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Abstract. We present a forgery attack on Prøst-OTR in a related-key
setting. Prøst is a family of authenticated encryption algorithms pro-
posed as candidates in the currently ongoing CAESAR competition, and
Prøst-OTR is one of the three variants of the Prøst design. The attack
exploits how the Prøst permutation is used in an Even-Mansour construc-
tion in the Feistel-based OTR mode of operation. Given the ciphertext
and tag for any two messages under two related keys K and K ⊕ ∆
with related nonces, we can forge the ciphertext and tag for a modified
message under K. If we can query ciphertexts for chosen messages under
K ⊕ ∆, we can achieve almost universal forgery for K. The computa-
tional complexity is negligible.
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1 Introduction

Due to the currently ongoing CAESAR competition for authenticated encryp-
tion [23], the new favourite toy of the cryptographic community are clearly au-
thenticated ciphers. A significant collective effort will be necessary to judge the
57 submitted candidate ciphers with respect to their security and applicability.
The goal of this cryptographic competition is to identify a portfolio of reliable,
efficient, secure authenticated encryption algorithms with unique features for dif-
ferent application scenarios. Experience with previous competitions and focused
projects like AES, SHA-3, eSTREAM and NESSIE has clearly demonstrated
that the joint effort of the community to focus on a particular topic can impres-
sively advance the understanding of the reasearched primitives in a relatively
short period of time. Right now, first security analyses of the submitted candi-
dates are necessary to allow the competition committee to judge the first-round
candidates adequately, and select the most promising submissions for the next
round.

Prøst, designed by Kavun et al. [15], is one of the candidates submitted to the
CAESAR competition. It combines a newly designed, efficient permutation, the
Prøst permutation, with several modes of operation. The resulting Prøst family
of authenticated ciphers consists of three variants: Prøst-COPA, Prøst-OTR, and
Prøst-APE, each with its own advantages and features. The Prøst-OTR variant
uses the Prøst permutation in a single-key Even-Mansour construction [9,11,12]



as a block cipher in Minematsu’s provably secure, Feistel-based OTR mode of
operation [20]. Due to the novelty of the design, previous cryptanalysis results
on Prøst itself are limited to the designers’ own analysis, published together with
the design document [15].

We present a forgery attack on Prøst-OTR in a related-key setting. The
scenario is that an attacker is given ciphertexts and tags of two messages: one
under the target key K, and one under a related key K⊕∆ for some arbitrary ∆.
Both keys are secret, but their difference ∆ is known to the attacker. The nonces
used for encrypting the two messages are also related in a similar way. Then,
with negligible computational complexity, the attacker can forge the ciphertext
and authentication tag for a third message under the target key K. In fact,
depending on the length of the original messages, forgeries for a large number of
fake messages can be obtained. In addition, in case the attacker has control over
one of the two originally encrypted messages, he can even control the content of
the third, forged message.

Our attack is generic and exploits the combination of the OTR mode of oper-
ation with an Even-Mansour block cipher construction. It is independent of the
used permutation, and thus does not use any particular properties or weaknesses
of the Prøst permutation. Consequently, the other members of the Prøst fam-
ily, Prøst-COPA and Prøst-APE, are not affected or endangered by the attack.
However, the attack demonstrates the possible complications of using an Even-
Mansour construction as a block cipher in otherwise secure modes of operation.
The Even-Mansour approach of creating a block cipher from a pseudorandom
permutation by xoring a secret key before and after applying the permutation
to the plaintext has been studied extensively [6,7,8,9,13,18]. It has been proven
secure under different notions of security, with detailed bounds relating the secu-
rity level with the key length. However, it is inherently susceptible to related-key
attacks. The OTR mode of operation allows to “lift” this property to the full en-
cryption and authentication scheme. This unfortunate combination of otherwise
secure building blocks shows two things: that the Even-Mansour construction
should only be used very cautiously, and that related-key properties are not well
covered by the classical security notions, although they can lead to powerful
forgery attacks.

Related-key setups are a relatively strong attack setting. Nevertheless, de-
pending on the exact requirements, they are often not entirely far-fetched in
practical scenarios. In particular, scenarios where only a known (but arbitrary)
difference ∆ between any two unknown keys is required, like in our attack, are
quite realistic, and occur as side effects of several published protocols. The only
limitation the attack imposes on ∆ is that it does not affect the least signifi-
cant bits of the key. For compatibility with the nonce difference, the modified
part of the key must not be longer than the nonce length (half the key size in
Prøst-OTR).

As an example for related keys in practice, consider the WEP standard [14].
There, the keys for the individual communication links are derived by concate-
nating (public, random) IVs with the fixed secret WEP key. Clearly, any two keys



constructed this way have a publicly known differential relation. Similar scenar-
ios could be imagined in any other network of resource-constrained devices (e.g.,
of sensor nodes), where individual encryption keys need to be derived in a cheap
way from some master secret (e.g., by xoring individual IDs, nonces or chal-
lenge values to the key). Despite its inherent susceptibility to birthday attacks,
the idea to “xor nonce to key” is also incorporated in several CAESAR candi-
dates, such as AVALANCHE [1] and Calico [22]. Recently, cheap modifications
of some master secret have also gained some popularity as a countermeasure to
side-channel attacks, termed “fresh re-keying”. The rationale is that to avoid
differential side-channel attacks, subsequent encryption processes should never
use the same key twice, but derive some sort of session keys from the long-term
key in a cheap way.

The additional requirement of related nonces is not as strong as the related
keys. In many applications, nonces are generated in a very predictable pattern
(typically a simple counter as a message sequence number). In some cases, the
attacker may even be able to influence the nonce counter: a simple example is
by triggering encryptions until the nonce counter arrives at the desired value,
or by somehow causing the device to jump the unwanted nonce values. We note
that the attack does not require “nonce misuse” in the sense that the attacker
requests repeated encryptions under the same nonce.

Related-key attacks [4,16] have been studied extensively, for various ciphers
and applications. A prominent example is Biryukov et al.’s related-key attack
on AES [5], which makes very strong assumptions about the relations between
subkeys. The combination of related keys with related nonces has previously
been applied primarily to stream ciphers, in particular in the context of the
eSTREAM project. Examples include the key recovery attacks on Grain-v1 and
Grain-128 by Lee et al. [19], or the recent analysis of generic chosen-IV attacks
with applications to Trivium by Pasalic and Wei [21].

Outline. We first describe the Prøst family of authenticated ciphers and the
notational conventions for the remaining document in Section 2. In Section 3, we
derive a first basic related-key attack on Prøst-OTR. In Section 4, we propose a
few possible improvements to the attack and extended attack scenarios. Finally,
in Section 5, we conclude with a discussion of the applicability of the Prøst-OTR
attack to other authenticated encryption modes.

2 Description of Prøst-OTR-n

2.1 The Prøst family of authenticated ciphers

Prøst is a family of authenticated encryption algorithms. Kavun et al. [15] pro-
posed the cipher family as a candidate in the currently ongoing CAESAR compe-
tition [23] for authenticated ciphers. Prøst comes in three flavors: Prøst-COPA,
Prøst-OTR and Prøst-APE. All flavors share the same core permutation, the



Prøst permutation designed by Kavun et al. [15], but use it in different modes
of operation.

Prøst-APE uses the Prøst permutation in Andreeva et al.’s sponge-based
APE mode [2]. The other two flavors, Prøst-OTR and Prøst-COPA, use modes
of operation that are originally not permutation-based, but block-cipher-based:
Andreeva et al.’s COPA mode [3], and Minematsu’s OTR mode [20]. In these
variants, the Prøst permutation is used in a single-key Even-Mansour construc-
tion [9] to provide the required block cipher.

Each of the three flavors is available in two security levels, specified by a
parameter n ∈ {128, 256}, resulting in a total of six proposed cipher family
members. The designers rank the COPA variants as their primary recommenda-
tions, the OTR variants second, and the APE variants last.

2.2 Notation

Throughout this paper, we use essentially the same notation as Prøst’s design-
ers [15]. Unless noted otherwise, all operations are performed in F22n with re-
spect to Prøst’s irreducible polynomial, where n ∈ {128, 256} defines the security
level. For convenience of notation, elements in F22n are often represented inter-
changeably as elements of F2n

2 . We denote addition in F22n (xor) by ⊕, and
multiplication in F22n by · (operator omitted where possible). By N‖10∗, we
mean the n-bit bitstring N ∈ Fn2 , concatenated with (1, 0, . . . , 0) ∈ Fn2 to get
an element in F2n

2 . Otherwise, numbers mean integer numbers ∈ Z or individual
bits ∈ F2 when written in roman font (1, 2, 3, . . .), but elements of F2n

2 in trun-
cated hex notation when written in typewriter font (1, 2, 3, . . .); for example,
13 = (0, . . . , 0, 1, 0, 0, 1, 1) ∈ F2n

2 . The variable names we use are summarized in
Table 1.

Table 1: Notation and variables used throughout this document.

n security level
K,K′ 2n-bit keys (related keys)
N n-bit nonce
M = M0 · · ·M2m−1 the padded message, split into 2n-bit blocks
C = C0 · · ·C2m−1 the ciphertext in 2n-bit blocks
T n-bit tag
` secret counter basis, derived from K and N (= δ in [15])
P the Prøst permutation

P̃K P used in single-key Even-Mansour mode as block cipher
Σ sum of message blocks, basis for the tag T
∆ difference between the related keys K and K′ = K ⊕∆
M ′, C′, T ′ message encrypted under related key K′ and nonce

M̃, C̃ modified message and ciphertext
M∗, C∗, T ∗ attacker’s forged message, ciphertext and tag
α, γ intermediate values, inputs to P



2.3 Prøst-OTR-n

Prøst-OTR-n uses the block cipher P̃K , built from the permutation P in a single-
key Even-Mansour construction [9], in Minematsu’s OTR mode of operation [20].
The result is a nonce-based authenticated encryption scheme with online encryp-
tion and decryption that is fully parallelizable [15]. Prøst-OTR-n is proposed in
two security levels, n ∈ {128, 256}. The security level defines the permutation
size 2n and block size 2n, the key size 2n and nonce size n, and the tag size n.
The claimed security for Prøst-OTR-n is n

2 bits (confidentiality and integrity of
plaintext and integrity of associated data). No particular claims are made for or
against the related-key security of the cipher.

Since our attack does not exploit any particular properties of the Prøst per-
mutation P : F2n

2 → F2n
2 , we do not include the definition of P in this description.

The design of the permutation-based block cipher P̃K , however, is essential for
the attack. For a key K ∈ F2n

2 , the block cipher P̃K : F2n
2 → F2n

2 is defined as
follows:

P̃K(x) = K ⊕ P (x⊕K).

In OTR, message blocks Mj are encrypted in pairs in 2-round Feistel net-
works to get the ciphertext blocks Cj . The Feistel round function first adds a

counter-like value, then applies the block cipher P̃k. For the counter-like value,
a helper value ` is computed in an initialization phase by encrypting the padded
nonce N‖10∗ under P̃K . After processing all block pairs, the tag T is finally
computed by encrypting a function of the checksum Σ, which is the xor of all
odd-indexed message blocks M2i+1. The detailed algorithm is listed in Algo-
rithm 1 and illustrated in Fig. 1. For simplicity, we only describe the mode for
empty associated data, and only for padded messages with an even (rather than
odd) number of message blocks.

Algorithm 1 Prøst-OTR-n encryption

Input: padded message M‖01∗ = M0 · · ·M2m+1, padded nonce N‖10∗

Output: ciphertext C = C0 · · ·C2m+1, tag T
Σ ← 0

`← P̃K(N‖10∗)
for i = 0, . . . ,m− 1 do
C2i ← P̃K(2i+2`⊕M2i)⊕M2i+1

C2i+1 ← P̃K(2i+2`⊕ `⊕ C2i)⊕M2i

Σ ← Σ ⊕M2i+1

T ← msbn(P̃K(3(2m+2`⊕ `)⊕ `⊕Σ))

3 Basic Forgery Attack on Prøst-OTR

In this section, we describe our basic forgery attack on Prøst-OTR. The attack
exploits the combination of the OTR mode with the Even-Mansour block cipher
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(c) Finalization

Fig. 1: Encrypting 2m message blocks Mj with Prøst-OTR-n under key K and
nonce N . All values are 2n bits, with n ∈ {128, 256}, except the n-bit tag T .

construction, and is independent of the concrete permutation P used. We con-
sider a related-key scenario, where encrypted messages of two different keys K
and K ′ can be observed. Both K and K ′ are secret, but we assume the attacker
knows the difference ∆ = K ⊕K ′ (i.e., K ′ = K ⊕ ∆). In addition, we assume
that the attacker can observe encrypted messages for related nonces N,N ′, such
that ∆ = (N‖10∗) ⊕ (N ′‖10∗). Since the last n bits of the padded nonces are
identical, this means that the n least significant bits of ∆ must be 0.

The basic idea of the proposed forgery attack is to combine information from
the encryption of the same message M under the two related keys K,K ′ to forge
a ciphertext and tag for a modified message M∗ under one of the two keys, K.
More specifically, we will first show how to use the ciphertext from the related
key K ′ = K ⊕ ∆ to forge ciphertexts for modified messages under the target
key K. Then, we will combine original and forged ciphertexts in a way such that
the original tag remains valid for the resulting modified plaintext under K. The
attack works for any plaintext of sufficient length (≥ 514 message blocks for
Prøst-OTR-128, ≥ 1026 blocks for Prøst-OTR-256).

3.1 Forging the ciphertext

Assume that the attacker obtains the ciphertext for the same message M =
M0 · · ·M2m−1 (from Fig. 1) under a related key K ′ = K ⊕ ∆ and a related
nonce N ′‖10∗ = (N‖10∗)⊕∆, as illustrated in Fig. 2. Note that since the nonce
only has length n (instead of 2n like the other values), ∆ must only modify
the most significant n bits, i.e., ∆ = ∆n‖0n. Then, in the initialization phase
illustrated in Fig. 2a, the differences in K ′ and N ′ cancel out right before the



call to the permutation P in the initialization. Thus, we receive a related counter
value `′ with a simple relation to the original `:

`′ = PK′(N
′‖10∗) = K ′ ⊕ P ((N ′‖10∗)⊕K ′)

= K ⊕∆⊕ P (K ⊕∆⊕ (N‖10∗)⊕∆)

= `⊕∆.

Now consider the encryption of a modified message with message blocks

M̃j = Mj ⊕ (2bj/2c+2 + 1)∆

under the original key K and nonce N . As Fig. 3 illustrates, the message dif-
ferences “cancel out” with the corresponding difference in the ` values from the
encryption under the related key in Fig. 2. Thus, in both Fig. 2 and Fig. 3, the
inputs α and γ to the permutations are the same:

α = M̃2i ⊕ 2i+2`⊕K
= M2i ⊕ 2i+2`⊕ 2i+2∆⊕∆⊕K,

γ = M̃2i+1 ⊕ P (α)⊕ (2i+2 + 1)`

= M2i+1 ⊕ P (α)⊕ 2i+2`⊕ 2i+2∆⊕ `⊕∆.

For this reason, the ciphertext C̃j of the modified message block M̃j under the
original key K can be derived from the ciphertexts C ′j of the original message
Mj under the related key K ⊕∆:

C̃2i = M̃2i+1 ⊕ P (α)⊕K
= C ′2i ⊕ 2i+2∆,

C̃2i+1 = M̃2i ⊕ P (γ)⊕K
= C ′2i+1 ⊕ 2i+2∆,

since

C ′2i = M2i+1 ⊕ P (α)⊕K ⊕∆,
C ′2i+1 = M2i ⊕ P (γ)⊕K ⊕∆.

Now, we know the correct ciphertexts for a modified message. However, we still
need to find the corresponding authentication tag. We will try to re-use the
original tag T for our forged message.

3.2 Forging the tag

For a fixed key K and nonce N , the authentication tag only depends on the xor
sum of all message blocks with odd index,

Σ =

m−1⊕
i=0

M2i+1.
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(b) Message blocks M2i,M2i+1, 0 ≤ i < m

Fig. 2: Encrypting the original message blocks Mj under a related key K ⊕ ∆
and nonce.
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Fig. 3: Encrypting modified message blocks M̃j = Mj ⊕ (2bj/2c+2 + 1)∆ under
the original key K and nonce N .



Thus, if we want to re-use the original tag T for our forged message, we need to
make sure that any induced differences cancel out when summing up the message
blocks. We want to use original and modified message M and M̃ to construct
the final forged message M∗ that satisfies this property.

For each message block pair M∗2i,M
∗
2i+1 of the forged message M∗, we can

decide to use either the original message block pair M2i,M2i+1, or the modified

blocks M̃2i, M̃2i+1. Let λi denote whether we use the original (λi = 0) or modified
(λi = 1) block pair for 0 ≤ i < m. Then, we get the message sum

Σ∗ =

m−1⊕
i=0

M∗2i+1 = Σ ⊕
m−1⊕
i=0

λi(2
i+2 + 1)∆.

Note that if Σ would sum up all message blocks (not only every second), then any

choice of λi would create a successful forgery, since M2i⊕M2i+1 = M̃2i⊕M̃2i+1.
As it is, however, we need to select suitable coefficients λi ∈ F2 such that at
least one coefficient λi∗ is nonzero and

m−1⊕
i=0

λi(2
i+2 + 1)∆ = 0. (1)

Since {(2i+2 + 1)∆} ⊆ F2n
2 , a vector space with dimension 2n, any 2n+ 1 such

vectors are linearly dependent, and suitable coefficients λi exist. Thus, for any
given key difference ∆ and known plaintext M with 2m ≥ 4n + 2 message
blocks, we can solve this system of equations to find suitable coefficients λi. The
ciphertext blocks C∗ for the resulting forged message M∗ can be computed as
in Section 3.1, while the correct tag T ∗ = T can be copied from M .

Summarizing, from observing the ciphertext and tag for encryptions of the
same message M under two related keys K and K ′ = K ⊕ ∆, the attacker
has forged the ciphertext C∗ and tag T ∗ for a different message M∗ of the same
block length with negligible computational effort. The attacker knows this forged
message, but has almost no control over its contents. The attack nonce is the
same as the original nonce N . We discuss some remarks and improvements to
this attack in Section 4.

3.3 Practical example

For illustration, we apply the attack to Prøst-OTR-128 with n = 128. This
variant of Prøst-OTR uses a 256-bit key, a 128-bit nonce, and a message blocksize
of 256 bits. The irreducible polynomial for the finite field F22n is f(x) = x256 ⊕
x10 ⊕ x5 ⊕ x2 ⊕ 1.

As a simple example, assume that ∆ = 2128. Then, the related key and nonce
for the target key K and nonce N are

K ′ = K ⊕ 2128,

N ′ = N ⊕ 1.



Assume that some message M with 514 blocks of 256 bits each was encrypted
under K to ciphertext C and tag T , and under K ′ to C ′ and T ′.

For each block pair (M∗2i,M
∗
2i+1) of the forged message M∗, we now need

to decide whether we copy the original message (M2i,M2i+1) or the modified

version (M̃2i, M̃2i+1). Our choice needs to satisfy the coefficient equation (1). A
solution can easily be found by hand; an example is given in Table 2.

Table 2: A solution for coefficients λi = 1 in equation (1) in F2256 with field
polynomial f(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1.

Index i Modifications

to plaintext M2i,M2i+1 (F2256) to ciphertext C′2i, C
′
2i+1 (hex)

i = 2 (24+1)∆ = 2132 + 2128 24∆ = 0014‖0010‖0016
i = 3 (25+1)∆ = 2133 + 2128 25∆ = 0014‖0020‖0016
i = 5 (27+1)∆ = 2135 + 2128 27∆ = 0014‖0080‖0016
i = 8 (210+1)∆ = 2138 + 2128 210∆ = 0014‖0400‖0016
i = 10 (212+1)∆ = 2140 + 2128 212∆ = 0014‖1000‖0016
i = 254 (2256+1)∆ = 2138 + 2133 + 2130 2256∆ = 0014‖0425‖0016
i = 256 (2258+1)∆ = 2140 + 2135 + 2132 + 2130 + 2128 2258∆ = 0014‖1094‖0016

For any example message M , we can now forge tag T ∗ and ciphertext C∗ for
the modified message M∗, which differs from M in blocks indices j ∈ J :

J = {4, 5, 6, 7, 10, 11, 16, 17, 20, 21, 508, 509, 512, 513},

M∗j =

{
Mj ⊕ (2b

j
2 c+2+1)∆ j ∈ J,

Mj else;

C∗j =

{
C ′j ⊕ 2b

j
2 c+2∆ j ∈ J,

Cj else;

T ∗ = T.

This example can easily be verified with the reference implementation of Prøst-
OTR-128 for any key K, nonce N and message M with ≥ 514 blocks, and the
corresponding related values K ′, N ′ for ∆ = 2128.

4 Remarks and advanced attacks

4.1 Remarks on the message length

If an attacker carries out the basic attack as in Section 3, the modified message
may have a slightly modified bit length. This is because the modification can



shift the last nonzero bit, which marks the beginning of the message padding.
This is not a problem since the message bitlength is not encoded anywhere else
in the encryption process – except in the rare case that the last nonzero bit
moves to the second-to-last block or earlier, which is not a valid format for the
padded plaintext. This can be avoided by not including the last block pair in
the modification process.

The attack is also applicable to messages M = M0 · · ·M2m−1M2m with an
odd number of blocks: simply do not include the last block M2m in the modifica-
tion process, and copy it directly to M∗2m. The same holds true for messages that
include associated data A: simply copy the same associated data to the forged
message.

4.2 Unknown messages

The description in Section 3 assumes that one and the same message M is
encrypted under both keys, K and K ′ = K ⊕ ∆, and that M is known to the
attacker. This is, however, not necessarily required. Even without knowing M ,
the attacker can compute forged ciphertext blocks and the tag. In this case, he
will not know the modified message M∗, but only the induced difference M∗⊕M .

Neither is it necessary that the same message M is encrypted under both K
and K⊕∆. In fact, it is sufficient that the attacker has access to the ciphertexts
for any two (not necessarily known, not necessarily equal-length) messages M
(under K) and M ′ (under K ′ = K⊕∆), and knows the difference M2i+1⊕M ′2i+1

for at least 2n+ 1 values of i. Let I be the set of indices i with known message
differences, with |I| ≥ 2n+ 1. Then, the attacker solves⊕

i∈I
λi
(
M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆

)
= 0.

Again, a non-zero solution for λ exists since the ≥ 2n + 1 vectors in F2n
2 must

be linearly dependent.
The forged message M∗ (not known to the attacker, same block length as

M), ciphertext C∗ and tag T ∗ are then given by

(M∗2i,M
∗
2i+1) =

{
(M2i,M2i+1) i /∈ I ∨ λi = 0,

(M ′2i ⊕ (2i+2 + 1)∆,M ′2i+1 ⊕ (2i+2 + 1)∆) i ∈ I ∧ λi = 1;

(C∗2i, C
∗
2i+1) =

{
(C2i, C2i+1) i /∈ I ∨ λi = 0,

(C ′2i ⊕ 2i+2∆,C ′2i+1 ⊕ 2i+2∆) i ∈ I ∧ λi = 1;

T ∗ = T.

4.3 Multiple forgeries

As described in Sections 3 and 4.2, an attacker can forge one message from 4n+2
original message blocks. This can be extended to 2s − 1 different forgeries from



4n+ 2s blocks (i.e., |I| ≥ 2n+ s). Then, the homogenous linear system⊕
i∈I

λi
(
M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆

)
= 0

is underdetermined with ≥ 2n+ s variables for 2n equations. Thus, the solution
space has dimension ≥ s, containing ≥ 2s − 1 different non-zero solutions for λ.

In the case Mj = M ′j , different values λ, λ′ produce different plaintexts as
long as

max{i ∈ I : λi 6= λ′i} < ord(2)− 2,

where ord(2) denotes the multiplicative order of 2 in F∗22n . For Prøst’s irreducible
polynomials, ord(2) = 2256 − 1 for n = 128 and ord(2) = 2512 − 1 for n = 256.
In general, if

M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆ 6= 0 ∀i ∈ I,

then all different λ produce different forgeries.

4.4 Almost universal forgery with related-key queries

Assume that the attacker can query for the encryption of a chosen message under
one of the two keys, K ′ = K ⊕∆. He wants to forge the ciphertext and tag for
a meaningful message M∗ (chosen beforehand or provided externally) under the
original key K. He can achieve this goal if (a) M∗ has an even number of blocks,
(b) he has access to the tag T of a known message M with the same number
of blocks as M∗ under the key K, and (c) he can modify one 2n-bit block with
odd index of M∗ (or, alternatively, of M). The attack works as follows:

1. Fix the target message length |M∗| = 2m (in blocks).
2. Obtain tag T for any known message M with |M | = 2m under key K and

any nonce N .
3. Fix the preliminary target (challenge) message M∗.
4. Let j∗ = 2i∗ + 1 be the modifiable block of M∗. Modify

M∗2i∗+1 = M2i∗+1 ⊕
⊕
i 6=i∗

M2i+1 ⊕M∗2i+1.

5. Construct the query message M ′ as

(M ′2i,M
′
2i+1) = (M∗2i⊕(2i+1⊕1)∆,M∗2i+1⊕(2i+1⊕1)∆) i = 0, . . . ,m−1.

6. Request the ciphertext C ′ for the query message M ′ under K ′ = K⊕∆ with
nonce N ′‖10∗ = (N‖10∗)⊕∆.

7. The forged ciphertext C∗ and tag T ∗ for message M∗ and nonce N∗ = N
can be computed as

(C∗2i, C
∗
2i+1) = (C ′2i ⊕ 2i+2∆,C ′2i+1 ⊕ 2i+2∆) i = 0, . . . ,m− 1,

T ∗ = T.



This is essentially the same strategy as in Section 4.2, except that instead of
using fixed M,M ′ and adapting M∗, we fix M,M∗ and adapt M ′. To avoid
solving the equation system for the correct λi (which would require relatively
long message lenghts 2m, and force us to have M∗j = Mj for many j), we modify
one block M∗j∗ to make ∀i : λi = 1 a valid solution.

5 Discussion

The core of our attack is the following observation: If an authenticated encryption
mode applies the block cipher to variable (controllable) inputs, an attacker can
“lift” the inherent related-key weaknesses of the Even-Mansour construction to
the entire mode. Then, he can use information from encryptions under a related
key to forge ciphertext and tag for the target key.

A question that suggests itself is whether similar attacks are possible on other
Prøst modes. In addition, other authenticated encryption modes might display
similar problems when combined with an Even-Mansour block cipher.

Prøst-APE does not use the Even-Mansour construction at all, but plugs the
permutation into a sponge construction. Thus, the attack is clearly not applica-
ble. Prøst-COPA does use the permutation in an Even-Mansour construction.
However, it seems to defy the attack by including EK(0), the encryption of the
value 0, in the definition of the helper value L (which plays a role similar to `
in Prøst-OTR). Since a constant instead of the variable nonce N serves as input
to the encryption, the input cannot be controlled to produce (differentially) pre-
dictable outputs of L. The situation is similar, for example, for the OCB mode
of operation [17]: while the message could be used to cancel out differences in
the helper counter value, this value is also derived from the encryption EK(0)
of the zero value and thus unpredictable.

On the other hand, other popular modes show significant weaknesses when
combined with Even-Mansour ciphers. Of course, unlike Prøst, these modes are
usually not recommended for use with an Even-Mansour block cipher, but with
AES. Consider, for example, the CCM mode of operation [10,24], an ISO/IEC-
standardized combination of CBC-MAC with CTR encryption, as illustrated in
Fig. 4. CCM allows a much simpler related-key attack. Assume that an attacker
knows the ciphertext (including the tag) C = C1 · · ·C`C`+1 of a message M =
M1 · · ·M` under key K ⊕∆ and padded nonce (N‖0) ⊕∆ (in the format used
as counter input to the CTR encryption). Then, the ciphertext C ′ for M under
key K and padded nonce N‖0 is simply

C ′i =

{
Ci ⊕∆ 1 ≤ i ≤ `,
Ci i = `+ 1.

As can be observed from Fig. 4, all differences ∆ during the CCM computa-
tion cancel out either with the nonce difference fed to the Even-Mansour block
encryptions EK⊕∆, or with neighbouring block cipher calls in the CBC-MAC
computation. The final differences at the block cipher outputs from the CTR
encryption can simply be added to the ciphertext blocks.



⊕ ⊕ ⊕· · ·EK EK EKEK

M1 M2 M` TN‖(16 · `)
N‖1 N‖2 N‖` N‖`+1

EK EK EK EK⊕ ⊕ ⊕ ⊕

C1 C2 C` C`+1

Fig. 4: CCM encryption.

Clearly, the Even-Mansour construction is not well-suited as a general-pur-
pose block cipher construction for all modes of operation. The Prøst-OTR design
is an example how even more complex modes can allow some undesirable prop-
erties of the Even-Mansour construction to be lifted to the complete authenti-
cation mode, in this case to generate related-key forgeries. The rising popularity
of sponge modes and permutation-based encryption in general may lead to in-
teresting new observations in this direction.

Finally, we stress again that the presented attack only concerns the OTR
variant of Prøst. For this variant, powerful forgery attacks are possible in a
related-key setting. The security of the other modes, Prøst-COPA and Prøst-
APE, and in particular of the Prøst permutation itself, remains unaffected. It
may be possible to tweak OTR to prevent the specific attack, for example by
adapting the initialization of ` to include P̃K(0), similar to COPA and OCB.
However, the general interactions of the OTR mode with the single-key Even-
Mansour construction remains a reason for concern.
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