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Abstract. RC4 is a stream cipher designed by Ron Rivest in 1987, and
is widely used in various applications. WPA is one of these applications,
where TKIP is used for a key generation procedure to avoid weak IV
generated by WEP. In FSE 2014, two different attacks against WPA
were proposed by Sen Gupta et al. and Paterson et al. Both focused
correlations between the keystream bytes and the first 3 bytes of the
RC4 key in WPA. In this paper, we focus on linear correlations between
unknown internal state and the first 3 bytes of the RC4 key in both
generic RC4 and WPA, where the first 3 bytes of the RC4 key is known
in WPA. As a result, we could discover various new linear correlations,
and prove these correlations theoretically.
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1 Introduction

RC4 is a stream cipher designed by Ron Rivest in 1987, and is widely used
in various applications such as Secure Socket Layer/Transport Layer Security
(SSL/TLS), Wired Equivalent Privacy (WEP) andWi-fi Protected Access (WPA),
etc. Due to its popularity and simplicity, RC4 has become a hot cryptanalysis
target since its specification was made public on the internet in 1994.

WEP is a security protocol for IEEE 802.11 wireless networks, standardized
in 1999. Various attacks against WEP, however, have been proposed in [7, 16, 17]
after Fluhrer et al. showed a class of weak IV in 2001 [3], and WEP is considered
to be broken completely today. In order to avoid the attack by Fluhrer et al. [3],
WEP had been superseded by WPA in 2003. WPA improves a key scheduling
procedure known as Temporary Key Integrity Protocol (TKIP) to avoid a class
of weak IV generated in WEP. One of characteristic features in TKIP is that
the first 3 bytes of the RC4 key K[0], K[1], and K[2] are derived from IV, and
then, they are public. The range of K[1] is limited to either [32, 63] or [96, 127]
in order to avoid the known WEP attacks by Fluhrer et al. [3].

In FSE 2014, Sen Gupta et al. showed a probability distribution of an addition
of the first two bytes of the RC4 key, K[0] +K[1], in detailed, and found that
? Supported by the project “The Security infrastructure Technology for Integrated
Utilization of Big Data” of Japan Science and Technology Agency CREST.
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some characteristic features including K[0]+K[1] must be always even [4]. They
also showed some linear correlations between the keystream bytes and the first
known 3 bytes of the RC4 key in WPA. They applied these linear correlations
to the existing plaintext recovery attack against SSL/TLS [6] with WPA, and
improve its computational complexity required for the attack. In [13], Paterson
et al. showed the specific correlations in WPA between the keystream bytes
and a combination of IV by a different idea from [4]. They also improved the
computational complexity required for the attack against WPA in comparison
with the existing attack against SSL/TLS [1].

In this paper, we investigated new linear correlations among four unknown
values Sr[ir+1], Sr[jr+1], jr+1 and tr+1 and the first known 3 bytes of the RC4 key
K[0], K[1], and K[2] in both generic RC4 and WPA. An important differences
between ours and previous works [4, 13] is to whether analysis target is the
internal states or the keystream bytes. The previous works are effective for the
plaintext recovery attacks [1, 6]. On the other hand, our investigation is effective
for the state recovery attacks [2, 8, 12]. In addition, we also focus on the difference
between generic RC4 andWPA, and then, discover that there exist some different
correlations between generic RC4 and WPA, which exactly reflect difference of
distributions of the first 3 bytes of the RC4 key. Our motivation is to prove these
linear correlations theoretically. Some of our proved significant biases are given
as follows:

Theorem 1: Pr(S0[i1] = K[0])RC4 ≈ 1
N

(
1− 1

N

)N−2
;

Theorem 2: Pr(S0[i1] = K[0])WPA = 0;

Theorem 3: Pr(S0[i1] = K[0]−K[1]− 3)

≈

{
2
N α1 +

1
N

(
1− 2

N

)
(1− α1) for RC4,

4
N α1 +

1
N

(
1− 4

N

)
(1− α1) for WPA;

Theorem 4: Pr(S0[i1] = K[0]−K[1]− 1)

≈

{
1
N

(
1 + 2

N

)
α1 +

1
N

(
1− 2

N

)
(1− α1) for RC4,

4
N α1 +

1
N

(
1− 4

N

)
(1− α1) for WPA;

Theorem 5: Pr(S255[i256] = K[0])

≈ α0

(
1− 1

N

)255
+ 1

N (1− α0)
(
1−

(
1− 1

N

)255)
;

Theorem 6: Pr(S255[i256] = K[1])

≈ δ
(
1− 1

N

)255
+ 1

N (1− δ)
(
1−

(
1− 1

N

)255)
;

Theorem 7: Pr(Sr[ir+1] = K[0] +K[1] + 1) (0 ≤ r ≤ N)

≈



α1 if r = 0,

α1γ1 + (1− β1)ε2 if r = 1,

ε0
(
1− 1

N

)N−1
+ 1

N (1− ε0)
(
1−

(
1− 1

N

)N−1)
if r = N − 1,

ζ1
(
1− 1

N

)N−1
+ 1

N (1− ζ1)
(
1−

(
1− 1

N

)N−1)
if r = N ,

ζr+1

(
1− 1

N

)r−1
+ 1

N

∑r−1
x=1 ηx

(
1− 1

N

)r−x−1
otherwise,
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where α0 = Pr(S0[0] = K[0]), α1 = Pr(S0[1] = K[0] + K[1] + 1), β1 =
Pr(S0[S0[1]] = K[0]+K[1]+1), γ1 = Pr(K[0]+K[1] = 1), δ = Pr(S0[0] = K[1]),
ε0 = Pr(S0[0] = K[0] + K[1] + 1), ζr = Pr(S1[r] = K[0] + K[1] + 1) and
ηr = Pr(Sr[ir+1] = K[0] +K[1] + 1). Both α0 and α1 are Roos’ biases [15], and
β1 is one of Nested Roos’ biases [9].

These newly demonstrated correlations could be added to the known set of
biases for Sr[ir+1], Sr[jr+1], jr+1 and tr+1 for r ≥ 0 on known key bytes in WPA,
and could improve some state recovery attacks against RC4.

This paper is organized as follows: Section 2 briefly summarizes notation,
RC4 algorithms and key scheduling procedure in WPA. Section 3 presents the
previous works on Roos’ biases [14, 15], Nested Roos’ biases [9] and the distribu-
tion of K[0]+K[1] in WPA [4]. Section 4 first discusses some linear correlations
observed by our experiments, and shows theoretical proofs. Section 5 demon-
strates experimental simulations. Section 6 concludes this paper.

2 Preliminary

2.1 Description of RC4

The following notation is used in this paper.

K, l : secret key, the length of secret key (bytes)

r : number of rounds

N : number of arrays in state (typically N = 256)

SK
r : state of KSA after the swap in the r-th round

Sr : state of PRGA after the swap in the r-th round

i, jKr : indices of SK
r for the r-th round

ir, jr : indices of Sr for the r-th round

Zr : one output keystream for the r-th round

tr : index of Zr

RC4 consists of two algorithms: Key Scheduling Algorithm (KSA) and Pseudo
Random Generation Algorithm (PRGA). KSA generates the state SK

N from a
secret key K of l bytes as described in Algorithm 1. Then, the final state SK

N in
KSA becomes the input of PRGA as S0. Once the state S0 is computed, PRGA
generates a keystream byte Zr in each round as described in Algorithm 2. The
keystream byte Zr will be XORed with a plaintext to generate a ciphertext.

Algorithm 1 KSA

1: for i = 0 to N − 1 do
2: SK

0 [i]← i
3: end for
4: jK0 ← 0
5: for i = 0 to N − 1 do
6: jKi+1 ← jKi + SK

i [i] +K[i mod l]
7: Swap(SK

i [i], SK
i [jKi+1])

8: end for

Algorithm 2 PRGA
1: r ← 0, i0 ← 0, j0 ← 0
2: loop
3: r ← r + 1, ir ← ir−1 + 1
4: jr ← jr−1 + Sr−1[ir]
5: Swap(Sr−1[ir], Sr−1[jr])
6: tr ← Sr[ir] + Sr[jr]
7: Output: Zr ← Sr[tr]
8: end loop
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2.2 Description of WPA

In order to generate a 16-byte RC4 secret key, WPA uses two key scheduling
procedures: a key management scheme and the TKIP, which includes a temporal
key hash function [5] to generate RC4 secret key and a message integrity code
function to ensure integrity of the message. The key management scheme after
the authentication based on IEEE 802.1X generates a 16-byte Temporal Key
(TK). Then, the TK, a 6-byte Transmitter Address and a 48-bit IV, which is
a sequence counter, are given as the inputs to the temporal key hash function.
The temporal key hash function generates the last 13 bytes of the RC4 key. The
remaining RC4 key, the first 3 bytes, is computed by the last 16 bits of IV (IV16)
as follows:

K[0] = (IV16 >> 8) & 0xFF,

K[1] = ((IV16 >> 8) | 0x20) & 0x7F,

K[2] = IV16 & 0xFF.

Note that the range of K[1] is limited to either [32, 63] or [96, 127] in order to
avoid the known WEP attack by Fluhrer et al. [3].

3 Previous works

In 1995, Roos’ biases [15], correlations between RC4 key bytes and the initial
state S0 of PRGA, are proved in [14] and given as follows:

Proposition 1 ([14, Corollary 2]). In the initial state of PRGA for 0 ≤ y ≤
N − 1, we have

Pr(S0[y] =
y(y + 1)

2
+

y∑
x=0

K[x]) ≈
(
1− y

N

)
·
(
1− 1

N

)[
y(y+1)

2 +N ]

+
1

N
.

In FSE 2008, Maitra and Paul showed correlations similar to Roos’ biases [9],
so called Nested Roos’ biases in [10]. Nested Roos’ biases are given as follows:

Proposition 2 ([9, Theorem 2]). In the initial state of PRGA for 0 ≤ y ≤ 31,
Pr(S0[S0[y]] = fy) is approximately

(
y

N
+

1

N

(
1− 1

N

)2−y

+

(
1− y

N

)2(
1− 1

N

))(
1− 1

N

) y(y+1)
2 +2N−4

,

where fy = y(y+1)
2 +

∑y
x=0 K[x].

In FSE 2014, Sen Gupta et al. showed that the distribution of K[0] +K[1] has
biases from a relation between K[0] and K[1] generated by the temporal key
hash function in WPA [4]. This distribution is given as follows:
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Proposition 3 ([4, Theorem 1]). For 0 ≤ v ≤ N − 1, the distribution of the
sum v of K[0] and K[1] generated by the temporal key hash function in WPA is
given as follows:

Pr(K[0] +K[1] = v) = 0 if v is odd,

Pr(K[0] +K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159],

Pr(K[0] +K[1] = v) = 2/256 if v is even and

v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255],

Pr(K[0] +K[1] = v) = 4/256 if v is even and v ∈ [64, 95] ∪ [192, 223].

They also showed that Proposition 3 combining Roos’ biases shown in Proposi-
tion 1 induced a characteristic bias on the distribution of the initial state S0[1]
of PRGA, which deeply influences on the biases of the first keystream byte Z1,
etc.

4 New linear correlations

4.1 Experimental observation

Let us investigate new correlations of four unknown values Sr[ir+1], Sr[jr+1],
jr+1 and tr+1 for r ≥ 0. Other linear correlations of the keystream bytes Zr are
investigated in [4]. Let Xr ∈ {Sr[ir+1], Sr[jr+1], jr+1, tr+1}, a, b, c, d ∈ {0,±1}
and e ∈ {0,±1,±2,±3},

Xr = a·Zr+1 + b·K[0] + c·K[1] + d·K[2] + e. (1)

These biases by Eq. (1) can be added to the known set of biases for Sr[ir+1],
Sr[jr+1], jr+1 and tr+1 for r ≥ 0 on known keys in WPA such as K[0], K[1]
and K[2], and may reduce the computational complexity of the existing state
recovery attacks against RC4 [2, 8, 12] especially in WPA.

We have examined all 4 · 34 · 7 equations defined by Eq. (1) in each round
with 232 randomly generated 16-byte keys in both generic RC4 and WPA. Some
notable experimental results are presented in Tables 1 and 3. Due to lack of
space, only the results of correlations with more than 0.0048 or less than 0.0020
in either generic RC4 or WPA are listed. We stress that the case of S0[i1] = K[0]
in WPA becomes an impossible condition (probability 0), and thus, S0[i1] is
varied from [0, N−1]\{K[0]}. Our motivation is to prove these linear correlations
theoretically shown in Table 1.

In order to prove the following theorems, we often use Roos’ biases (Proposi-
tion 1), Nested Roos’ biases (Proposition 2) and the probability of K[0]+K[1] =

v (Proposition 3), which are denoted by αy = Pr(S0[y] =
y(y+1)

2 +
∑y

x=0 K[x]),

βy = Pr(S0[S0[y]] =
y(y+1)

2 +
∑y

x=0 K[x]) and γv = Pr(K[0] + K[1] = v), re-
spectively. From uniform randomness of RC4 stream cipher, we assume that the
probability of certain events (e.g. the state information) that we have confirmed
experimentally that there are no significant biases is 1

N due to random asso-
ciation for the proofs. Furthermore, we assume that the RC4 key is generated
uniformly at random in generic RC4.
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Table 1. Notable linear correlations in Eq. (1) for both generic RC4 and WPA

Xr Linear correlations RC4 WPA Remarks

K[0] 0.001450 0 Theorems 1 and 2
S0[i1] K[0]−K[1]− 3 0.005337 0.007848 Theorem 3

K[0]−K[1]− 1 0.003922 0.007877 Theorem 4

K[0] 0.137294 0.138047 Theorem 5
S255[i256] K[1] 0.003911 0.037189 Theorem 6

Sr[ir+1] K[0] +K[1] + 1 Fig. 1 Theorem 7

Fig. 1. Observation result of event (Sr[ir+1] = K[0] +K[1] + 1)

4.2 Bias in S0[i1] for both generic RC4 and WPA

In this section, we prove Theorems 1-4. Theorems 1 and 2 shows that S0[i1] =
K[0] holds with low probability and 0 in generic RC4 and WPA, respectively.
Theorems 3 and 4 show that both S0[i1] = K[0]−K[1]− 3 and K[0]−K[1]− 1
in WPA hold twice as frequently as probability 1

N due to random association.
Theorem 3 also shows that event (S0[i1] = K[0]−K[1]− 3) provides a case with
positive bias in generic RC4.

Theorem 1. In the initial state of PRGA, we have

Pr(S0[i1] = K[0])RC4 ≈ 1

N

(
1− 1

N

)N−2

.

Proof. Fig. 2 shows a state transition diagram in the first 2 rounds of KSA.
From step 6 in Algorithm 1, both jK1 = jK0 +SK

0 [0]+K[0] = 0+0+K[0] = K[0]
and jK2 = jK1 + SK

1 [1] + K[1] = K[0] + K[1] + SK
1 [1] hold. The probability of

event (S0[i1] = K[0]) can be decomposed in three paths: K[0] +K[1] = 0 (Path
1), K[0]+K[1] = 255 (Path 2) and K[0]+K[1] 6= 0, 255 (Path 3). Both Paths 1
and 2 are further divided into two subpaths: K[0] = 1 (Paths 1-1 and 2-1) and
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K[0] 6= 1 (Paths 1-2 and 2-2), respectively. In the following proof, we use S0[1]
instead of S0[i1] (i1 = 1) and SK

N [1] for simplicity.

Path 1-1. Fig. 3 shows a state transition diagram in Path 1-1. After the second
round of KSA, SK

2 [1] = K[0] always holds since jK1 = K[0] = 1 and jK2 =
K[0]+K[1]+SK

1 [1] = 0+0 = 0. Furthermore, SK
r [1] = SK

2 [1] for 3 ≤ r ≤ N if

jKr 6= 1 during the subsequent N−2 rounds, whose probability is
(
1− 1

N

)N−2

approximately. Thus, the probability in Path 1-1 is given as follows:

Pr(S0[1] = K[0] | Path 1-1) ≈
(
1− 1

N

)N−2

.

Path 1-2. Fig. 4 shows a state transition diagram in Path 1-2. SK
2 [0] = K[0]

always holds since jK1 = K[0] 6= 1 and jK2 = (K[0]+K[1])+SK
1 [1] = 0+1 = 1.

Then, event (S0[1] = K[0]) never occurs because SK
r [1] 6= K[0] always holds

for r ≥ 2. Thus, the probability in Path 1-2 is 0.
Path 2-1. Fig. 5 shows a state transition diagram in Path 2-1. SK

2 [0] = K[0]
always holds in the same way as Path 1-2. Then, event (S0[1] = K[0]) never
occurs. Thus, the probability in Path 2-1 is 0.

Path 2-2. Fig. 6 shows a state transition diagram in Path 2-2. SK
2 [1] = K[0]

always holds in the same way as Path 1-1. Then, event (S0[1] = K[0]) occurs
if Sr[1] = SK

2 [1] for 3 ≤ r ≤ N . Thus, the probability in Path 2-2 is given as
follows:

Pr(S0[1] = K[0] | Path 2-2) ≈
(
1− 1

N

)N−2

.

Path 3. Fig. 2 shows a state transition diagram in Path 3. SK
2 [0] = K[0] always

holds in the same way as Paths 1-2 and 2-1. Then, event (S0[1] = K[0]) never
occurs. Thus, the probability in Path 3 is 0.

In summary, event (S0[i1] = K[0]) occurs only in either Paths 1-1 or 2-2. There-
fore, we get

Pr(S0[i1] = K[0]) = Pr(S0[i1] = K[0] | Path 1-1) · Pr(Path 1-1)

+ Pr(S0[i1] = K[0] | Path 2-2) · Pr(Path 2-2)

≈
(
1− 1

N

)N−2

· 1

N2
+

(
1− 1

N

)N−2

· 1

N

(
1− 1

N

)
=

1

N

(
1− 1

N

)N−2

. ut

Theorem 2. In the initial state of PRGA in WPA, we have

Pr(S0[i1] = K[0])WPA = 0.

Proof. Note that event (S0[1] = K[0]) occurs if and only if either K[0]+K[1] = 0
or 255, and that Proposition 3 shows that neither K[0]+K[1] = 0 nor 255 holds
in WPA. Thus, the probability of event (S0[1] = K[0]) in WPA is 0. ut
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Fig. 2. A state transition diagram in the first 2 rounds of KSA

Fig. 3. Path 1-1 in Theorem 1 Fig. 4. Path 1-2 in Theorem 1

Fig. 5. Path 2-1 in Theorem 1 Fig. 6. Path 2-2 in Theorem 1

Theorem 3. In the initial state of PRGA, we have

Pr(S0[i1] = K[0]−K[1]− 3) ≈


2

N
α1 +

1

N

(
1− 2

N

)
(1− α1) for RC4,

4

N
α1 +

1

N

(
1− 4

N

)
(1− α1) for WPA.

Proof. The probability of event (S0[i1] = K[0] −K[1] − 3) can be decomposed
in two paths: K[1] = 126, 254 (Path 1) and K[1] 6= 126, 254 (Path 2). In the
following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. In K[1] = 126, 254, event (S0[1] = K[0]−K[1]− 3) occurs if and only
if S0[1] = K[0]+K[1]+1. Thus, the probability in Path 1 is given as follows:

Pr(S0[1] = K[0]−K[1]− 3 | Path 1) = α1.

Path 2. In K[1] 6= 126, 254, event (S0[1] = K[0] − K[1] − 3) never occurs if
S0[1] = K[0] +K[1] + 1. If S0[1] 6= K[0] +K[1] + 1 holds, then we assume
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that event (S0[1] = K[0]−K[1]−3) occurs with probability 1
N due to random

association. Thus, the probability in Path 2 is given as follows:

Pr(S0[1] = K[0]−K[1]− 3 | Path 2) ≈ 1

N
· (1− α1).

In summary, we get

Pr(S0[i1] = K[0]−K[1]− 3)

= Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈


2

N
α1 +

1

N

(
1− 2

N

)
(1− α1) for RC4,

4

N
α1 +

1

N

(
1− 4

N

)
(1− α1) for WPA,

where α1 = Pr(S0[1] = K[0] +K[1] + 1) ≈
(
N−1
N

)N+2
+ 1

N . ut

The probability ofK[1] = 126 or 254 in generic RC4 is 1
N in order to be generated

uniformly at random. On the other hand, that of K[1] = 126 or 254 in WPA is 4
N

or 0, respectively. Thus, Theorem 3 reflects the difference of Pr(K[1] = 126, 254)
in both generic RC4 and WPA.

Theorem 4. In the initial state of PRGA, we have

Pr(S0[i1] = K[0]−K[1]− 1)

≈


1

N

(
1 +

2

N

)
α1 +

1

N

(
1− 2

N

)
(1− α1) for RC4,

4

N
α1 +

1

N

(
1− 4

N

)
(1− α1) for WPA.

Proof. The probability of event (S0[i1] = K[0] −K[1] − 1) can be decomposed
in three paths: K[1] = 127 (Path 1), K[1] = 255 (Path 2) and K[1] 6= 127, 255
(Path 3). In the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for
simplicity.

Path 1. In K[1] = 127, event (S0[1] = K[0] − K[1] − 1) occurs if and only if
S0[1] = K[0] +K[1] + 1. Thus, the probability in Path 1 is given as follows:

Pr(S0[1] = K[0]−K[1]− 1 | Path 1) = α1.

Path 2. In K[1] = 255, event (S0[1] = K[0] − K[1] − 1) occurs if and only if
S0[1] = K[0]+K[1]+1, and K[0]+K[1]+1 = K[0]−K[1]−1 = K[0]. Then,
from the discussion in Theorem 1, event (S0[1] = K[0]) occurs if and only
if either (K[0] + K[1] = 0 ∧ K[0] = 1) or (K[0] + K[1] = 255 ∧ K[0] 6= 1).
So, assuming that both K[1] = 255 and S0[1] = K[0] +K[1] + 1 hold, event
(S0[1] = K[0] −K[1] − 1) occurs if and only if either K[0] = 0 or 1. Thus,
the probability in Path 2 is given as follows:
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Pr(S0[1] = K[0]−K[1]− 1 | Path 2) ≈ Pr(K[0] = 0, 1) · α1.

Path 3. In K[1] 6= 127, 255, event (S0[1] = K[0] − K[1] − 1) never occurs if
S0[1] = K[0] +K[1] + 1. If S0[1] 6= K[0] +K[1] + 1 holds, then we assume
that event (S0[1] = K[0]−K[1]−1) occurs with probability 1

N due to random
association. Thus, the probability in Path 3 is given as follows:

Pr(S0[1] = K[0]−K[1]− 1 | Path 3) ≈ 1

N
· (1− α1).

In summary, we get

Pr(S0[i1] = K[0]−K[1]− 1)

= Pr(S0[i1] = K[0]−K[1]− 1 | Path 1) · Pr(Path 1)

+ Pr(S0[i1] = K[0]−K[1]− 1 | Path 2) · Pr(Path 2)

+ Pr(S0[i1] = K[0]−K[1]− 1 | Path 3) · Pr(Path 3)

≈


1

N

(
1 +

2

N

)
α1 +

1

N

(
1− 2

N

)
(1− α1) for RC4,

4

N
α1 +

1

N

(
1− 4

N

)
(1− α1) for WPA,

where α1 = Pr(S0[1] = K[0] +K[1] + 1) ≈
(
N−1
N

)N+2
+ 1

N . ut

ForWPA, Theorems 3 and 4 show that Pr(S0[i1] = K[0]−K[1]−3) = Pr(S0[i1] =
K[0]−K[1]− 1) holds. This is because the probability of K[1] = 127 or 255 in
WPA is 4

N or 0, respectively.

4.3 Biases in S255[i256] for both generic RC4 and WPA

Theorem 5 shows that S255[i256] = K[0] holds with high probability in both
generic RC4 and WPA. On the other hand, Theorem 6 shows S255[i256] = K[1]
holds with high probability only in WPA.

Theorem 5. After the 255-th round of PRGA, we have

Pr(S255[i256] = K[0]) ≈ α0

(
1− 1

N

)255

+
1

N
(1− α0)

(
1−

(
1− 1

N

)255)
.

Proof. The probability of event (S255[i256] = K[0]) can be decomposed in two
paths: S0[0] = K[0] (Path 1) and S0[0] 6= K[0] (Path 2). In the following proof,
we use S255[0] instead of S255[i256] (i256 = 0) for simplicity.

Path 1. In S0[0] = K[0], event (S255[0] = K[0]) occurs if Sr[0] = S0[0] for

1 ≤ r ≤ 255, whose probability is
(
1 − 1

N

)255
approximately. Thus, the

probability in Path 1 is given as follows:

Pr(S255[0] = K[0] | Path 1) ≈
(
1− 1

N

)255

.
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Path 2. In S0[0] 6= K[0], event (S255[0] = K[0]) never occurs if Sr[0] = S0[0] for
1 ≤ r ≤ 255. Except when Sr[0] = S0[0] for 1 ≤ r ≤ 255, whose probability

is
(
1 −

(
1 − 1

N

)255)
approximately, we assume that event (S255[0] = K[0])

occurs with probability 1
N due to random association. Thus, the probability

in Path 2 is given as follows:

Pr(S255[0] = K[0] | Path 2) ≈ 1

N

(
1−

(
1− 1

N

)255)
.

In summary, we get

Pr(S255[i256] = K[0]) = Pr(S255[i256] = K[0] | Path 1) · Pr(Path 1)

+ Pr(S255[i256] = K[0] | Path 2) · Pr(Path 2)

≈ α0

(
1− 1

N

)255

+
1

N
(1− α0)

(
1−

(
1− 1

N

)255)
,

where α0 = Pr(S0[0] = K[0]) ≈
(
1− 1

N

)N
+ 1

N . ut
Before showing Theorem 6, we will show in Lemma 1 that S0[0] = K[1] with
high probability only in WPA.

Lemma 1. In the initial state of PRGA, we have

Pr(S0[0] = K[1]) ≈


1

N
− 1

N2

(
1− α0

)
for RC4,

1

4

(
3

N
+

(
1− 3

N

)
α0

)
for WPA.

Proof. The probability of event (S0[0] = K[1]) can be decomposed in two paths:
K[1] = K[0] (Path 1) and K[1] 6= K[0] (Path 2).

Path 1. In K[1] = K[0], event (S0[0] = K[1]) occurs if and only if S0[0] = K[0].
Thus, the probability in Path 1 is given as follows:

Pr(S0[0] = K[1] | Path 1) = α0.

Path 2. In K[1] 6= K[0], event (S0[0] = K[1]) never occurs if S0[0] = K[0].
If S0[0] 6= K[0], then we assume that event (S0[0] = K[1]) occurs with
probability 1

N due to random association. Thus, the probability in Path 2 is
given as follows:

Pr(S0[0] = K[1] | Path 2) ≈ 1

N
· (1− α0).

In summary, we get

Pr(S0[0] = K[1]) = Pr(S0[0] = K[1] | Path 1) · Pr(Path 1)

+ Pr(S0[0] = K[1] | Path 2) · Pr(Path 2)

≈


α0 ·

1

N
+

1

N
(1− α0) ·

(
1− 1

N

)
=

1

N
− 1

N2

(
1− α0

)
for RC4,

α0 ·
1

4
+

1

N
(1− α0) ·

3

4
=

1

4

(
3

N
+

(
1− 3

N

)
α0

)
for WPA,
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where α0 = Pr(S0[0] = K[0]) ≈
(
1− 1

N

)N
+ 1

N . ut

Lemma 1 reflects that the probability of event (K[1] = K[0]) in WPA, 1
4 , is

higher than that in generic RC4, 1
N .

Theorem 6. After the 255-th round of PRGA, we have

Pr(S255[i256] = K[1]) ≈ δ

(
1− 1

N

)255

+
1

N
(1− δ)

(
1−

(
1− 1

N

)255)
,

where δ is Pr(S0[0] = K[1]) given as Lemma 1.

Proof. The proof itself is similar to Theorem 5, and used the probability of event
(S0[0] = K[1]) given as Lemma 1 instead of the probability of event (S0[0] =
K[0]). Therefore, we get

Pr(S255[i256] = K[1]) = Pr(S255[0] = K[1] | S0[0] = K[1]) · Pr(S0[0] = K[1])

+ Pr(S255[0] = K[1] | S0[0] 6= K[1]) · Pr(S0[0] 6= K[1])

≈ δ

(
1− 1

N

)255

+
1

N
(1− δ)

(
1−

(
1− 1

N

)255)
,

where δ is Pr(S0[0] = K[1]) given as Lemma 1. ut

4.4 Bias in Sr[ir+1] (0 ≤ r ≤ N) for both generic RC4 and WPA

Theorem 7 shows Pr(Sr[ir+1] = K[0] +K[1] + 1) for 0 ≤ r ≤ N , whose experi-
mental result is listed Fig. 1 in Section 4.1. Before showing Theorem 7, Lemmas
2 and 3, distribution of the state in the first 2 rounds of PRGA, are proved.

Lemma 2. In the initial state of PRGA for 0 ≤ x ≤ N − 1, we have

Pr(S0[x] = K[0] +K[1] + 1)

≈



(
1− 1

N

)N+2

+
1

N
if x = 1

1

N2

(
1− 1

N

)2

if x = 0 for WPA

1

N

(
1− 1

N

)(
1

N

(
1− x+ 1

N

)
+

(
1− 1

N

)N−x−2)
otherwise.

Proof. First, the probability of event (S0[1] = K[0]+K[1]+1) follows the result

in Proposition 1, that is, Pr(S0[1] = K[0] +K[1] + 1) ≈
(
1− 1

N

)N+2
+ 1

N .
Next, the probability of event (S0[x] = K[0] +K[1] + 1) for x ∈ [0, N ]\{1}

can be decomposed in two paths: SK
x [jKx+1] = K[0] + K[1] + 1 (Path 1) and

SK
x [jKx+1] 6= K[0] +K[1] + 1 (Path 2).
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Path 1. In SK
x [jKx+1] = K[0]+K[1]+1, SK

x+1[x] = K[0]+K[1]+1 always holds
due to swap operation. Furthermore, if SK

r [x] = SK
x+1[x] for x+ 2 ≤ r ≤ N ,

whose probability is
(
1 − 1

N

)N−x−1
approximately, then S0[x] = K[0] +

K[1] + 1 always holds. Thus, the probability in Path 1 is given as follows:

Pr(S0[x] = K[0] +K[1] + 1 | Path 1) ≈
(
1− 1

N

)N−x−1

.

Path 2. Let y be satisfied with SK
x [y] = K[0] +K[1] + 1. In SK

x [jKx+1] 6= K[0] +
K[1]+1, SK

x+1[x] = K[0]+K[1]+1 never holds due to swap operation. After
the x + 1-th round, if x ≥ y, then event (S0[x] 6= K[0] + K[1] + 1) occurs
because SK

r [x] 6= K[0] + K[1] + 1 always holds for x + 1 ≤ r ≤ N . Else if
x < y, then we assume that event (S0[x] = K[0] + K[1] + 1) occurs with
probability 1

N due to random association, and the probability of x < y is
1− x+1

N . In order to be satisfied x < y, we further consider K[0] = 1, whose
probability is 1

N . If K[0] 6= 1, then SK
2 [1] = K[0] + K[1] + 1 always holds

from the discussion in Theorem 1, and thus, SK
r [x] 6= K[0] +K[1] + 1 holds

for 2 ≤ r ≤ N . In summary, the probability in Path 2 is given as follows:

Pr(S0[x] = K[0] +K[1] + 1 | Path 2) =
1

N2

(
1− x+ 1

N

)
.

In summary, we get

Pr(S0[x] = K[0] +K[1] + 1)

= Pr(S0[x] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+ Pr(S0[x] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

≈ 1

N

(
1− 1

N

)(
1

N

(
1− x+ 1

N

)
+

(
1− 1

N

)N−x−2)
.

In the case of x = 0 in WPA, event (S0[0] = K[0] + K[1] + 1) never occurs in
SK
0 [jK1 ] = K[0]+K[1]+1 (Path 1) since SK

0 [jK1 ] = K[0] from step 6 in Algorithm
1. Then, K[1] = 255 never holds in WPA. Thus, Pr(S0[0] = K[0] + K[1] + 1)

occurs if and only if Path 2, whose probability is given simply as 1
N2

(
1− 1

N

)2
. ut

Lemma 3. After the first round of PRGA for 0 ≤ x ≤ N − 1, we have

Pr(S1[x] = K[0] +K[1] + 1) =

{
β1 if x = 1

α1γx−1 + (1− β1)εx otherwise,

where εx is Pr(S0[x] = K[0] +K[1] + 1) given as Lemma 2.

Proof. First, the probability of event (S1[1] = K[0]+K[1]+1) follows the result
in Proposition 2 because S1[1] = S1[i1] = S0[j1] = S0[S0[1]] from steps 4 and 5
in Algorithm 2, that is, Pr(S1[1] = K[0] +K[1] + 1) = β1.

Next, the probability of event (S1[x] = K[0]+K[1]+1) for x ∈ [0, N−1]\{1}
can be decomposed in two paths: S0[1] = K[0] +K[1] + 1 (Path 1) and S0[x] =
K[0] +K[1] + 1 (Path 2).
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Path 1. In S0[1] = K[0]+K[1]+1, if j1 = x, then event (S1[x] = K[0]+K[1]+1)
always occurs due to swap operation. Although both S0[1] = K[0]+K[1]+1
and j1 = x are not independent, both S0[1] = K[0] +K[1] + 1 and K[0] +
K[1] + 1 = x become independent by converting j1 = x into j1 = S0[1] =
K[0] +K[1] + 1 = x. Thus, the probability in Path 1 is given as follows:

Pr(S1[x] = K[0] +K[1] + 1 | Path 1) = Pr(K[0] +K[1] = x− 1).

Path 2. In S0[x] = K[0]+K[1]+1, if j1 = x, then event (S1[x] = K[0]+K[1]+1)
never occurs due to swap operation. If j1 6= x, then S1[x] = S0[x] = K[0] +
K[1] + 1 always holds, and S1[1] 6= K[0] + K[1] + 1 holds since S1[1] =
S0[j1] 6= S0[x] from swap operation in the first round. So, we assume that
both S0[x] = K[0] + K[1] + 1 and S1[1] 6= K[0] + K[1] + 1 are mutually
independent. Thus, the probability in Path 2 is given as follows:

Pr(S1[x] = K[0] +K[1] + 1 | Path 2) = Pr(S1[1] 6= K[0] +K[1] + 1).

In summary, we get

Pr(S1[x] = K[0] +K[1] + 1)

= Pr(S1[x] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+ Pr(S1[x] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

= α1γx−1 + (1− β1)εx,

where α1 = Pr(S0[1] = K[0] +K[1] + 1), β1 = Pr(S0[S0[1]] = K[0] +K[1] + 1),
γx−1 = Pr(K[0] +K[1] = x− 1) and εx = Pr(S0[x] = K[0] +K[1] + 1) is given
as Lemma 2. ut

Theorem 7. After the r-th round of PRGA for 0 ≤ x ≤ N , we have

Pr(Sr[ir+1] = K[0] +K[1] + 1)

≈



α1 if r = 0,

α1γ1 + (1− β1)ε2 if r = 1,

ε0

(
1− 1

N

)N−1

+
1

N
(1− ε0)

(
1−

(
1− 1

N

)N−1)
if r = N − 1,

ζ1

(
1− 1

N

)N−1

+
1

N
(1− ζ1)

(
1−

(
1− 1

N

)N−1)
if r = N ,

ζr+1

(
1− 1

N

)r−1

+
1

N

r−1∑
x=1

ηx

(
1− 1

N

)r−x−1

otherwise,

where εr is Pr(S0[r] = K[0] + K[1] + 1) given as Lemma 2, ζr is Pr(S1[r] =
K[0] + K[1] + 1) given as Lemma 3 and ηr is Pr(Sr[ir+1] = K[0] + K[1] + 1)
given as this theorem.
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Proof. First, the probability of events (S0[i1] = K[0] +K[1] + 1) and (S1[i2] =
K[0] +K[1] + 1) follow the result in Lemmas 2 and 3, respectively.

Next, both events (SN−1[iN ] = K[0] + K[1] + 1) and (SN [iN+1] = K[0] +
K[1] + 1) can be proved in the same way as the proof of Theorem 5.

Finally, the probability of event (Sr[ir+1] = K[0]+K[1]+1) for 2 ≤ r ≤ N−2
can be decomposed in two paths: S1[ir+1] = K[0] + K[1] + 1 (Path 1) and
Sx[ix+1] = K[0] +K[1] + 1 (1 ≤ x ≤ r − 1) (Path 2).

Path 1. In S1[ir+1] = K[0] + K[1] + 1, event (Sr[ir+1] = K[0] + K[1] + 1)

occurs if Sy[iy+1] = S1[ir+1] for 2 ≤ y ≤ r, whose probability is
(
1− 1

N

)r−1

approximately. Thus, the probability in Path 1 is given as follows:

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 1) ≈
(
1− 1

N

)r−1

.

Path 2. In Sx[ix+1] = K[0] + K[1] + 1 (1 ≤ x ≤ r − 1), if jx+1 = ir+1, then
Sx+1[ir+1] = K[0]+K[1]+1 always holds due to swap operation. After the x+
1-th round, event (Sr[ir+1] = K[0]+K[1]+1) occurs if Sy[iy+1] = Sx+1[ir+1]

for x+ 2 ≤ y ≤ r, whose probability is
(
1− 1

N

)r−x−1
approximately. Thus,

the probability in Path 2 is given as follows:

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 2) ≈ 1

N

(
1− 1

N

)r−x−1

.

Note that the range of x varies depending on the value of r in Path 2. In summary,
we get

Pr(Sr[ir+1] = K[0] +K[1] + 1)

= Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+
r−1∑
x=1

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

≈ ζr+1

(
1− 1

N

)r−1

+
1

N

r−1∑
x=1

ηx

(
1− 1

N

)r−x−1

,

where ζr = Pr(S1[r] = K[0]+K[1]+1) and ηr = Pr(Sr[ir+1] = K[0]+K[1]+1),
which is recursive probability in this theorem.

5 Experimental results

In order to check the accuracy of notable linear correlations shown in Theorems
1 to 7, the experiments are conducted using 240 randomly generated keys of 16
bytes in both generic RC4 and WPA, which mean 240(= N5) trials. Note that
O(N3) trials are reported to be sufficient to identify the biases with constant
probability of success. This is why each correlation has a relative bias with the
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probability of at least about 1
2N with respect to a base event of probability

1
N (refer to [11, Theorem 2] in detail). Our experimental environment is as
follows: Ubuntu 12.04 machine with 2.6 GHz CPU, 3.8 GiB memory, gcc 4.6.3
compiler and C language. We also evaluate the percentage of relative error ε of
experimental values compared with theoretical values:

ε =
|experimental value− theoretical value|

experimental value
× 100(%).

Table 2 shows experimental and theoretical values and the percentage of
relative errors ε, which indicates ε is small enough in each case such as ε ≤
4.589 (%). Fig. 7 shows comparison between experimental and theoretical values
in Theorem 7, and these distributions match on the whole. Therefore, we have
convinced that theoretical values closely reflects the experimental values.

Table 2. Comparison between experimental and theoretical values

Results Experimental value Theoretical value ε(%)

Theorem 1 0.001449605 0.001445489 0.284
Theorem 2 0 0 0

for RC4 0.005332558 0.005325263 0.137
Theorem 3 {

for WPA 0.007823541 0.008182569 4.589
for RC4 0.003922530 0.003898206 0.620

Theorem 4 {
for WPA 0.007851853 0.008182569 4.212

Theorem 5 0.138038917 0.138325988 0.208
for RC4 0.003909105 0.003893102 0.409

Theorem 6 {
for WPA 0.037186225 0.037105932 0.216

Fig. 7. Comparison between experimental and theoretical values shown in Theorem 7
for both generic RC4 and WPA
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6 Conclusion

In this paper, we have focused on the state information and investigated various
linear correlations among the unknown state information, the first 3 bytes of the
RC4 key, and a keystream byte in both generic RC4 and WPA. Particularly,
those linear correlations are effective for the state recovery attack since they
include the first known 3-byte keys (IV-related). As a result, we have discovered
more than 150 correlations with positive or negative biases. We have also proved
six notable linear correlations theoretically, these are biases in S0[i1], S255[i256]
and Sr[ir+1] for 0 ≤ r ≤ N . For example, we have proved that the probability
of (S0[i1] = K[0]) in WPA is 0 (shown in Theorem 2), and thus, S0[i1] is varied
from [0, 255] \K[0].

These new linear correlations could contribute to the improvement of the
state recovery attack against RC4 especially in WPA. It is still an open problem
to prove various linear correlations shown in Table 3 theoretically. It is also given
to an open problem to apply newly discovered linear correlations to the state
recovery attack.
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A Newly obtained linear correlations

In this part, Table 3 shows notable linear correlations newly discovered by our
experiment shown in Section 4.1.
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Table 3. Notable linear correlations in Eq. (1) for both generic RC4 and WPA

Xr Linear correlations RC4 WPA

S0[i1] −Z1 + 1 0.007584 0.007660
(= j1) −K[0]−K[1]−K[2] 0.005361 0.005360

−K[0]−K[1]− 3 0.005336 0.008437
−K[0]−K[1] + 1 0.005350 0.002600
−K[0]−K[1] + 3 0.005331 0.002605
−K[0]− 1 0.003823 0.005254
−K[0] + 2 0.003902 0.005340
−K[0] +K[1]− 3 0.005334 0.005240
−K[0] +K[1]− 1 0.005331 0.005229
K[1] + 1 0.006765 0.004322
K[0]−K[1] + 1 0.005324 0.002221
K[0]−K[1] + 3 0.005333 0.002640
K[0] +K[1] +K[2] + 3 0.001492 0.001491
Z1 −K[0]−K[1]−K[2]− 2 0.005326 0.004753

S1[i2] −Z2 −K[0] +K[1] 0.003905 0.004957
−Z2 −K[0] +K[1] + 2 0.003906 0.004839
−Z2 −K[1] +K[2]− 3 0.005314 0.005327
−Z2 0.007768 0.007791
−Z2 + 2 0.007751 0.007749
−Z2 +K[1] +K[2] + 3 0.005317 0.005328
−Z2 +K[0]−K[1] 0.003907 0.004958
−Z2 +K[0]−K[1] + 2 0.003906 0.004839
−K[0]−K[1]−K[2] + 1 0.005348 0.005351
−K[0]−K[1]−K[2] + 3 0.005281 0.005290
−K[0]−K[1] + 3 0.005329 0.004036
−K[0]−K[1] +K[2]− 3 0.005307 0.002491
−K[0]−K[1] +K[2]− 1 0.005305 0.008197
−K[0]−K[1] +K[2] + 1 0.005317 0.002491
−K[0]−K[1] +K[2] + 3 0.005305 0.002474
−K[0] +K[2]− 2 0.003904 0.005311
−K[0] +K[2] + 1 0.003906 0.005326
−K[0] +K[1]−K[2]− 3 0.005293 0.004616
−K[0] +K[1]−K[2]− 1 0.005296 0.005885
−K[0] +K[1]−K[2] + 1 0.005301 0.005279
−K[0] +K[1]−K[2] + 3 0.005300 0.005289
−K[0] +K[1] +K[2]− 3 0.005308 0.005322
−K[0] +K[1] +K[2]− 1 0.005305 0.005333
−K[0] +K[1] +K[2] + 1 0.005306 0.005326
−K[0] +K[1] +K[2] + 3 0.005310 0.004261
−K[1]−K[2]− 3 0.006748 0.006767
−K[2]− 1 0.006127 0.007571
−K[2] + 1 0.003915 0.005308
−K[2] + 3 0.003904 0.005306
K[2]− 3 0.003910 0.005309
K[2]− 1 0.003910 0.005321
K[2] + 1 0.003909 0.005331
K[2] + 3 0.006219 0.003886
K[1] +K[2] + 3 0.008157 0.006755
K[0]−K[1]−K[2]− 1 0.005309 0.005895
K[0]−K[1]−K[2] + 1 0.005302 0.005314
K[0]−K[1]−K[2] + 3 0.005308 0.005318
K[0]−K[1] +K[2]− 3 0.005295 0.008163
K[0]−K[1] +K[2]− 1 0.005290 0.008171
K[0]−K[1] +K[2] + 1 0.005309 0.008171
K[0]−K[1] +K[2] + 3 0.005310 0.002838
K[0] 0.001455 0.001452
K[0] +K[1]−K[2]− 3 0.005312 0.005340
K[0] +K[1]−K[2] + 1 0.005291 0.005295
K[0] +K[1]−K[2] + 3 0.005304 0.005309
Z2 −K[1]−K[2]− 3 0.005323 0.005333
Z2 +K[1] +K[2] + 3 0.005322 0.005332

S2[i3] −Z3 −K[0] +K[1] + 3 0.003906 0.004878
−Z3 + 3 0.007825 0.007819
−Z3 +K[0]−K[1] + 3 0.003907 0.004877
−K[0]−K[1] + 2 0.005335 0.005539
−K[0] +K[1] + 3 0.003901 0.004983
K[0] 0.001463 0.001458

S3[i4] −K[0]−K[1]−K[2] 0.005324 0.005325
−K[0]−K[1] + 3 0.006721 0.005513

S28[i29] −Z29 −K[0] +K[1]− 3 0.003906 0.004861

S29[i30] −Z30 −K[0] +K[1]− 2 0.003906 0.004863

S30[i31] −Z31 −K[0] +K[1]− 1 0.003907 0.004863

S31[i32] −Z32 −K[0] +K[1] 0.003906 0.004862

S32[i33] −Z33 −K[0] +K[1] + 1 0.003907 0.004860

S33[i34] −Z34 −K[0] +K[1] + 2 0.003906 0.004860

S34[i35] −Z35 −K[0] +K[1] + 3 0.003907 0.004863

S92[i93] −Z93 +K[0]−K[1]− 3 0.003904 0.004877

S93[i94] −Z94 +K[0]−K[1]− 2 0.003906 0.004877

S94[i95] −Z95 +K[0]−K[1]− 1 0.003907 0.004875

Xr Linear correlations RC4 WPA

S95[i96] −Z96 +K[0]−K[1] 0.003906 0.004878

S96[i97] −Z97 +K[0]−K[1] + 1 0.003906 0.004875

S97[i98] −Z98 +K[0]−K[1] + 2 0.003906 0.004875

S98[i99] −Z99 +K[0]−K[1] + 3 0.003906 0.004876

S124[i125] −Z125 −K[0] +K[1]− 3 0.003908 0.004874
−Z125 +K[0] +K[1]− 3 0.003906 0.004872

S125[i126] −Z126 −K[0] +K[1]− 2 0.003907 0.004876
−Z126 +K[0]−K[1]− 2 0.003907 0.004876

S126[i127] −Z127 −K[0] +K[1]− 1 0.003906 0.004874
−Z127 +K[0]−K[1]− 1 0.003906 0.004876

S127[i128] −Z128 −K[0] +K[1] 0.003908 0.004875
−Z128 +K[0]−K[1] 0.003907 0.004876

S128[i129] −Z129 −K[0] +K[1] + 1 0.003906 0.004875
−Z129 +K[0]−K[1] + 1 0.003907 0.004875

S129[i130] −Z130 −K[0] +K[1] + 2 0.003906 0.004875
−Z130 +K[0]−K[1] + 2 0.003906 0.004876

S130[i131] −Z131 −K[0] +K[1] + 3 0.003903 0.004876
−Z131 +K[0]−K[1] + 3 0.003906 0.004875

S156[i157] −Z157 −K[0] +K[1]− 3 0.003904 0.004876

S157[i158] −Z158 −K[0] +K[1]− 2 0.003906 0.004877

S158[i159] −Z159 −K[0] +K[1]− 1 0.003906 0.004875

S159[i160] −Z160 −K[0] +K[1] 0.003906 0.004876

S160[i161] −Z161 −K[0] +K[1] + 1 0.003906 0.004876

S161[i162] −Z162 −K[0] +K[1] + 2 0.003907 0.004875

S162[i163] −Z163 −K[0] +K[1] + 3 0.003907 0.004874

S220[i221] −Z221 +K[0]−K[1]− 3 0.003907 0.004860

S221[i222] −Z222 +K[0]−K[1]− 2 0.003907 0.004858

S222[i223] −Z223 +K[0]−K[1]− 1 0.003906 0.004861

S223[i224] −Z224 +K[0]−K[1] 0.003907 0.004859

S224[i225] −Z225 +K[0]−K[1] + 1 0.003908 0.004861

S225[i226] −Z226 +K[0]−K[1] + 2 0.003907 0.004861

S226[i227] −Z227 +K[0]−K[1] + 3 0.003907 0.004859

S252[i253] −Z253 −K[0] +K[1]− 3 0.003907 0.004876
−Z253 − 3 0.007813 0.007815
−Z253 +K[0]−K[1]− 3 0.003906 0.004875

S253[i254] −Z254 −K[0] +K[1]− 2 0.003906 0.004875
−Z254 − 2 0.007814 0.007812
−Z254 +K[0]−K[1]− 2 0.003906 0.004875

S254[i255] −Z255 −K[0] +K[1]− 1 0.003905 0.004875
−Z255 − 1 0.007816 0.007815
−Z255 +K[0]−K[1]− 1 0.003905 0.004876

S255[i256] −Z256 −K[0] +K[1] 0.003908 0.004875
−Z256 0.007861 0.007810
−Z256 +K[0]−K[1] 0.003909 0.004875

Sr[ir+1] −K[1]− 1 Fig. 8
K[0] Fig. 9

S0[j1] −Z1 +K[0] +K[1] + 1 0.005330 0.005280
−K[0]−K[1]− 3 0.004339 0.005513
−K[0]−K[1] + 1 0.005791 0.003417
K[1] + 1 0.004933 0.004087
K[0]−K[1]− 3 0.004403 0.005342
K[0]−K[1]− 1 0.004431 0.005346
Z1 −K[0]−K[1]−K[2]− 2 0.005295 0.004726
Z1 −K[0]−K[1]− 1 0.005188 0.005115

S1[j2] −Z2 +K[0] +K[1] + 1 0.005316 0.005335
−K[0]−K[1] + 1 0.005318 0.005408
Z2 −K[0]−K[1]−K[2]− 3 0.005686 0.005694
Z2 +K[0] +K[1] + 1 0.005321 0.005344

j2 −Z2 +K[0] +K[1] + 1 0.005318 0.005336
−Z2 +K[0] +K[1] + 3 0.005302 0.005310
−K[0]−K[1]−K[2] + 2 0.005333 0.005856
−K[0]−K[1] +K[2] 0.003919 0.005573
−K[0] +K[1] +K[2] 0.003921 0.005501
−K[1] +K[2]− 2 0.003911 0.005479
−K[1] +K[2] + 3 0.003899 0.005476
K[2] 0.004428 0.005571
K[0]−K[1] +K[2] 0.003918 0.005618
K[0] +K[1] + 3 0.005309 0.003889

t1 −Z1 −K[0]−K[1] + 1 0.005251 0.005333
−K[0]−K[1] + 2 0.005310 0.003902
K[0] 0.005291 0.004806
Z1 −K[0]−K[1]−K[2]− 1 0.006639 0.006094

t2 −Z2 −K[0]−K[1]−K[2] + 1 0.005301 0.005306
−Z2 +K[0] +K[1] + 1 0.005339 0.005341
K[0] +K[1] + 1 0.005317 0.005349

t3 K[0] +K[1] +K[2] + 3 0.005297 0.005310

tr Zr Fig. 10
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Fig. 8. Experimental result of event (Sr[ir+1] = −K[1]− 1)

Fig. 9. Experimental result of event (Sr[ir+1] = K[0])

Fig. 10. Experimental result of event (tr = Zr)


