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Abstract. ICEPOLE is a CAESAR candidate with the intermediate
level of robustness under nonce misuse circumstances in the original doc-
ument. In particular, it was claimed that key recovery attack against
ICEPOLE is impossible in the case of nonce misuse. ICEPOLE is strong
against the differential cryptanalysis and linear cryptanalysis. In this pa-
per, we developed the differential-linear attacks against ICEPOLE when
nonce is misused. Our attacks show that the state of ICEPOLE–128
and ICEPOLE–128a can be recovered with data complexity 246 and
time complexity 246; the state of ICEPOLE–256a can be recovered with
data complexity 260 and time complexity 260. For ICEPOLE–128a and
ICEPOLE–256a, the secret key is recovered once the state is recovered.
We experimentally verified the attacks against ICEPOLE–128 and ICE-
POLE–128a.
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1 Introduction

ICEPOLE is a new hardware-oriented single-pass authenticated cipher designed
by Morawiecki et al. . It was submitted to the CAESAR competition [14] and
published in CHES 2014 [15]. ICEPOLE is designed to be hardware-efficient.
It can achieve 41 Gbits/s on the modern FPGA device Virtex 6 which is over
10 times faster than the equivalent implementation of AES-128-GCM [12]. ICE-
POLE adopts the well-known duplex construction by Bertoni et al. [2] and uses
a Keccak-like permutation as its iterative function.

The ICEPOLE family of authenticated ciphers includes three variants: ICEPOLE-
128, ICEPOLE–128a and ICEPOLE–256a. Note that the definition of ICEPOLE–128
has been slightly modified in the CHES 2014 version, which removed the use
of secret message number. In this paper, we will follow the version submit-
ted to the CAESAR competition. For the security of ICEPOLE, the designers
claim that the confidentiality is the same as the key length, which is 128-bit
for ICEPOLE–128 and ICEPOLE–128a and 256-bit for ICEPOLE–256a. The
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authentication security is 128-bit for all the three variants. In particular, it is
mentioned in the document that the internal permutation is strong enough such
that “in the case of nonce reuse the key-recovery attack is not possible” and the
authenticity “is not threatened by nonce reuse”.

In this paper, we apply the differential-linear cryptanalysis to study the se-
curity of the permutation of the ICEPOLE family. The differential-linear crypt-
analysis is the combination of differential cryptanalysis [5] and linear cryptanal-
ysis [11]. It was introduced by Langford and Hellman in [9] in 1994 to attack the
block cipher DES, and later Biham, Dunkelman and Keller gave an enhanced
version of this method [3] . This method has been applied to analyze a num-
ber of block ciphers such as Serpent [4, 7], CTC2 [8, 10] and SHACAL–2 [16].
Differential-linear attack is also successful in the analysis of certain stream ci-
phers, e.g., Phelix which involves the message in the state update function [17].

Although the design of authenticated cipher ICEPOLE is different from block
ciphers, we manage to exploit the differential-linear property of the permutation
when the nonce is reused 1. We show that under the nonce-reuse assumption,
there exists distinguishing attacks on ICEPOLE with both time and data com-
plexity less than 236. Furthermore, it is possible to recover the 256 bits unknown
state of ICEPOLE–128 and ICEPOLE–128a with practical complexity 246, and
recover the 320 bits unknown state of ICEPOLE–256a with complexity 260. We
experimentally verified our results by recovering the state of ICEPOLE–128 us-
ing a 64-core server within 10 days. Thus, the security claims of ICEPOLE do
not hold under the nonce-reuse circumstances.

Due to the analysis of this paper, the designers have updated the security
claims as “in the case of nonce misuse, the intermediate level of robustness (spec-
ified in the documentation) holds only when the SMN is present and respected,
namely each message has the corresponding, unique secret message number” [13].
In the presence of unique SMN, the attack in this paper will no longer work. The
reason is that the unique SMN plays the role of the nonce in the initialization,
and prevents the differential attack in the message processing.

The rest of this paper is structured as follows: The specification of ICEPOLE
is given in Section 2. Section 3 describes a differential-linear distinguishing attack
on ICEPOLE. Section 4 introduces the state-recovery attack. Section 5 provides
our experimental results of the state-recovery attack on ICEPOLE-128. Section
6 concludes the paper.

2 The ICEPOLE Authenticated Cipher

The ICEPOLE family of authenticated ciphers uses three parameters: key length
(128 or 256 bits), secret message number (SMN) length (0 or 128 bits) and nonce
length (96 or 128 bits). ICEPOLE –128 has 128-bit secret message number, 128-
bit key, and 128-bit nonce. The other two variants, ICEPOLE –128a and ICE-
POLE –256 a, have no secret message number with 128- and 256-bit secret key

1 Here nonce includes the public message number and secret message number. The
associated data is set to be identical or empty which is generally allowed.
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respectively. The nonce length for these two variants is 96-bit. We will briefly de-
scribe the specification of ICEPOLE authenticated cipher. The full specification
can be found in [14]. An overview of ICEPOLE–128 is provided in Figure 1.

Fig. 1. General scheme of ICEPOLE encryption and authentication (Fig. 1 of [14])

2.1 Notations

The ICEPOLE algorithm has a 1280-bit internal state S. It uses the little-endian
convention. The organization of internal state is similar to Keccak [1], which
uses a 3-dimension structure. Therefore, the 1280-bit state S can be represented
as S[4][5][64], or shortly S[4][5], an array of 64-bit words. For S[x][y][z], it is
corresponding to the 64(x + 4y) + z-th bit of the input. ICEPOLE uses 4 × 5
slices. Each slice has 4 rows and 5 columns. And Sbnc denotes the first n bits of
the state.

2.2 The ICEPOLE permutation P

The permutation P is applied iteratively on the ICEPOLE state S during the
encryption and authentication. Each permutation is called a round or R. The
6–and 12–round of P are represented as P6 and P12 respectively. Each round
includes five operations: µ, ρ, π, ψ, and κ.

R = κ ◦ ψ ◦ π ◦ ρ ◦ µ

The operations are defined as follows:
µ:

A column vector (Z0, Z1, Z2, Z3) is multiplied by a constant matrix to pro-

duce a vector of four 5-bit words.
2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

×

Z0

Z1

Z2

Z3

 =


2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3





4 Tao Huang, Ivan Tjuawinata, Hongjun Wu

The operations are done in GF (25). The irreducible polynomial x5 + x2 + 1
is used for the field multiplication. And µ can be efficiently implemented with
simple bitwise equations, see Appendix B in [14].

ρ:

The ρ step is the bitwise rotation on each of the 20 64-bit words. It is defined

as:

ρ(S[x][y]) = S[x][y] ≪ offsets[x][y] for all(0 ≤ x ≤ 3), (0 ≤ y ≤ 4)

The rotation offsets are as follows:

offset[0][0] := 0 offset[0][1] := 36 offset[0][2] := 3 offset[0][3] := 41
offset[0][4] := 18 offset[1][0] := 1 offset[1][1] := 44 offset[1][2] := 10
offset[1][3] := 45 offset[1][4] := 2 offset[2][0] := 62 offset[2][1] := 6
offset[2][2] := 43 offset[2][3] := 15 offset[2][4] := 61 offset[3][0] := 28
offset[3][1] := 55 offset[3][2] := 25 offset[3][3] := 21 offset[3][4] := 56

π:

π reorders the bits within each slice. It maps S[x][y] to S[x′][y′] using fol-

lowing rule:

- x′ := (x+ y) mod 4

- y′ := (((x+ y) mod 4) + y + 1) mod 5

φ:

φ is the S-box layer. ICEPOLE uses following 5-bit S-box:

{ 31, 9, 18, 11, 5, 12, 22, 15, 10, 3, 24, 1, 13, 4, 30, 7,

20, 21, 6, 23, 17, 16, 2, 19, 26, 27, 8, 25, 29, 28, 14, 0 }

The φ applies the 5-bit S-box to all the 256 rows of the state.

κ:

In κ the 64-bit constant is xored with S[0][0]. The constants are different for

each round and we omit the values here.

2.3 Initialization

First, the state S is initialized with 1280-bit constant:



Differential-Linear Cryptanalysis of ICEPOLE 5

S[0][0] := 0XFF97A42D7F8E6FD4 S[0][1] := 0X90FEE5A0A44647C4
S[0][2] := 0X8C5BDA0CD6192E76 S[0][3] := 0XAD30A6F71B19059C
S[0][4] := 0X30935AB7D08FFC64 S[1][0] := 0XEB5AA93F2317D635
S[1][1] := 0XA9A6E6260D712103 S[1][2] := 0X81A57C16DBCF 555F
S[1][3] := 0X43B831CD0347C826 S[1][4] := 0X01F22F1A11A5569F
S[2][0] := 0X05E5635A21D9AE61 S[2][1] := 0X64BEFEF28CC970F2
S[2][2] := 0X613670957BC46611 S[2][3] := 0XB87C5A554FD00ECB
S[2][4] := 0X8C3EE88A1CCF32C8 S[3][0] := 0X940C7922AE3A2614
S[3][1] := 0X1841F924A2C509E4 S[3][2] := 0X16F53526E70465C2
S[3][3] := 0X75F644E97F30A13B S[3][4] := 0XEAF1FF7B5CECA249

Then, the key (K) and the nonce are XORed to the state. The nonce is 128-bit
for ICEPOLE–128. And the 96-bit nonce for ICEPOLE–128a and ICEPOLE–256a
will be padded with 32 zeros to form a 128-bit nonce. nonce0 and nonce1 denote
two 64-bit words of the padded nonce.

For ICEPOLE–128 and ICEPOLE–128a, K0 and K1 denote two 64-bit words
of the key,

S[0][0] := S[0][0]⊕K0

S[1][0] := S[1][0]⊕K1

S[2][0] := S[2][0]⊕ nonce0

S[3][0] := S[3][0]⊕ nonce1

For ICEPOLE–256a, K0, K1, K2 and K3 denote four 64-bit words of the key,

S[0][0] := S[0][0]⊕K0

S[1][0] := S[1][0]⊕K1

S[2][0] := S[2][0]⊕K2

S[3][0] := S[3][0]⊕K3

S[0][1] := S[0][1]⊕ nonce0

S[1][1] := S[1][1]⊕ nonce1

After that, the P12 permutation is applied to the state S.

2.4 Processing associated data and plaintext

ICEPOLE–128 uses 128-bit secret message number (SMN) σSMN . It will be
processed before associated data and the plaintext. Since ICEPOLE–128a and
ICEPOLE–256a do not have SMN, only the associated data σAD

i and the plain-
text σP

i will be processed.
For ICEPOLE–128 and ICEPOLE–128a, the length of blocks σAD

i and σP
i

is in the range [0, 1024] bits. The blocks will be padded to 1026 bits according
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to following rule. First, a frame bit is appended. It is set to ‘1’ for the last σAD

block and all σP
i except the last one. For all other blocks, it is set to ‘0’. Then,

a bit ‘1’ is appended, following by ‘0’s to make the length of padded block be
1026-bit. The number of blocks under a single key is less than 2126.

For ICEPOLE–256a, the associated data and plaintext blocks have length in
the range [0, 960]. The same padding rule is applied and the padded blocks have
length 962-bit. The number of blocks under a single key is less than 262.

The process of secret message number is as below for ICEPOLE–128:

cSMN = Sb128c ⊕ σSMN

σSMN := pad(σSMN )
Sb1026c := Sb1026c ⊕ σSMN

S := P6(S)

The process of associated data and plaintext blocks is as below:

for all blocks σAD
i {

σAD
i := pad(σAD

i )
Sb1026c := Sb1026c ⊕ σAD

i

S := P6(S)
}

for all blocks σP
i {

ci := Sblc ⊕ σP
i (l is the length of σP

i )
σP
i := pad(σP

i )
Sb1026c := Sb1026c ⊕ σP

i

S := P6(S)
}

2.5 Tag generation

After the AD and P are processed, the 128-bit tag T is derived: (T0 and T1 are
two 64-bit words of T).

T0 := S[0][0]

T1 := S[0][1]

The decryption and verification is trivial and we omit it here.

2.6 Security goals of ICEPOLE

The main security goals of ICEPOLE are: 128-bit encryption security for ICEPOLE–128
and ICEPOLE–128a; 256-bit encryption security for ICEPOLE–256a; and 128-
bit authentication security for all variants.

An important property of ICEPOLE is that the intermediate level of robust-
ness under nonce-misuse circumstance. It claimed that

1. “...in the case of nonce reuse the key-recovery attack is not possible”.
2. “Authenticity (integrity) in the duplex construction does not need a nonce

requirement, thus is not threatened by nonce reuse.
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3 Differential-Linear Distinguishing Attack on ICEPOLE

In [14], the designers have performed initial cryptanalysis on ICEPOLE, includ-
ing the differential cryptanalysis, linear cryptanalysis and rotational cryptanal-
ysis. In this section, we will revisit the cryptanalysis in [14] and introduce our
analysis on ICEPOLE based on the differential-linear cryptanalysis. We would
like to emphasize that our attacks only work under the assumption that the
nonce and secret message number can be reused.

The main idea is to query messages with certain input difference and analyze
the statistics of the differences of chosen bits (according to the linear mask) in the
output. When the XORed differences of the chosen bits have a significant bias
from 0.5, the adversary can distinguish the cipher from a random permutation.
In [10], Lu studied the implicit assumptions made in [9] and [3] and gave a
theorem to compute the probability for the differential-linear distinguisher under
the original two assumptions:

1. The involved round functions behave independently.
2. The two inputs E0(P ) and E0(P ⊕ α) of the linear characteristic for E1

behave as independent inputs with respect to the linear characteristic, where
E0 is the encryption for the differential rounds and E1 is the encryption for
the linear rounds, P is the plaintext and α is the input difference.

Let p̂ be the probability that the input of the linear mask has no XORed
difference after the differential step while ε be the linear characteristic bias for
the linear step. The theorem says that the probability that the XORed difference
of the output linear mask to be 0 is 1

2 + 2(2p̂− 1)ε2. In [6], Céline et al. further
developed a method on computing the bias which only relies on the independence
of the two parts of the cipher.

Hence, when the bias is large enough, it is possible to distinguish it from a
random permutation. In the analysis on ICEPOLE, we first divide the encryption
P6 into two parts with equal number of rounds. So the first 3 rounds will be the
differential step and the last 3 rounds will be the linear step.

Our task is to find good 3-round differential characteristics and 3-round linear
characteristics. Unless otherwise specified, we are discussing the ICEPOLE–128
and ICEPOLE–128a in this section under the nonce-misuse assumption. The
ICEPOLE–256a is similar and we will discuss it later.

3.1 Constructing the differential characteristics

In ICEPOLE, S-box is the only non-linear operation, and the maximum dif-
ferential probability of the S-box is 2−2. The differential probability is largely
determined by the number of active S-boxes. Although the designers expected
that only 3% of the difference transitions has the maximum probability 2−2, this
probability is not rare in the early rounds. This is because most of the active
S-boxes have 1 bit input difference after the diffusion and the differential proba-
bility of a single ICEPOLE S-box is 2−2 when the input and output differences
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are identical with weight 1. Those 1-to-1 identical difference transitions are pre-
ferred to the 1-to-n (n ≥ 2) cases even with the same probability as they will
propagate to less number of active S-boxes in the next round.

In [14], the designers analyzed the minimum number of active S-boxes using
SAT solver and found that the minimum number is 9 for 3 rounds ICEPOLE.
There is an intuitive way to construct the differential characteristics reach this
lower bound. We can place 1 active S-box in the middle round and let it prop-
agate backward and forward for one round. Then the number of active S-boxes
will be in the form of 4–1–4, which reaches the minimum number 9.

However, the above 3 round differential path is not feasible. In fact, only at
most 1024 bits(for ICEPOLE–256a, 960 bits) out of the 1280 bits in a state can
be affected by the plaintext and are feasible to introduce difference. Thus, we
have the following observation on the operation µ.

Observation 1 For any 20-bit slice, when the output difference is one bit after
µ, there is at least one bit input difference at the last column (S[·][4]).

This observation can be easily verified by analyzing the inverse operation of
µ.

Therefore, when an active S-box is propagated backward, it is likely that a
number of active bits will be propagated to the last column of the input state,
which is infeasible to introduce. And we programed to verify that it is impossible
to find such feasible 4–1–4 differential path.

It implies that for any feasible differential characteristics of ICEPOLE, the
minimum number of active S-boxes is 2 in the first round. As a result, we will
consider the differential characteristics with two active S-boxes in the first round.
The ideal case is that the output difference of each active S-box is only 1-bit.
Then after µ, this 1-bit difference in a slice will propagate to 4 bits. So we expect
the good differential characteristics will have 8 active S-boxes in round 2 and no
more than 32 active S-boxes in round 3.

We searched for good 3-round differential characteristics, and found 5 possible
initial differences in Table 1 (the rotated differences on the 64-bit word are not
considered here), which can lead to feasible 3-round differential characteristics.
We will name them as D1, D2, D3, D4 and D5.

(a) D1

0x0 0x0 0x1 0x0 0x0
0x1 0x0 0x1 0x0 0x0
0x1 0x1 0x1 0x1 0x0
0x0 0x1 0x0 0x0 0x0

(b) D2

0x0 0x0 0x1 0x0 0x0
0x1 0x1 0x1 0x1 0x0
0x0 0x1 0x0 0x1 0x0
0x1 0x0 0x1 0x0 0x0

(c) D3

0x1 0x1 0x0 0x0 0x0
0x1 0x0 0x0 0x1 0x0
0x0 0x0 0x0 0x1 0x0
0x1 0x1 0x1 0x0 0x0

(d) D4

0x0 0x0 0x0 0x0 0x0
0x1 0x0 0x1 0x0 0x0
0x1 0x1 0x1 0x1 0x0
0x0 0x1 0x0 0x1 0x0

(e) D5

0x0 0x0 0x0 0x0 0x0
0x0 0x1 0x0 0x1 0x0
0x1 0x0 0x1 0x0 0x0
0x1 0x1 0x1 0x1 0x0

Table 1. The initial differences. Each entry represents a 64-bit word.
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The total number of 3-round active S-boxes is 42, which implies that the
differential probability is at most 2−84. But in fact, the only requirement is that
the input linear mask does not have XORed difference at the beginning of round
4. Hence, a large number of differential characteristics are satisfied. As long as
the number of active S-boxes is relatively low (note that 32 is only 1/8 of the
total 256 S-boxes), there is a high probability for the differential step.

3.2 Constructing the linear characteristic

The bias of an ICEPOLE linear characteristic is determined by the S-boxes
involved in the linear characteristic. We use the following method to construct
the 3-round linear characteristics.

Take a single bit in both the input and output masks of an S-box in the
middle round. Then find related bits in the input of the first round (input linear
mask) and the output of the third round before S-box (output linear mask),
assuming that the S-boxes are identical mappings. The rationale here is that the
1-bit identical mappings have a bias 3

16 , it nearly reaches the maximum bias 2−2

while keeping the masks low-weight.

The most essential criterion for the input and output masks is low-weight.
When the input linear mask has lower weight, the probability that the input
linear mask does not have XORed difference after the 3-round differential step
will be higher. When the output linear mask has lower weight, less number of
active S-boxes in round 6 will be involved in the linear relation.

Two good linear characteristics we found are given in Table 2. They are
denoted as L1 and L2.

(a) Linear characteristic 1, input linear mask
0x0 0x800000000000000 0x2000000000 0x20000 0x800000000000040
0x40 0x0 0x800000000000000 0x2000020000 0x0
0x0 0x2000000000 0x800000000000000 0x40 0x2000020000
0x0 0x0 0x800002000020000 0x0 0x40

(b) Linear characteristic 1, output linear mask
0x40000 0x1 0x0 0x80000000000 0x0
0x0 0x4 0x0 0x0 0x0
0x0 0x200000 0x2000000000000000 0x0 0x0
0x0 0x0 0x20000000000 0x100000000000000 0x0

(c) Linear characteristic 2, input linear mask
0x120000004000000 0x8000000000000000 0x100000000000 0x0 0x0
0x8020000000000000 0x4000000 0x8000100000000000 0x0 0x100000000000000
0x8100000000000000 0x20000000000000 0x0 0x100000000000 0x4000000
0x4000000 0x8100100000000000 0x0 0x0 0x20100000000000

(d) Linear characteristic 2, output linear mask
0x40000 0x1 0x0 0x0 0x0
0x8000 0x4 0x0 0x0 0x0
0x0 0x0 0x2000000000000000 0x0 0x0
0x0 0x400 0x20000000000 0x100000000000000 0x0

Table 2. The linear characteristics, assuming S-boxes are identical mappings
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3.3 Observations to improve the attack

The following observation will be helpful in the selection of the differential char-
acteristics.

Observation 2 When the 1024 bits S[0..3][0..3] of an ICEPOLE state S are
known, we are able to determine S[0][2], S[1][3], S[2][4], S[3][0], S[3][2] after µ,
ρ and π operations are performed on S.

According to the above observation, we are able to determine the values of
certain input bits to the S-boxes in the first round. Thus, we can update the
differential tables for the S-boxes with fixed input values.

The following example shows how this will help to improve the differential
probability. Suppose the input of an S-box is in the form “1 ∗ 0 ∗ ∗”, where the
‘∗’s are the unknown bits and the ‘1’ and ‘0’ are the bits with fixed values,
and the input difference is 2, then the output difference is 2 with probability 1,
which is larger than the 0.25 in the general case. To get the fixed values, we can
manipulate the input bits according to the mask in Table 3.

0x0 0x800000010 0x200000001 0x0 0x0
0x800000010 0x0 0x0 0x200000001 0x0
0x0 0x800000010 0x0 0x200000001 0x0
0x800000010 0x0 0x800000010 0x200000001 0x0

Table 3. Input mask for the fixed bits in round 1.

By setting the bits in S[0][1] selected by the mask 0x800000010 as ‘1’ and
all the other bits selected by the other masks as ‘0’, the two active S-boxes in
round 1 will satisfy the above condition on the input values.

Our next observation is about the S-box in the round 6 of P6.

Observation 3 When 4 of the 5 bits in the output of an S-box are known, it
is possible to recover some of the input bits from the output bits of the S-boxes.
Table 4 provides the probability that we can recover a bit at each position of the
S-box input.

Position 0 1 2 3 4

Probability 6
8

5
8

4
8

4
8

1
8

Table 4. Probability that the input bits can be recovered for an S-box at round 6.
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Since the ciphertext is generated by XORing the keystream and the plaintext,
we can obtain the values of at most 1024 bits in the state after 6 rounds. For
ICEPOLE–128 and ICEPOLE–128a, 4 of the 5 bits in the output of all the S-
boxes are known. And for ICEPOLE–256a, 4 of the 5 bits for 192 S-boxes and
3 of the 5 bits for 64 S-boxes in the output are known.

Therefore, instead of using the bias of the linear relation in the round 6, we
can recover the chosen input bits in round 6 before S-box by enumerating the
values of output bits. This can then be used to recover the value of the bit in
the linear relation in the output of round 5.

For example, if we consider the output linear mask of L1, the probability
that we can recover the 8 bits can be computed as

PrL1
= (3/4)× (5/8)3 × (1/2)4 = 2−6.45.

And using these 8 bits, we can compute the value of bit S[1][1][0] at the
output of round 5.

Similarly, the probability for L2 is

PrL2
= (3/4)2 × (5/8)3 × (1/2)3 = 2−5.86.

3.4 Concatenating the differential and linear characteristics

After the 3-round differential characteristics and 3-round linear characteristics
are constructed, we can concatenate them to form 6-round differential-linear
characteristics.

First, we choose the initial difference D2 because the two active S-boxes in
round 1 are in the last row which has two known bits. The difference of state
before the S-box for D2 is given in Table 5.

0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0
0x0 0x400 0x20000000000 0x0 0x0

Table 5. The difference of state before the first S-box in D2.

To choose the 3-round linear characteristic, we consider all the possible rota-
tions of the two linear characteristics L1 and L2 given in Section 3.2. There are
128 possible rotated linear characteristics. The selection of linear characteristic
is done experimentally:

1. Randomly pick 1024-bit plaintext blocks pairs with the chosen initial differ-
ence D2 and the fix values (1, 0) for the two known bits at positions 0 and
2 in the round 1 active S-boxes.

2. After 5 rounds, verify whether the XORed difference of the states under the
linear characteristic is zero or not. If it is zero, add it to a counter cntSame.
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3. Repeat the above process, and choose the one with highest bias at cntSame
from 0.5.

For D2 as the initial difference, the highest bias is 2−9.2 when the linear
characteristic L1 left rotated by 33 bits is used.

We remark that since round independence does not hold in the case of ICE-
POLE, the experimental results would be better choices for the biases rather
than the theoretical estimation.

From the bias above, we immediately get a distinguishing attack on ICE-
POLE.

1. Generate 233.9 pairs of two-block plaintext such that the first 1024-bit plain-
text block has initial difference D2 and the fixed values as specified above.
All the other bits are random.

2. Use ICEPOLE to encrypt the plaintext blocks and then decide the 1024 bits
input and output state of the first P6. Discard those pairs if the two bits
in round 5 output in the linear characteristic L1 left rotated 33 bits cannot
be recovered. Note that for each bit, the probability is 2−6.45 to recover. So
there are 221 pairs left. Then compute the bit at position S[1][1][33] of the
output of round 5 using the recovered bits from round 6.

3. Analyze the bias of the XORed difference of those two bits (S[1][1][33]). If
the bias is larger than 2−10.2 we conclude that it is the ICEPOLE encryption.

The success probability is computed by using the normal distribution to
approximate the binomial distribution of the bias. For ICEPOLE, the bias is
a random variable X ∼ N(n(1/2 + 2−9.2), n(1/2 + 2−9.2)(1/2 − 2−9.2)), where
n is the number of pairs of the recovered 5 rounds output. When n = 221, the
probability that X ≥ 2−10.2 is 99.3%. A random permutation, on the other hand,
has its bias to be a random variable Y ∼ N(n/2, n/4). The value is larger than
2−10.5 with probability 0.7%. Hence, we have a very good chance to distinguish
the ICEPOLE encryption from a random permutation by using 235.9 plaintext
blocks (a pair of two-block messages are counted as 4 plaintext blocks), assuming
the nonce can be reused.

4 State Recovery Attack on ICEPOLE

In this section, we will use the differential-linear characteristics to launch state
recovery attacks on ICEPOLE.

4.1 State recovery attacks on ICEPOLE–128 and ICEPOLE–128a

For ICEPOLE–128 and ICEPOLE–128a, there are 256 unknown bits in the state
before P6. They are in the last column of each slice. For convenience, we denote
those four 64-bit unknown words in the last column as {U0, U1, U2, U3} according
to the row index. We will recover them step by step.
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4.1.1 Recovering U0 and U3

To recover the unknown bits in the state, we will analyze the input values
at the active S-boxes. For D2, there are two active S-boxes in round 1. One has
input difference 2 and the other has input difference 4. We will focus on the one
with input difference 4 and denote the five input bits as b0, b1, ..., b4 according
to their positions (b0 being the least significant bit).

When the two bits of an ICEPOLE S-box are fixed with values b0 = 1 and
b2 = 0, there are 8 possible values for the remaining three bits. When the input
difference is 4 (at b2), the output difference have weight 1 only when b1 = 1
and b3 = 0. Intuitively, the lower the weight of the output difference after the
first round, the higher the probability that there is no XORed difference at the
output linear mask after 5 rounds. Hence, it is possible to relate the input value
of the active S-box in round 1 to the bias of XORed output difference in round
5.

We experimentally find the following biases for different values of the input
bit b1 and b3. Note that we collected 230 data in the experiments to compute
the bias and repeated for several time. When the bias is less than 2−14, the
experimental results were not very stable, and the average number is listed in
the table. In fact, it is not necessary to consider those low biases as only the
highest ones could be useful for our analysis.

values bias (log based 2)

b1 = 0, b3 = 0 −13.0

b1 = 1, b3 = 0 −7.3

b1 = 0, b3 = 1 −13.9

b1 = 1, b3 = 1 −11.9

Note that b1 is related to an unknown bit in U3, and b3 is related to two
unknown bits, in U0 and U3. So we have following relations:

b1 = U31
3 ⊕ a0

and
b3 = U49

0 ⊕ U49
3 ⊕ a1,

where Ux is the x-th bit in the 64-bit word U ; a0 and a1 are constants which
can be computed from the 1024-known bits.

We describe the state recovery process given as below:

1. Generate 233.9 pairs of two-block plaintext satisfied following requirements.
The first block of the plaintext has difference D2 and each active S-box has
fixed values ‘1’ and ‘0’ in bit 0 and 2 respectively. All the other bits are
random.

2. Use ICEPOLE to encrypt the plaintext blocks and then decide the 1024 bits
input and output state of the first P6. Discard the pairs if the two bits in
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round 5 output in the linear characteristic L1 left rotated 33 bits cannot
be recovered. There are 221 pairs left. Then compute the bit at position
S[1][1][33] of the output of round 5 using the recovered bits from round 6.

3. If the two bits at the position S[1][1][33] are the same, we compute the values
of a0 and a1 according to the input and increase the counter for the value of
(a0, a1) by 1.

4. Suppose the largest counter of (a0, a1) takes value a0 = v0 and a1 = v1, we
guess that U31

3 = v0 ⊕ 1 and U49
0 ⊕ U49

3 = v1.

5. By rotating the differential-linear characteristic for the other 63 bits, we can
recover the two 64-bit unknown words U0 and U3.

The success probability of this scheme is equivalent to the probability that a
random variable X ∼ N(n(1/2 + 2−7.3), n(1/2 + 2−7.3)(1/2 − 2−7.3)) has value
greater than the random variable Y ∼ N(n(1/2 + 2−11.9), n(1/2 + 2−11.9)(1/2−
2−11.9)). When n = 219, the probability is almost 1. Since we have 221 pairs of
input, each of the four choices of b0 and b1 will be around 219 pairs.

We remark that here the probability is high enough such that even if the
experiment is repeated for 64 times, the success probability is still close to 1.

4.1.2 Recovering U2

Assuming that U0 and U3 have been recovered correctly, we can use similar
method to recover U2. In this case, we use D1 and L2 left rotated by 58 bits as
the differential-linear characteristic.

The difference of state before the first round S-box for D1 is given in the
Table 6.

0x0 0x0 0x0 0x0 0x0
0x0 0x4 0x0 0x0 0x0
0x0 0x200000 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0

Table 6. The difference of state before the first S-box in D1.

Fixed bits: With the knowledge of U0 and U3, we fix bit 0, 2, 3 with the values
(1, 0, 0) respectively for the active S-box at the second row. This is to ensure
the output difference of this active S-box has weight exactly 1. And we fix bit 0,
4 with the values (1, 1) for the active S-box at the third row. Then, the weight
of output difference can be distinguished from the input value of bit 2, which is
denoted as b2.

We experimentally find the following biases for b2 after 5 rounds. The biases
are based on the difference of the output bit at position S[3][1][58].
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values bias (log based 2)

b2 = 0 −11.0

b2 = 1 −15.4

From the active S-box at the third round, it is possible to find following
relation:

b2 = U24
2 ⊕ a,

where the constant a can be computed from the known input bits.

The state recovery process process:

1. Generate 236.7 pairs of two-block plaintext satisfying following requirements.
The first block of the plaintext has difference D1 and each active S-box has
fixed values according to the above paragraph. All the other bits are random.

2. Use ICEPOLE to encrypt the plaintext blocks and then decide the 1024 bits
input and output state of the first P6. Discard the pairs if the two bits in the
linear relation (according to L2 rotated by 58 bits) in the output of round
5 cannot be recovered. There are 225 pairs left. Then compute the bit at
position S[3][1][58] of the output of round 5 using the recovered bits from
round 6.

3. If the two bits at the position S[3][1][58] are the same, we compute the value
of a according to the input and increase the counter for that value by 1.

4. Suppose the largest counter of a take value a = v, we guess that U0
1 = v.

5. By rotating the differential-linear characteristic for the other 63 bits, we can
recover the 64-bit unknown word U1.

The estimated success probability is 99.6% for each bit.

4.1.3 Recovering U1

At this stage, we assume that U0, U2 and U3 have been recovered correctly.
In this case, we select D3 and L2 left rotated by 35 bits as the differential-linear
characteristic.

The differential of state before the first round S-box for D3 is given in the
Table 7.

0x0 0x0 0x80000000000000 0x0 0x0
0x8000 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0

Table 7. The differential of state before the first S-box in D3.
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Fixed bits: We fix bit 1, 2, 4 with the values (1, 0, 1) for the active S-box at the
first row. It is to ensure that the weight of output difference of this active S-box
is determined by the value of input bit 3 which is denoted as b0,3. And we fix
bit 0, 2, 3, 4 with the values (0, 1, 1, 1) for the active S-box at the second row.
It is to ensure that the weight of output difference is determined by the value of
input bit 1 which is denoted as b1,1.

The b0,3 and b1,1 are related to the unknown bits:

b0,3 = a0 ⊕ U12
1

b1,1 = a1 ⊕ U13
1

where a0 and a1 are constants which can be computed from the known input.
We experimentally find the following biases for different values of the input

bit b0,3 and b1,1. The biases are base on the difference of the output bit at
position S[3][1][35].

values bias (log based 2)

b0,3 = 0, b1,1 = 0 −11.2

b0,3 = 1, b1,1 = 0 −15.2

b0,3 = 0, b1,1 = 1 −16.4

b0,3 = 1, b1,1 = 1 −14.8

We remark that the biases other than the first row in above table may not
be very accurate considering the small bias.
The state recovery process process:

1. Generate 237.7 pairs of two-block plaintext satisfied following requirements.
The first block of the plaintext has difference D3 and each active S-box has
fixed values according to the above paragraph. All the other bits are random.

2. Use ICEPOLE to encrypt the plaintext blocks and then decide the 1024 bits
input and output state of the first P6. Discard those pairs if the two bits
in the linear relation (according to L2 rotated by 35 bits) in the output of
round 5 cannot be recovered. There are 226 pairs left. Then compute the bit
at position S[3][1][35] of the output of round 5 using the recovered bits from
round 6.

3. If the two bits at the position S[3][1][35] are the same, we compute the value
of a0 and a1 according to the input and increase the counter for (a0, a1) by
1.

4. Suppose the largest counter of (a0, a1) take value a0 = v0 and a1 = v1, we
guess that U12

1 = v0 and U13
1 = v1.

5. By rotating the differential-linear characteristic for the other 31 even bits
less than 64, we can recover the 64-bit unknown word U1.

Note that in each rotation of the differential-linear characteristic, we are able
to recover two consecutive bits, so we only need to test 32 rotations to recover
the 64-bit U1. The estimated success probability is 98.7% for each bit.
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4.1.4 Correcting the recovered state

In the previous state recovery attack, only the first 128 bits can be correctly
recovered with probability almost 1. For the other 128 bits, although the success
probability is around 99%, it is still possible that the state we recovered has
some error bits. Whether the state is correct can be easily verified by encrypting
some new messages and compare the ciphertext.

We can correct up to 7 error bits with relatively low complexity. To correct
i error bits is to choose any i bits from the 128 bits and flip the values. Then
test whether the modified unknown state is correct.

Suppose that for the 128 bits U1 and U2, the probability that each bit is
correct is 0.99, we can compute the probability that the number of error bits is
less than 8 as

7∑
i=0

(
128

i

)
× .99128−i × .01i = 0.99995.

The total number of encryptions to correct up to 7 error bits is 237.5, which is
negligible to the whole attack.

4.1.5 Summary of the attack

The data complexity is:

- U0 and U3: 2 × 2 × 233.9 × 26. We multiply 233.9 by 2 two times due to the
fact that we use 233.9 pairs of 2-blocks plaintext.

- U2: 2× 2× 236.7 × 26

- U1: 2× 2× 237.7 × 25

- Total: 245.8

The time complexity is the 245.8 encryptions of the one block plaintext and
the possible 237.5 encryptions for correction.

The memory cost is mainly on the storage of some counters, which is negli-
gible.

The success rate of this attack is close to 1, and can be adjusted through the
number of input messages.

4.2 State recovery attack on ICEPOLE–256a

In the case of ICEPOLE–256a, there are 320 unknown bits in the input and
output states in the encryption of a block. In addition to the U0 to U3 in the
previous subsection, we use U4 to denote the unknown 64-bit word S[3][3].

Different from the ICEPOLE–128 and ICEPOLE–128a, in the last row of the
output in ICEPOEL–256a, there are only 3 known bits instead of 4 known bits.
Consequently, it is impossible to recover the input bits given the output bits for
that row. To deal with this issue, we have to consider the linear relation of the
input mask of the S-box. When the value of the input mask is less than 8, the
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largest bias is 3/16, but if the value of the input mask is 8, the largest bias is
1/16.

For L1, there are two mask bits placed in the last row, one is 4 and the other
is 8. From the Piling-Up Lemma [11], the bias is 2−5.4.

For L2, there are three mask bits placed in the last row, 2, 4, and 8. By Piling
up Lemma, the bias is 2−6.8.

To increase the bias of the last row, we introduce another linear characteristic
L3 (Table 4.2), which has only 1 bit in the last row of the input mask of round
6 S-box.

(a) input linear mask
0x0 0x10000000000000 0x20000 0x82000000000 0x400000000000000
0x410000000000000 0x0 0x80000000000 0x20000 0x2000000000
0x400000000000000 0x10000000000000 0x2000000000 0x80000020000 0x0
0x410000000000000 0x0 0x10000000000000 0x2000020000 0x80000000000

(b) output linear mask
0x40000 0x0 0x0 0x80000000000 0x200000000000
0x8000 0x4 0x0 0x0 0x0
0x8 0x200000 0x0 0x0 0x100000000000
0x0 0x0 0x20000000000 0x0 0x0

Table 8. The linear characteristic 3, assuming S-boxes are identical mappings

For L3, the bias is 3/16 and the probability to recover other bits is 2−9.6.
To recover the U4, we use the differential characteristic D2 with linear char-

acteristic L1 left rotated 33 bits, same as the recovery of U0 and U3. Since the
value of S[3][2] is not known, we will only fix the active bits in S[3][0], setting it
to 1.

We will find the value of bit 2 in the input of active S-box related to S[3][1]
with difference 0x400. We denote this bit b3,2, and we have b3,2 = a⊕U33

4 , where
a is a constant from the known input.

We experimentally find the following biases for the input bit values b3,2 after
5 rounds. The biases are base on the difference of the output bit at position
S[1][1][33].

values bias (log based 2)

b3,2 = 0 −9.2

b3,2 = 1 −15.3 (negative)

Considering the linear relation of this XORed value to the 4 bits in the two
output states, the bias of the XORed difference of the 4 bits becomes 2−18 by
Piling up lemma. To ensure the high probability of correctly guessing the value,
we need around 240 pairs of two-block plaintext. The total data needed is around
258.7.
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Next, the complexity of recovering the other unknown words need to be
amended. We omit the similar attack process and discuss the estimated com-
plexities here.

For U0 and U3, the increased bias is 2−8.8 which needs to be compensated
by around 217.6 additional messages. Furthermore, some of the bits from the
S-box layer in round 6 can directly be recovered from the linear relation, hence
increasing the success probability by a factor of 24. The total effect is the data
complexity becomes 255.5.

For U2, D1 with L3 left rotated 13 bits will be used and for U1, D3 with
L1 left rotated 2 bits will be used. The increased bias is roughly 2−2.8 for both
cases (including the increased 5-round bias). And the decreased probability for
recovering the values before round 6 S-box has a factor 2−7.5. Therefore, the
total data complexity for recovering each bit is increased by 213.1, which is 257.8.

Therefore, the total data complexity of the state recovery attack for ICEPOLE–256a
is estimated to be 259.8, which is less than the constraint 262.

4.3 Implications of the state recovery attacks

For ICEPOLE–128, the state recovery attack implies the failure of encryption
security if both the nonce and the secret message number are reused. When an
adversary has the full knowledge of a state, he can invert the cipher until the
secret message number is injected. Thus, the adversary can decrypt arbitrary
plaintext blocks. It also implies a forgery attack on the authentication of plain-
text and associated data since the valid tag for any modified associated data or
plaintext block can be computed. Since both the key and secret message number
are unknown, the adversary cannot recover the key.

For ICEPOLE–128a and ICEPOLE–256a, the state recovery attack implies
the whole security is broken if the nonce is reused. The initialization of ICEPOLE–128a
is invertible, so the adversary can directly recover the secret key from the known
state. Then both the encryption and authentication are insecure.

Summary of the security of ICEPOLE under our analysis when nonce is
reused is given in Table 9.

ICEPOLE-128 ICEPOLE-128a ICEPOLE-256a
confidentiality for the plaintext 46 46 60
confidentiality for the secret message number 128 - -
integrity for the plaintext 46 46 60
integrity for the associated data 46 46 60
integrity for the secret message number 46 - -
integrity for the public message number 46 46 60

Table 9. Number of bits of security when nonce and secret message number can
be reused.
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5 Experimental Results

We experimentally verified the state recovery attack on ICEPOLE–128a. And
we managed to recover the 256 unknown bits practically. The experiments used
the state after the initialization with all zeros IV and key. The unknowns states
are:

U0 = 0x1e7aed5bfaeb535f
U1 = 0xe0dcc6422595e5ba
U2 = 0x892bf76586876c23
U3 = 0x8b2ef3bf50e902f6

To recover U0 and U3, we run the attack in Sect. 4.1.1 on a server with 64
cores (AMD Opteron(tm) Processor 6276). Instead of checking the constants
from input, we used an equivalent method: directly extract the input bits of the
active S-box in the first round, and decide whether they are the estimated ones.
The number of plaintext pairs we used is 234 for each bit. The attacks takes 15.3
hours and all the 128 bits recovered are correct.

To recover U2, we run the attack in Sect. 4.1.2 on the server. The number
of plaintext pairs we used is 237 for each bit. The attacks takes 3.5 days and all
the bits are correct.

To recover U1, we run the attack in Sect. 4.1.3 on the server. The number of
plaintext pairs we used is 238 for each bit. The attacks takes 3.5 days and there
is one error bit.

Since the number of error bits is very small, the experiments show that our
state recovery attack indeed works for ICEPOLE–128a.

6 Conclusion

In this paper, we analyzed the security of the ICEPOLE family of authenticated
ciphers using the differential-linear cryptanalysis when nonce is misused. ICE-
POLE is strong against differential cryptanalysis since only part of the input
difference is affected by message in the attack (so the best differential attack
against the permutation cannot be applied to break ICEPOLE); and ICEPOLE
is strong against linear cryptanalysis since only part of the input and output
of the permutation are known in the attack (so the best linear attack against
the permutation cannot be applied to break ICEPOLE). We successfully de-
veloped the differential-linear cryptanalysis against ICEPOLE by bypassing the
input/output constraints of ICEPOLE. Our attacks show that the states of all
the ICEPOLE variants can be recovered, and the secret key of ICEPOLE–128a
and ICEPOLE–256a can also be recovered. The security claims of ICEPOLE do
not hold under the nonce misuse circumstances.

From the attacks against ICEPOLE, the lesson we learned is that when we
are designing a strong cipher based on a permutation, it is better to consider
the best attacks against the permutation in which the input/output can affect
the whole state. Furthermore, if the performance of a cipher is improved by
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considering input/output constraints, the designers should analyze whether the
input/output constraints could be bypassed in the attacks.
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