also defines a key schedule, it appears more as a primitive of its
own right than as a block-cipher-based AE scheme.
Beyond CAESAR, Bertoni et al. [12] proposed Mr. Monster Burrito, a four-
round Feistel network with the round-reduced Keccak-f permutation in duplex-
wrap mode, and the sponge in counter mode for encryption. Shrimpton and
Terashima [47] proposed Protected IV (PIV), a framework of strong tweakable
ciphers (STPRPs), which generalized the Ψ3 construction by Coron et al. [17].
PIV is fast (comparable with the construction proposed in this work); though,
it requires the block-cipher inverse for decryption. Note that theoretically, more
robust AE schemes could be constructed. Hoang et al. [24] showed that the well-
known Encode-then-Encipher (EtE) [9] approach achieves RAE security when
(a hash of) nonce and associated data are used as tweak. In theory, this implies
that a secure STPRP can be transformed into a robust AE scheme, which allows
to choose from the schemes that have been developed over the previous decade,
e.g., in the domains of full-disk and format-preserving encryption.

Contribution. This work proposes a modular framework, called Robust IV
(RIV), which provides provable SAE security. RIV is an extension of SIV [26,46]
that inherits both the simplicity and the naturally strong security properties of
SIV and adds robustness against leakage of invalid plaintexts. We propose an
instantiation which runs at less than 1.5 clock cycles per byte (cpb) on current
x64 processors.

1 By robustness, we mean resistance against both nonce misuse and decryption leakage
beyond the single error information.
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Outline. The remainder of this work is structured as follows: after Section 2 re-
calls the preliminaries, Section 3 describes the generic RIV framework. Section 4
recalls the relevant notions. Section 5 summarizes our formal security analysis.
Section 6 details our instantiation, and Section 7 concludes this work.

2 Preliminaries

We use lowercase letters x, y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets. By
ε we denote the empty string. We denote the concatenation of binary strings X
and Y by X ‖ Y and the result of their bitwise XOR by X ⊕ Y . We indicate
the length of X in bits by |X |, and write Xi for the i-th block, X [i] for the
i-th most significant bit of X , and X [i..j] for the bit sequence X [i], . . . , X [j].
X և X denotes that X is chosen uniformly at random from the set X . We
define two sets of particular interest: Perm(X ) be the set of all permutations
on X and Func(X ,Y) the set of all functions F : X → Y. A uniform random
function ρ : X → Y with domain X and range Y is a random variable uniformly
distributed over Func(X ,Y). We define by X1, . . . , Xj

x
←− X the injective splitting

of the string X into x-bit blocks such that X = X1 ‖ · · · ‖Xj, with |Xi| = x for
1 ≤ i ≤ j − 1, and |Xj| ≤ x.
For an event E, we denote by Pr[E] the probability of E. We write 〈x〉m for
the binary m-bit-string representation of an integer x and 〈x〉 for the binary
n-bit-string representation of x for an integer n that is clear from the context.
If not stated otherwise, we assume representations to be encoded in big-endian
manner, i.e., the decimal 〈135〉 is encoded to the n-bit string 000..010000111.

Universal Hashing. Universal hash functions are well-known components for
compressing a message while guaranteeing maximal probabilities about output
relations. We briefly recall the definitions that are relevant in this work.

Definition 1 (ǫ-Almost-(XOR-)Universal Hash Functions). Let X ,Y ⊆
{0, 1}∗. Let H = {H |H : X → Y} denote a family of hash functions. H is called
ǫ-almost-universal (ǫ-AU) iff for all distinct elements X,X ′ ∈ X , it holds that
PrHևH [H(X) = H(X ′)] ≤ ǫ. H is called ǫ-almost-XOR-universal (ǫ-AXU) iff
for all distinct elements X,X ′ ∈ X and Y ∈ Y, it holds that PrHևH[H(X) ⊕
H(X ′) = Y ] ≤ ǫ.

Theorem 1 (Theorem 3 from [14]). Let X ,Y ⊆ {0, 1}∗. Further, let H =
{H |H : X → Y} be a family of ǫ-AXU hash functions. Then, the family H′ =
{H ′ |H ′ : X × Y → Y} with H ′(X,Y ) := H(X)⊕ Y , is ǫ-AU.

Nonce-Based Encryption Schemes. A nonce-based encryption scheme [45]
is a tuple Π = (E ,D) of deterministic encryption and decryption algorithms
E : K ×N ×M→ C and D : K ×N × C →M, with associated non-empty key
space K, non-empty nonce space N , and M, C ⊆ {0, 1}∗ denoting message and
ciphertext space, respectively. We often write ENK (M) and DN

K(C) as short forms
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of E(K,N,M) and D(K,N,C). An adversary that never repeats a nonce over
its encryption queries is called nonce-respecting, and nonce-ignoring otherwise.
We assume for all K ∈ K, N ∈ N , M ∈ M, and C ∈ C length-preservation,
i.e., |ENK (M)| = |M |, correctness, i.e., DN

K(ENK (M)) = M , and tidiness, i.e.,
ENK (DN

K (C)) = C. We call a nonce-based encryption scheme Π = (E ,D) nonce-
keystream-based iff its encryption algorithm derives a keystream κN ⊆ {0, 1}∗,
with |κN | = |M |, from the given nonce N and computes the ciphertext as C ←
κN ⊕M . Naturally, the decryption algorithm of such an encryption scheme is
identical to its encryption algorithm, i.e., ENK (M) := DN

K(M) for all K ∈ K,
N ∈ N , and M ∈ M.

Nonce-Based AE Schemes. A nonce-based authenticated encryption scheme
(with associated data) [44] is a tuple Π̃ = (Ẽ , D̃) of a deterministic encryption

algorithm Ẽ : K×N ×H×M→ C×T , and a deterministic decryption algorithm
D̃ : K×N×H×C×T →M∪{⊥}, with associated non-empty key space K, non-
empty nonce space N , and H,M, C ⊆ {0, 1}∗ denote the header, message, and
ciphertext space, respectively. We define a tag space T = {0, 1}τ for a fixed τ ≥ 0.

We often write ẼN,H
K (M) and D̃N,H

K (C, T ) as short forms of Ẽ(K,N,H,M) and

D̃(K,N,H,C, T ). If a given tuple (N,H,C, T ) is valid, D̃N,H
K (C, T ) returns the

corresponding plaintext M , and ⊥ otherwise. We assume that for all K ∈ K, N ∈
N , H ∈ H, and M ∈ M holds stretch-preservation: if ẼN,H

K (M) = (C, T ), then

|C| = |M | and |T | = τ , correctness : if ẼN,H
K (M) = (C, T ), then D̃N,H

K (C, T ) =

M , and tidiness : if D̃N,H
K (C, T ) = M 6= ⊥, then ẼN,H

K (M) = (C, T ), for all
C ∈ C and T ∈ T . Note that some notions (e.g., [41]) regard an authenticated
ciphertext C with |C| = |M |+ τ instead of an explicitly separated tuple (C, T ).

Subtle AE Schemes. Barwell et al. defined a subtle AE scheme Π̃ = (Ẽ , D̃,Λ)

as a tuple of deterministic encryption and decryption algorithms Ẽ and D̃ as
above2, and an additional deterministic leakage algorithm Λ : K × N × H ×
C × T → {⊤} ∪ L, with a non-empty leakage space L and a symbol ⊤ 6∈ L to
indicate a valid input. This means, for all K ∈ K, N ∈ N , H ∈ H, C ∈ C, and
T ∈ T holds: if ΛN,H

K (C, T ) = ⊤, then D̃N,H
K (C, T ) 6= ⊥; moreover, it holds that

if ΛN,H
K (C, T ) 6= ⊤, then D̃N,H

K (C, T ) = ⊥.

3 Definition of RIV

Definition 2 (RIV). Let d, n, τ ≥ 1. Let K1, K2, and K = K1 × K2 be non-
empty key sets, N a non-empty nonce space, {0, 1}d the non-empty domain
space, and H,M, C ⊆ {0, 1}∗ header, message, and ciphertext spaces, respec-
tively, and T = {0, 1}τ a tag space. Let further F : K1×{0, 1}d×N ×H×M→
{0, 1}n be a function and Π = (E ,D) a nonce-based encryption scheme with asso-
ciated key space K2 and nonce space {0, 1}τ . Let F i

K(·, ·, ·) denote FK(〈i〉d, ·, ·, ·).

Then, we define the AE scheme RIVF,Π = (Ẽ , D̃) with encryption algorithm

2 Though, their definitions denote the authenticated ciphertext (C, T ) as C.
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C

EK2

N,HM

IV

F 1
K1

F 2
K1

T

S

0n 1: function ẼK1,K2(N,H,M)
2: IV ← F 1

K1
(N,H,M)

3: C ← EK2(IV,M)
4: T ← F 2

K1
(N,H,C)⊕ IV

5: return (C,T )

11: function D̃K1,K2(N,H,C, T )
12: IV ← F 2

K1
(N,H,C)⊕ T

13: M ← DK2(IV,C)
14: IV ′ ← F 1

K1
(N,H,M)

15: if IV = IV ′ then return M
16: return ⊥

21: function ΛK1,K2(N,H,C, T )
22: IV ← F 2

K1
(N,H,C)⊕ T

23: M ← DK2(IV,C)
24: IV ′ ← F 1

K1
(N,H,M)

25: if IV = IV ′ then return ⊤
26: return M

Fig. 1: Left: Schematic illustration of the encryption of RIVF,Π with a PRF F and
a nonce-based encryption scheme Π = (E ,D). Right: Definition of encryption and
decryption algorithms of RIVF,Π , and definition of a plaintext-leaking oracle Λ that
will be used in our security analysis.

Ẽ : K×N ×H×M→ C×T and decryption algorithm D̃ : K×N ×H×C×T →
M∪ {⊥}, as given in Figure 1.

Definition 3 (R̂IV). We define the SAE scheme R̂IVF,Π = (Ẽ , D̃,Λ) with an
additional deterministic leakage algorithm Λ : K×N ×H× C × T →M×{⊤},
as given in Figure 1.

Feistel Structure and Encode-then-Encipher (EtE). RIV can be seen as
an application of the EtE [9] approach by Bellare et al. EtE can generically be
used for constructing a robust AE scheme from a tweakable cipher, assuming its
enciphering resists chosen-plaintext and chosen-ciphertext attacks [24]. The RIV

cipher, however, is essentially an unbalanced three-round Feistel-network.3 It is
well-known that such ciphers are secure against chosen-plaintext, but vulnerable
to chosen-ciphertext attacks [35] (see also [2,36,42]). RIV is robust in spite of
its weak enciphering scheme, because its encoding operation has been chosen to
specifically cover this weakness.

4 Security Notions

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We

3 If the used encryption scheme Π = (E ,D) is nonce-keystream-based, the RIV cipher
is a three-round Feistel network.
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use the notation A for the class of all computationally bounded adversaries
and A

O for the output of A after interacting with some oracle O. We write

∆A(OL;OR) := supA∈A |Pr[A
O

L

⇒ 1] − Pr[AO
R

⇒ 1]| for the advantage of
A to distinguish between oracles OL and OR. All probabilities are defined over
the random coins of the oracles and those of the adversary, if any. We write
Adv

X
F (q, ℓ, t) = maxA∈A{Adv

X
F (A)} to refer to the maximal advantage over all

X-adversaries A on a given function F that run in time at most t and pose at
most q queries consisting of at most ℓ blocks in total to the available oracles. If A
shall distinguish between two sets of oracles (OL

1 , . . . ,O
L
k ) and (OR

1 , . . . ,O
R
k ), we

refer to the i-th oracle that A interacts with by Oi ∈ {OL
i ,O

R
i }. By Oi →֒ Oj ,

we denote that A first queries Oi and later Oj with the output of Oi. Wlog.,
we assume that A never asks queries to which it already knows the answer. In
the case when A has access to multiple oracles O1, . . . ,Ok, we denote by qi the
number of queries and by ℓi the maximal number of blocks that A poses at most
to oracle Oi, 1 ≤ i ≤ k.
If Oi and Oj represent a family of algorithms indexed by inputs, the indices must

match, e.g., when ẼN,H
K (M) and D̃N,H

K (C) represent encryption and decryption

algorithms with a fixed key K and indexed by N and H , then ẼK →֒ D̃K says
that A first queries ẼN,H

K (M) and later D̃N,H
K (C).

We define ⊥, when in place of an oracle, to always return the invalid symbol
⊥. We denote by $O an oracle that, given an input X , computes Y ← O(X),
chooses uniformly at random a value Y ′ from the space of all possible outputs
with |Y ′| = |Y |, and returns Y ′. We assume that $O performs lazy sampling,
i.e., $O(X) returns the same value when queried with the same input X . We

often omit the key for brevity, e.g., $Ẽ(X) will be short for $ẼK (X).

4.1 Security Definitions for Encryption Schemes

Definition 4 (PRF Advantage). Let F : K × X → Y be a function with
non-empty key space K, and A a computationally bounded adversary with access
to an oracle, where K և K and ρ և Func(X ,Y). Then, the PRF advantage of
A on F is defined as Adv

PRF

F (A) := ∆A(FK ; ρ).

Definition 5 (PRP Advantage). Let n, k ≥ 1 be fixed. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a block cipher and A a computationally bounded adversary
with access to an oracle. Further, let K և {0, 1}k and π և Perm({0, 1}n). Then,
the PRP advantage of A on E is defined as Adv

PRP

E (A) := ∆A(EK ;π).

Stinson [48] showed that one can construct an (ǫ1 + ǫ2)-AU family of hash func-
tions from the consecutive application of an ǫ1-AU and an ǫ2-AU family of hash
functions. From that we can derive the following theorem.

Theorem 2. Let X ,Y,Z ⊆ {0, 1}∗ and let K be a non-empty set. Further, let
H = {H : X → Y} be a family of ǫ-AU hash functions and let G : K×Y → Z be a
function. Then, we can define FK(X) := GK(H(X)), with independent K և K
and H և H. Let A be a PRF adversary on F that asks at most q queries of
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at most ℓ blocks in total, and runs in time at most t. Then, there exists a PRF

adversary A1 on G that asks at most q queries and runs in time O(t) such that

Adv
PRF

F (A) ≤ Adv
PRF

G (A1) + ǫ · q2/2.

Theorem 2 follows from the fact, that the PRF advantage of F is upper bounded
by the maximal PRF advantage on G plus the maximal probability of output
collisions of the form H(X) = H(X ′) over q queries.

Definition 6 (nE Advantage [41]). Let Π = (E ,D) be a nonce-based en-
cryption scheme and K և K. Let A be a nonce-respecting adversary with access
to an oracle. Then, the nE advantage of A on Π is defined as Adv

nE

Π (A) :=

∆A(EK ; $E).

We adapt the definition of indistinguishability from random bits from [23] for
nonce-based encryption schemes. Note that we strengthen it to adversaries that
do not repeat nonces over all encryption and decryption queries.

Definition 7 (SRND Advantage). Let be Π = (E ,D) a nonce-based encryp-
tion scheme and K և K. Let A be a nonce-respecting adversary with access
to two oracles O1 and O2, s.t. A never asks for O1 →֒ O2 and never repeats a
nonce over all its encryption and decryption queries. Then, we define the SRND

advantage of A on Π as Adv
SRND

Π (A) := ∆A(EK ,DK ; $E , $D).

4.2 Security Definitions for Nonce-Based AE Schemes

For this subsection, let Π̃ = (Ẽ , D̃) be a nonce-based AE scheme, K և K, and

A be a computationally bounded adversary on Π̃.

Definition 8 (IND-CPA Advantage). Let A have access to an encryption

oracle. Then, the IND-CPA advantage of A with respect to Π̃ is defined as

Adv
IND-CPA

Π̃
(A) := ∆A(ẼK ; $Ẽ).

Definition 9 (INT-CTXT Advantage). Let A have access to two oracles
O1 and O2 such that A never queries O1 →֒ O2. Then, the INT-CTXT advan-

tage of A on Π̃ is defined as Adv
INT-CTXT

Π̃
(A) := Pr[AẼK ,D̃K forges], where

“forges” means that D̃K returns anything other than ⊥ for a query of A.

Definition 10 (nAE Advantage [41]). Let A have access to two oracles O1

and O2 such that A never queries O1 →֒ O2. Then, the nAE advantage of A

on Π̃ is defined as Adv
nAE

Π̃
(A) := ∆A(ẼK , D̃K ; $Ẽ ,⊥).

Bellare and Namprempre showed for probabilistic AE that chosen-ciphertext
security results from IND-CPA and INT-CTXT security [8]. Fleischmann et
al. proved in [19] a generalized theorem for nonce-based AE.

Theorem 3 (Theorem 1 in [19]). Let A be a computationally bounded nAE

adversary on Π̃ with access to two oracles O1 and O2 such that A never queries
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O1 →֒ O2; A makes at most q queries of total length of at most ℓ blocks and
runs in time at most t. Then, there exist an IND-CPA adversary A1 on Π̃ and
an INT-CTXT adversary A2 on Π̃, both making at most q queries of at most
ℓ blocks and running in time O(t) each, such that

Adv
nAE

Π̃
(A) ≤ Adv

IND-CPA

Π̃
(A1) +Adv

INT-CTXT

Π̃
(A2).

4.3 Security Definitions for Subtle AE Schemes

Subtle AE (SAE) defines a compound security notion that provides guarantees
for privacy and authenticity under the existence of a leakage oracle. It comprises
the notions IND-CPA, INT-CTXT, and an additional notion ERR-CCA.
For this subsection, let Π̃ = (Ẽ , D̃,Λ) be an SAE scheme, K,K ′

և K × K
independent keys, and A a deterministic adversary with access to three oracles
O1,O2, and O3 such that A neither queries O1 →֒ O2 nor O1 →֒ O3.

Definition 11 (ERR-CCA Advantage). The ERR-CCA advantage of A

on Π̃ is defined as Adv
ERR-CCA

Π̃
(A) := ∆A(ẼK , D̃K ,ΛK ; ẼK , D̃K ,ΛK′).

Definition 12 (SAE Advantage). The SAE advantage of A on Π̃ is defined

as Adv
SAE

Π̃
(A) := ∆A(ẼK , D̃K ,ΛK ; $Ẽ ,⊥,ΛK′).

In the full version of [7], Barwell et al. prove a statement equivalent to Theorem 4.
We apply Theorem 3 to decompose their AE security advantage term into the
separate advantages for IND-CPA and INT-CTXT.

Theorem 4. Let A run in time at most t and ask at most q queries of at most ℓ
blocks to its respective oracles. Then, there exist computationally bounded IND-

CPA, INT-CTXT, and ERR-CCA adversaries A1, A2, and A3, respectively,
on Π̃ such that

Adv
SAE

Π̃
(A) ≤ Adv

IND-CPA

Π̃
(A1) +Adv

INT-CTXT

Π̃
(A2) +Adv

ERR-CCA

Π̃
(A3),

where A1, A2, and A3 each make at most q queries of at most ℓ blocks and run
in time O(t) each.

Since [4] omitted a compound notion for their security under release of unverified

plaintexts, Barwell et al. defined RUPAE as ∆A(ẼK , D̃K ,VK ; $Ẽ , D̃K′ ,⊥) [7,
Theorem 3, Corollary 2]. They showed that the maximal SAE advantage on an

AE scheme Π̃ is, with a reduction term, also equivalent to the maximal RUPAE

advantage. Moreover, they showed that – again with a reduction term – it is also
equivalent to the maximal robust-AE advantage on Π̃ with fixed stretch τ .

5 Security Results for Generic RIV

This section summarizes our security results. For the remainder of this section,
let d, n, τ ≥ 1 be integers, K1, K2 be non-empty key spaces, and K1,K2 և

K1 × K2 be independent keys, F : K1 × {0, 1}d × N × H ×M → {0, 1}n, and
Π = (E ,D) be a nonce-based encryption scheme with associated key space K2.

8



Theorem 5. Let A be a computationally bounded SAE adversary on R̂IVF,Π

which asks at most q queries of at most ℓ blocks in total and runs in time at
most t. Then, there exists a computationally bounded PRF adversary A1 on F
that asks at most 2q queries of at most 2(d + nℓ) bits and runs in time O(t),
and a computationally bounded SRND adversary A2 on Π that asks at most q
queries of at most ℓ blocks in total and runs in time O(t) such that

Adv
SAE

R̂IVF,Π
(A) ≤

8q2 + 3q

2n
+ 4 ·

(
Adv

PRF

F (A1) +Adv
SRND

Π (A2)
)
.

Due to space limitations, the proof can be found in the full version of this paper4.
We can derive the following corollary for the nAE advantage on RIVF,Π in the
absence of a plaintext-leaking oracle.

Corollary 1. Let A be a computationally bounded nAE adversary on RIVF,Π

which asks at most q queries of at most ℓ blocks in total and runs in time at
most t. Then, there exist a computationally bounded PRF adversary A1 on F
that asks at most 2q queries of at most 2(d + nℓ) bits and runs in time O(t),
and a computationally bounded SRND adversary A2 on Π that asks at most q
queries of at most ℓ blocks in total and runs in time O(t), such that

Adv
nAE

RIVF,Π
(A) ≤

2q2 + q

2n
+ 2 ·

(
Adv

PRF

F (A1) +Adv
SRND

Π (A2)
)
.

The proof can be found can be found in the full version of this paper.

Proof Ideas. The intuition of our proofs is the following: in encryption direc-
tion, for every fresh tuple of nonce, header, and message, F will produce a fresh
IV ← F 1

K(N,H,M) that has not occurred before with overwhelming probabil-
ity. Since Π is SRND-secure, E will produce a randomly chosen ciphertext. The
second invocation of F with a fresh ciphertext then produces a random tag.
To determine the privacy advantage of the scheme, we have to bound only the
PRF-advantage on F , the SRND-security of E , and the probabilities of random
collisions of IV s from the birthday paradox.
In decryption direction, whenever the nonce, header, or ciphertext changes,
IV ← F 2

K(N,H,C) will be a random value up to the birthday bound. Since Π is
SRND-secure, a fresh IV (regarded over all encryption and decryption queries)
will produce a fresh pseudorandom plaintext. Thus, even when the adversary
learns the decrypted (invalid) message, M will provide it with no information
about other plaintexts as long as the IV does not repeat. When an adversary
changes N , H , or C and manages to cancel the difference by a fresh tag, the
second call to F 1

K(N,H,M) will yield a random IV ′ that differs from IV with
probability close to 1/2n. Thus, a similar argumentation as for the encryption
also applies to the inverse direction. Finally, the domain separation from the first
parameter to F protects against choices of (N,H,M) = (N,H,C).

4 The full version of this paper will soon appear on ePrint.
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6 Instantiation

Pseudo-Dot-Product Hashing. Let n,m ≥ 1 with even m and let X =⋃m/2
i=1 {0, 1}

2in. Given a set of m pair-wise independent key words K = (K1,
. . ., Km) and an m-word input M = (M1, . . . ,Mm), with Mi,Ki ∈ {0, 1}n,
1 ≤ i ≤ m, a pseudo-dot-product (PDP) family of hash functions H = {H :
X × X → {0, 1}2n} is defined as

HK(M) :=

m/2∑

i=1

(M2i−1 +K2i−1) · (M2i +K2i).

Bernstein [11] credits it to Winograd [51] and classifies it as (m, ⌈m/2⌉)-design,
i.e., it requires m independent key words and ⌈m/2⌉multiplications to process m
message words. If modular additions and multiplications are performed within
the rings Z2n and Z22n , the construction is known as NH, to be 1/2n-AU, and is
used in variants in UMAC [13], VMAC [18,32], and HS1 [33]. All these construc-
tions employ a multi-stage hashing process: the input is first compressed with
NH, before the results are used as inputs in a usual polynomial hash (and op-
tionally further processed by an inner-product hash). To obtain a slightly higher
security margin and efficiency, we consider a recently proposed variant, called
CLHASH.

6.1 CLHASH

CLHASH [34] is a family of multi-stage hash functions that produces 64-bit
hashes and employs a PDP family of hash functions CLNH, which resembles
NH, but replaces modular additions and multiplications with XORs and carry-
less multiplications in GF(264)/p(x) with the irreducible polynomial p(x) = x

64+
x
4 + x

3 + x + 1. Therefore, CLNH can exploit the vpclmulqdq instruction for
64-bit carry-less multiplication which was originally introduced for boosting the
performance of GCM [21].
CLHASH[m] splits a given message M into (64m)-bit blocks (M1, . . . ,Ms),
and pads the final block with zeroes such that its length becomes a multiple of
128 bits. Each block Mj is compressed with CLNH to a 128-bit value Aj . If
the message consists of only a single block, the message length |M | is multiplied
with an independent key KL ∈ {0, 1}64 and XORed to the result; the result is
reduced to a 64-bit value modulo p(x) = x

64 + x
4 + x

3 + x+ 1 and returned.
For longer messages, the values Aj are processed by a polynomial hash with
an independent key KP ∈ {0, 1}

128 and reduced modulo q(x) = x
127 + x + 1.

For efficiency, the two most significant bits of KP are fixed to zero, and a lazy
reduction modulo x

128 + x
2 + x is used instead without affecting security.

The 128-bit result of the polynomial hash is then reduced to a 64-bit value by an-
other application of CLNH with two further independent key words KA1 ,KA2 ∈
{0, 1}64. The result H is finally XORed with the hashed length to account for
inputs of variable lengths, and is reduced to a 64-bit value.

10



Algorithm 1 Definition of CLHASH
T[m, t] with a hash length of 64t bits, a

block length of m/8 bytes, and t Toeplitz iterations.

101: function CLHASH
T[m, t]K(M)

102: (KN ,KP ,KA,KL)← KeyGen(K)
103: s← max(⌈64 · |M |/m⌉, 1)

104: (M1, . . . ,Ms)
64m
←−−−M

105: Ms ← pad128(Ms)
106: for i← 1 to t do

107: for j ← 1 to s do

108: Kj ← KN (2i−1)..m+2(i−1)

109: Aj ← CLNH[m]Kj (Mj)

110: if s = 1 then

111: H1 ← A1

112: else

113: KP i ← KP i mod 2126

114: Oi ← PolyKP i
(A1, . . . , As)

115: Hi ← CLNH[2]KAi
(Oi)

116: Hi ← HashLenKLi
(Hi, |M |)

117: return (H1 ‖ · · · ‖Ht)

201: function CLNH[m]Kj (Mj)
202: return

⊕m

i=1

(
Mj2i−1 ⊕Kj2i−1

)

203: · (Mj2i ⊕Kj2i)

301: function KeyGen(K)
302: κ← 64(m+ 2t− 2)
303: KN ← K[1..κ]
304: KP ← K[(κ+ 1)..(κ+ 128t)]
305: κ← κ+ 128t
306: KA ← K[(κ+ 1)..(κ + 128t)]
307: κ← κ+ 128t
308: KL ← K[(κ+ 1)..(κ+ 64t)]
309: return (KN , KP ,KA,KL)

401: function PolyKP (A1, . . . , As)
402: return

⊕s

i=1 Ai ·K
s−i
P

403: mod(2128 + 4 + 2)

501: function HashLenKL(Hi, |M |)
502: return (Hi ⊕ (KL · |M |))
503: mod(264 + 27)

601: function padn(X)
602: if (|X| mod n = 0) then

603: return X
604: return X ‖ 0n−|X| mod n

In [34], the authors show that CLHASH is XOR-universal for messages of up
to b = 8m bytes, and ǫ-AXU for messages of up to N bytes.

Theorem 6 (Lemma 9 in [34]). Let N ≥ 1 denote the maximal message
length in bytes, m ≥ 2 be even, and b = 8m the key size of CLNH. Then,
CLHASH as defined above is ǫ-AXU with

ǫ ≤ ǫCLNH[m] + ǫPoly + ǫCLNH[2] ≤
1

264
+

N/b− 1

2126
+

1

264
,

where the terms stem from the facts that CLNH[m] is an ǫCLNH[m]-AU, and the
polynomial hash an ǫPoly-AXU family of hash functions.

The recommended values N ≤ 264 and b = 1024 yield ǫ ≤ 2.004/2−64. The
construction requires b+ 40 bytes of key material: b bytes for CLNH, a 16-byte
value KP for the polynomial hash, two eight-byte values KA[1],KA[2] for the
final call to CLNH, and an eight-byte value KL for hashing the input length.

Toeplitz Extension. To obtain a hash function with 128-bit security, one can
process the same message twice under independent keys and concatenate the
results. Doubling the key lengths of KP , KA, and KL increases their keys to 80
bytes. Since doubling the key length for CLNH would absurdly increase the key
material, we use the Toeplitz extension [31,37] instead. Let Ki..j be short for
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Ki, . . . ,Kj, 1 ≤ i ≤ j. Given an ǫ-AU family of hash functions H : {0, 1}mn ×
{0, 1}mn → {0, 1}n which compresses an m-word input with an m-word key, one
can derive a hash function Ht : {0, 1}(m+2t−2)n × {0, 1}mn → {0, 1}tm by

Ht
K1..(m+2t−2)

(M) := HK1..m(M) ‖HK3..(m+2)
(M) ‖ · · · ‖HK(2t−1)..(m+2t−2)

(M).

So, the i-th call to H employs the key shifted by 2i−2 words. In total, the key size
increases slightly from m to m+2(t− 1) words. We refer to the Toeplitz version
of CLNH by CLNH

T[m, t], and to that of CLHASH[m] by CLHASH
T[m, t].

Algorithm 1 provides a specification. In total, CLHASH
T[m, t] requires (8m+

56t− 16) bytes of key material, which corresponds to (8m+ 96) bytes for t = 2.

Definition 13 (Toeplitz CLHASH). Let n = 64, t ≥ 1, m ≥ 2 be even.

Let X =
⋃m/2

i=1 {0, 1}
2in. Let further KN = {0, 1}64m+128(t−1), KP = {0, 1}128t,

KA = {0, 1}128t, KL = {0, 1}64t, and K = KN × KP × KA × KL. The family
of keyed hash functions CLHASH

T[m, t] : K × X → {0, 1}64t is defined in
Algorithm 1.

Theorem 7. For any fixed n, t ≥ 1, and even m ≥ 2, CLNH
T[m, t] is 2−nt-AU

on equal-length strings.

The proof of Theorem 7 can be found in the full version of this paper.

Theorem 8. Let N ≤ 264 be the maximal message length in bytes, t ≥ 1, m ≥ 2
be even, and b = 8m the key length for CLNH in bytes. Then, CLHASH

T[m, t]
is an ǫt-AXU family of hash functions with

ǫ ≤ ǫCLNH[m] + ǫPoly + ǫCLNH[2] ≤
1

264
+

N/b− 1

2126
+

1

264
≤

3

264
.

The proof of Theorem 8 follows from Theorem 7 and the fact that the keys for
the individual iterations of polynomial, inner-product, and length hashing steps
are chosen uniformly from their respective spaces and pairwise independently
for each iteration. We can derive that CLHASH

T[m, 2] is ǫ-AXU for ǫ ≤ 9/2128

when m ≥ 2.

6.2 Constructing a PRF

Let n, d ≥ 1, and N , H, M be as in Section 3. For brevity, we define Y :=
{0, 1}d ×N ×H ×M. Let Encode : Y → {0, 1}∗ define an injective encoding
function. Then, we can construct a PRF from the composition of Encode, a
family of ǫ-AU hash functions H′ = {H ′|H ′ : {0, 1}∗ → {0, 1}n}, and a block
cipher E : K2 × {0, 1}n → {0, 1}n, with independent keys K1 ∈ K1 determin-
ing the hash function, and K2 ∈ K2 for the cipher. We call the construction
EHE[Encode,H′, E] : Y → {0, 1}n (for Encode-Hash-Encrypt) and define it as

EHE[Encode,H′, E]K1,K2(D,N,H,M) := EK2(H
′
K1

(Encode(D,N,H,M))).

We write EHE[H′, E] or even EHE as short forms of EHE[Encode,H′, E]
when the components are clear from the context. The injective encoding excludes
collisions between distinct inputs. From Theorem 2, and applying the PRF/PRP

switching lemma, we can derive the following theorem.
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Algorithm 2 Encryption of nonce-based XOR-CTR, instantiated with a block
cipher E : {0, 1}k × {0, 1}n → {0, 1}n, with n, k ≥ 1.

1: function XOR-CTR[E].ENK (M)
2: IV ← EK(N)
3: m← ⌈|M |/n⌉
4: κ← EK(IV ⊕ 〈0〉) ‖ · · · ‖EK(IV ⊕ 〈m− 1〉)
5: return C ←M ⊕ κ[first |M | bits]

Theorem 9. Let π և Perm({0, 1}n). Further, let EHE[Encode,H′, π], H′,
and Encode be defined as above. Let A be a computationally bounded adversary
that asks at most q queries of at most ℓ blocks and runs in time at most t. Then

Adv
PRF

EHE[Encode,H′,π](A) ≤

(
q

2

)
·

(
1

2n
+ ǫ

)
.

6.3 Encryption

When starting counter-mode encryption from a random value and incrementing
by modular addition, one has to either consider potential carry bits or to reduce
the security by fixing a maximal message length. Wang et al. [50] proposed
to replace modular addition by XOR, which avoids the need for concerning
carry bits. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. We define
XOR-CTR[E] = (E ,D) as the nonce-based encryption scheme with encryption
algorithm XOR-CTR[E].E : {0, 1}k × N × {0, 1}∗ → {0, 1}∗ and associated
non-empty nonce-space N , as defined in Algorithm 2.
We denote by XOR-CTR[π, π′] a version of XOR-CTR with two independent
n-bit permutations π and π′, where π is used for encrypting the nonce and π′

for producing the keystream. Then, XOR-CTR[π, π′] is almost identical to the
CTR2[π, π′] construction in [45], with the difference that the former replaces
the addition of IV and counter modulo 2n by XOR. Since this change does
not affect the probability of block-cipher inputs to repeat, the nE advantage of
XOR-CTR is given by Theorem 10, which adapts Theorem 3 in [45].

Theorem 10. Let π, π′
և Perm({0, 1}n) × Perm({0, 1}n) be independent per-

mutations and A be a nonce-respecting nE adversary, which runs in time at
most t and poses at most q queries to its oracles with at most ℓ blocks. Then

Adv
nE

XOR-CTR[π,π′](A) ≤
ℓ2

2n
.

From the fact that encryption and decryption of XOR-CTR[π, π′] are identical
operations, we can derive the following theorem.

Theorem 11. There exists a reduction of a nonce-respecting SRND adversary
A with access to two oracles on XOR-CTR[π, π′] to a nonce-respecting nE

adversary A
′ on XOR-CTR[π, π′] such that

Adv
SRND

XOR-CTR[π,π′](A) ≤ Adv
nE

XOR-CTR[π,π′](A
′),
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Algorithm 3 Definition of our instantiation RIVF,Π . Message and header
lengths are restricted to multiple of eight bits, and nonces/IVs/tags are 128
bits: n = τ = 128, and d = 4. Here, we leave the key size of CLHASH

T[m, 2],
m, as a parameter to study its impact on performance later.

101: function ẼSK(N,H,M)
102: (K1,K2)← KeyGen(SK)
103: IV ← EHE

1
K1,K2

(N,H,M)
104: C ← XOR-CTR[E].EK2(IV,M)
105: T ← EHE

2
K1,K2

(N,H,C)⊕ IV
106: return (C, T )

201: function KeyGen(SK)
202: K2 ← ESK(〈0〉)
203: κ← (8m+ 96)/16
204: K1 ← ESK(〈1〉) ‖ · · · ‖ESK(〈κ〉)
205: return (K1,K2)

301: function EHE
D
K1,K2

(N,H,X)
302: Y ← Encode(D,N,H,X)
303: return EK2(H

′
K1

(Y ))

401: function padn(X)
402: if (|X| mod n = 0) then

403: return X
404: return X ‖ 0n−|X| mod n

501: function D̃SK(N,H,C, T )
502: (K1,K2)← KeyGen(SK)
503: IV ← EHE

2
K1,K2

(N,H,C) ⊕ T
504: M ← XOR-CTR[E].DK2(IV,C)
505: IV ′ ← EHE

1
K1,K2

(N,H,M)
506: if (IV = IV ′) then

507: return M
508: return ⊥

601: function Encode(D,N,H,X)
602: H ← pad128(H)
603: X ← pad128(X)
604: L← 〈D〉d ‖ 〈|H |/8〉60 ‖ 〈|X|/8〉64
605: return (H ‖N ‖X ‖L)

701: function H′
K1

(X)
702: return CLHASH

T[m, 2]K1(X)

801: function EK2(X)
802: return AES-128K2(X)

where both A and A
′ ask at most q queries of at most ℓ blocks to their available

oracle(s) and run in time O(t).

6.4 Instantiation of RIV

We instantiate RIVF,Π with EHE[Encode,H′, E] for F , with CLHASH
T[m, 2]

as family of universal hash functions H′, and XOR-CTR[E] for Π , with the
AES-128 as E. Algorithm 3 provides a specification. Our instantiation RIVF,Π

expects a 128-bit user-supplied secret key SK, from which the remaining key
material is derived by calling ESK(·) iteratively in counter mode. The secret key
is not used further. RIV uses n = τ = 128, i.e., n-bit tags, and n-bit IV s for the
counter mode. Moreover, the nonce space is fixed to 128 bits: N = {0, 1}n. For
F , it employs a four-bit domain separation, i.e., d = 4, and an injective encoding
function Encode : {0, 1}d ×N ×H ×M→ {0, 1}∗, as defined in Algorithm 3.
Header and message lengths are restricted to multiple of eight bits. The maximal
number of header and message bytes to be encrypted under the same key are
260 bytes each. So, the maximal number of bytes for RIV is less than 262 bytes.
We recommend that at most 250 bytes be encrypted under the same key.

Using a Single Key for the Block Cipher. There are four uses of the block
cipher E in RIV: in the first invocation of EHE, for encrypting the IV , for
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generating the keystream in XOR-CTR[E], and in the second invocation of
EHE. If four more calls to the AES key schedule would be tolerable, one could
use four independent keys. Alternatively, we use a single key for the uses of E,
and have to consider the security impact in the following theorem. Its proof can
be found in the full version of this paper.

Theorem 12. Let RIVF,Π be defined as in Algorithm 3. Let K1,K2 և K be
independent keys. We replace the calls to E by independent random permutations
π1, π2, π3, π4 և Perm({0, 1}n)4. Let A be a computationally bounded adversary
that has access to three oracles O1, O2, and O3 for encryption, decryption, and
leakage, respectively. A shall distinguish between a real setting of RIVF,Π as
above with a single-keyed block cipher E, and RIVF,Π which uses four indepen-
dent uniformly chosen permutations π1, π2, π3, π4

և Perm({0, 1}n) with π1 used
in EHE

1, π2 used in EHE
2, and π3, π4 used for XOR-CTR[π3, π4]. A asks

at most q queries of at most ℓ blocks and runs in time at most t. Then, we can
upper bound the distinguishing advantage of A by

16.5ℓ2 ·max {ǫ, 1/2n}+Adv
PRP

E (ℓ+ 3q, O(t)).

Theorem 13. Let d = 4, n = τ = 128, and m ≥ 2 be even. Let RIVF,Π be as
given in Algorithm 3 and let A1, A2, A3 be computationally bounded IND-CPA,
INT-CTXT, and ERR-CCA adversaries on RIVF,Π , respectively, which run
each in time at most t and ask at most q queries of at most ℓ blocks in total.
Then, it holds that

Adv
IND-CPA

RIVF,Π
(A) ≤

2q2 + ℓ2

2n
+ q2ǫ+ δE ,

Adv
INT-CTXT

RIVF,Π
(A) ≤

2q2 + q + ℓ2

2n
+ q2ǫ + δE ,

Adv
ERR-CCA

RIVF,Π
(A) ≤

8q2 + 2q + 2ℓ2

2n
+ 2q2ǫ+ δE ,

where δE = 16.5ℓ2 · ǫ +Adv
PRP

E (ℓ+ 3q, O(t)) and ǫ ≤ 9/2128.

The proof follows from Theorems 5, 8, 9, and 11, and those of the lemmata from
Section 5 that can be found in the full version of this paper.

6.5 Performance of RIV

We implemented reference and optimized versions of RIV in C.5 Since the de-
fault key length for one iteration CLNH of b = 1024 bytes (which corresponds
to CLHASH

T[128, 2]) appeared high, we tested also a variant with a smaller
key size of b = 256 bytes for CLNH (CLHASH

T[32, 2]). Table 1 summarizes
the results of our benchmarks. Our code was compiled using gcc v4.9.3 with
options -O3 -maes -mavx2 -mpclmul -march=native, and run on (1) an Intel

5 Our code is open to the public domain: https://github.com/medsec/riv.
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Message length (bytes)

Platform Instance b 128 256 512 1024 2048 4096 8192 16384

Haswell

RIV 256 3.81 2.78 2.14 1.81 1.62 1.48 1.40 1.37

RIV 1024 3.53 2.13 1.81 1.49 1.37 1.29 1.25 1.22

RIV (2-pass) 256 1.71 1.40 1.26 1.14 1.08 1.04 1.01 0.99

RIV (2-pass) 1024 2.20 1.60 1.17 1.08 1.01 0.97 0.94 0.92

Broadwell

RIV 256 3.16 2.41 1.84 1.49 1.38 1.26 1.20 1.15

RIV 1024 3.13 2.11 1.56 1.34 1.16 1.09 1.04 1.02

RIV (2-pass) 256 2.16 1.67 1.30 1.09 1.03 0.95 0.92 0.90

RIV (2-pass) 1024 2.19 1.50 1.14 1.01 0.92 0.86 0.84 0.82

Table 1: Performance results on Intel Haswell and Broadwell, respectively, in cycles
per byte for the encryption with optimized implementations of RIV and a reduced
version, which omits the second call to F . b denotes the key length for CLNH in bytes.
Details regarding our setup are provided in the text.

Core i5-4200M (Haswell) at 2.50 GHz, and (2) on an Intel i5-5200 (Broadwell) at
2.20 GHz, both with the TurboBoost, SpeedStep, and HyperThreading technolo-
gies disabled. For measuring, we used the median of 10000 encryptions, omitting
the cost for key setup, using the rdtsc instruction.
Our results show that RIV can run at less than 1.5 cpb on Haswell. Interest-
ingly, a SIV-like reduced version of RIV, which is an easily obtained byproduct
that simply omits the second call to F , represents a performant MRAE scheme
with ≤ 1.04 cpb. This is slightly faster than the 4867/4096 ≈ 1.17 cpb reported
for the manually assembly-optimized AES-GCM-SIV [22] and 1.06 cpb for the
version of MRO with four-round BLAKE2b in [20], concerning messages of at
least four KiB length on Haswell. Clearly, the reported performance of AEZv4

of about 0.7 cpb is unrivaled. Though, our construction provides a slightly higher
security margin. Moreover, the security of AEZv4 bases on heuristic assump-
tions on four-round AES.

7 Conclusion

This work described a modular framework RIV for the construction of provably
secure subtle AE schemes by extending the SIV framework from two to three
passes. The obvious strength of RIV resides in the simplicity of its structure: it
allows a straight-forward transformation of existing SIV-based constructions into
subtle AE schemes. We proved the security in the standard model under notions
that strive for ideal security goals; a further step could be to prove achievable
security in the RAE setting with fixed stretch. Moreover, since the generic RIV

construction bases only on PRF assumptions, this leaves open the possibility
for proofs in the indifferentiability setting [40]. RIV is slightly less efficient than
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earlier STPRP constructions, i.e., it employs three additional calls to an n-bit
PRP, compared to e.g., a single call in HCTR-based [50] constructions. Since
the use of a nonce-based encryption scheme (E ,D) poses only the requirement on
the IV to be a nonce, it might look to be sufficient to have two calls to universal
hash functions instead of to calls to a PRF F . Yet, at least the outputs from
the first invocation of F , F 1

K1
(·, ·, ·) must be unpredictable in order to prevent

leaking information about the message in the tag. A potential future work can
be to further study reductions of the design to target even higher efficiency.
Nevertheless, we proposed an instantiation that is highly efficient on current x64
platforms and avoids the weak-key issues that were reported for GHASH-based
polynomials in HCTR instantiations [49].
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