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Abstract. The simplicity and widespread use of blockciphers based on the iter-
ated Even–Mansour (EM) construction has sparked recent interest in the theoret-
ical study of their security. Previous work has established their strong pseudo-
random permutation and indifferentiability properties, with some matching lower
bounds presented to demonstrate tightness. In this work we initiate the study of
the EM ciphers under related-key attacks which, despite extensive prior work on
EM ciphers, has received little attention. We show that the simplest one-round
EM cipher is strong enough to achieve non-trivial levels of RKA security even
under chosen-ciphertext attacks. This class, however, does not include the prac-
tically relevant case of offsetting keys by constants. We show that two rounds
suffice to reach this level under chosen-plaintext attacks and that three rounds
can boost security to resist chosen-ciphertext attacks. We also formalize how in-
differentiability relates to RKA security, showing strong positive results despite
counterexamples presented for indifferentiability in multi-stage games.
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1 Introduction

1.1 Background

Formal analyses of cryptographic protocols often assume that cryptosystems are run on
keys that are independently generated and bear no relation to each other. Implicit in
this assumption is the premise that user keys are stored in protected areas that are hard
to tamper with. Security under related-key attacks (RKAs), first identified by Biham
and Knudsen [10,9,38], considers a setting where an adversary might be able to dis-
turb user keys by injecting faults [2], and consequently run a cryptosystem on related
keys. Resilience against RKAs has become a desirable security goal, particularly for
blockciphers.

The need for RKA security is further highlighted by the fact that through (improper)
design, a higher-level protocol might run a lower-level one on related keys. Prominent
examples are the key derivation procedures in standardized protocols such as EMV [25]
and the 3GPP integrity and confidentiality algorithms [34], where efficiency consider-
ations have led the designers to use a blockcipher under related keys. Similar consid-
erations can arise in the construction of tweakable blockciphers [41], if a blockcipher
is called on keys that are offset by xoring tweak values. An RKA-secure primitive can
offer security safeguards against such protocol misuse.



Bellare and Kohno (BK) [7] initiated the theoretical treatment of security under
related-key attacks and propose definitions for RKA-secure pseudorandom functions
(PRFs) and pseudorandom permutations (PRPs). The BK model were subsequently ex-
tended by Albrecht et al. [1] to idealized models of computation to account for the
possibility that key might be derived in ways that depend on the ideal primitive. Both
works prove that the ideal cipher is RKA secure against wide sets of related-key de-
riving (RKD) functions. Bellare and Cash [5] present an RKA-secure pseudorandom
function from standard intractability assumptions and Bellare, Cash, and Miller [6] give
a comprehensive treatment of RKA security for various cryptographic primitives, lever-
aging the RKA resilience of PRGs to construct RKA-secure instances of various other
primitives. In this work we are interested in the RKA security of blockciphers.

1.2 The Even–Mansour ciphers

Key-alternating ciphers were introduced by Daemen and Rijmen [23] with the aim of
facilitating a theoretical discussion of the design of AES. The key-alternating cipher has
since become a popular paradigm for blockcipher design, with notable examples includ-
ing AES [22,45], Present [14], LED [32], PRINCE [16], KLEIN [31], and Zorro [30].
Key-alternating ciphers originate in the work of Even and Mansour [26,27], who consid-
ered a single round of the construction show in Figure 1; their motivation was to design
the simplest blockcipher possible. This design is closely related to Rivest’s DES-X con-
struction, proposed as a means to protect DES against brute-force attacks [36], which
itself builds on principles dating back to Shannon [49, p. 713]. In this work, we use the
terms ‘key-alternating cipher’ and ‘iterated Even–Mansour cipher’ interchangeably.
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Fig. 1. The t-round iterated Even–Mansour scheme.

PROVABLE SECURITY. Even and Mansour’s original analysis [26,27] considers ‘crack-
ing’ and ‘forging’ attacks in the random-permutation model and shows that no adver-
sary can predict x given E(k, x) or E(k, x) given x with reasonable probability, with-
out making q1 queries to the permutation and qem to the encryption/decryption ora-
cle, where q1qem ≈ 2n. The indistinguishability of the Even–Mansour scheme from
a random permutation is shown by Kilian and Rogaway [36,37, Theorem 3.1 with
κ = 0] and Lampe, Patarin and Seurin [39, App. B of the full version]. Both works
show that an adversary making q1 and qem queries to the permutation oracle and the
encryption/decryption oracles respectively, has a success probability of approximately
q1qem/2

n−1. Gentry and Ramzan [29] show that the permutation oracle can be instan-
tiated by a Feistel network with a random oracle without loss of security.

At Eurocrypt 2012, Dunkelman, Keller, and Shamir [24] showed that the Even–
Mansour scheme retains the same level of security using only a single key, that is
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E(k, x) = P(x ⊕ k) ⊕ k. Bogdanov et al. [15] show that the t-round Even–Mansour
cipher with independent keys and permutations and at least two rounds (t ≥ 2) provides
security up to approximately 22n/3 queries but can be broken in t · 2tn/(t+1) queries.
Following this work, several papers have moved towards proving a bound that meets
this attack [50,39], with Chen and Steinberger [18] able to prove optimal bounds using
Patarin’s H-coefficient technique [47]. Chen et al. [17] consider two variants of the two-
round Even–Mansour scheme: one with independent permutations and identical round
keys, the other with identical permutations but a more complex key schedule. In both
cases (under certain assumptions about the key schedule), security is maintained up to
roughly 22n/3 queries.

Maurer, Renner, and Holenstein (MRH) [43] introduce a framework which formal-
izes what it means for a non-monolithic object to be able to replace another in arbitrary
cryptosystems. This framework, know as indifferentiability, has been used to validate
the design principle behind many cryptographic constructions, and in particular that
of the iterated Even–Mansour constructions. Lampe and Seurin [40] show that the 12-
round Even–Mansour cipher using a single key is indifferentiable from the ideal cipher.
Andreeva et al. [3] show that a modification of the single-key, 5-round Even–Mansour
cipher, where the key is first processed through a random oracle, is indifferentiable from
the ideal cipher.

CRYPTANALYSIS. Daemen [21] describes a chosen-plaintext attack that recovers the
key of Even–Mansour in approximately q1 ≈ qem ≈ 2n/2 queries. Biryukov and Wag-
ner [13] are able to give a known-plaintext attack against the Even–Mansour scheme
with the same complexity as Daemen’s chosen-plaintext attack. Dunkelman, Keller,
and Shamir [24] introduce the slidex attack that uses only known plaintexts and can be
carried out with any number of queries as long as q1 · qem ≈ 2n.

Mendel et al. [44] describe how to extend Daemen’s attack [21] to a related-key ver-
sion, and are able to recover the keys when all round keys are independent. Bogdanov
et al. [15] remark that related-key distinguishing attacks against the iterated Even–
Mansour scheme with independent round keys “exist trivially,” and describe a key-
recovery attack, requiring roughly 2n/2 queries against the two-round Even–Mansour
scheme with identical round keys, assuming that an adversary can xor constants into
the round key.

Many key-alternating ciphers such as AES [12,11], Present [46], LED [44], and
Prince [35] have been analyzed in the related-key model. One of the security claims of
the LED blockcipher [32] is a high resistance to related-key attacks, which is justified
by giving a lower bound on the number of active S-boxes.

1.3 Contributions

Despite extensive literature on the provable security of iterated Even–Mansour ciphers
and (RKA) cryptanalysis of schemes using this design strategy, their formal related-key
analysis has received little attention. In this work we initiate the provable RKA security
analysis of such key-alternating ciphers. Our results build on the work of Barbosa and
Farshim [4] who study the RKA of security of Feistel constructions. They show that by
appropriate reuse of keys across the rounds, the 3-round Feistel construction achieves
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RKA security under chosen-plaintext attacks. With four rounds the authors are able to
prove RKA security for chosen-ciphertext attacks. The authors also formalize a random-
oracle model transform by Lucks [42] which processes the key via the random oracle
before application. Our results are similar and we show that key reuse is also a viable
strategy to protect against related-key attacks in key-alternating ciphers. In contrast to
the Feistel constructions, key-alternating ciphers operate intrinsically in an idealized
model of computation, and our analyses draw on techniques used in the formalization
of Lucks’s heuristic in [4].

We start with the simplest of the key-alternating ciphers, namely the (one-round)
EM cipher. We recall that for xor related-key attacks, where an adversary can offset keys
by values of its choice, this construction does not provide RKA security [16,15,40,3].
Indeed, it is easy to check that E((k1, k2), x) = E((k1 ⊕ ∆, k2), x ⊕ ∆), which only
holds with negligible probability for the ideal cipher. We term this pattern of adversarial
behaviour offset switching. One idea to thwart the above attack here would be to enforce
key reuse in the construction; although the above equality no longer holds, a close
variant still applies:

E(k, x) = E(k ⊕∆, x⊕∆)⊕∆ .

Despite this negative result, we show that the minimal EM cipher with key-reuse
enjoys a non-trivial level of RKA security (even in the chosen-ciphertext setting). For a
set of allowed relate-key queries Φ, we identify a set of sufficient conditions that allow
us to argue that E(φ(k), x) and E(φ′(k), x′) for φ, φ′ ∈ Φ look random and indepen-
dent from an adversary’s point of view. As usual, our conditions impose that the RKD
functions have unpredictable outputs, as otherwise RKA security is trivially unachiev-
able. (For φ(k) = c, a predictable value, consider an adversary which computes E(c, 0)
and compares it E(φ(k), 0).) Our second condition looks at the generalization of the
offset-switching attack above and requires it to be infeasible to find offset claws, i.e.,
for any pair of functions (φ1, φ2) and any value ∆ of adversary’s choice, over a random
choice of k

φ1(k)⊕ φ2(k) 6= ∆ .

This strengthens the standard claw-freeness condition [7,1,4], which corresponds to the
∆ = 0 case. In our work, we also consider RKD functions that depend on the under-
lying permutations by placing queries to them. As mentioned above, this is particu-
larly relevant for the Even–Mansour ciphers as they inherently operate in the random-
permutation model. We build on previous work in the analysis of such functions [1,4]
and formulate adequate restrictions on oracle queries that allow a security proof to be
established. Informally, our condition requires that the queries made by φ’s have empty
intersection with the outputs of φ’s, even with offsets.

The search for xor-RKA security leads us to consider the two-round EM construc-
tions. The first attack discussed above, where the key is offset by a constant, still ap-
plies in this setting and once again we consider key reuse. (The two permutations are
still independent.) For this cipher, the offset-switching attack no longer applies, which
raises the possibility that the two-round Even–Mansour might provide xor-RKA secu-
rity. We start with chosen-plaintext attacks, formulate three new conditions (analogous
to those given for the basic scheme), and prove security under them. These conditions,
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as before, decouple the queries made to the permutation oracle and allow us to simu-
late the outer P2 oracle forgetfully in a reduction. We then show that this new set of
restrictions are weak enough to follow from the standard output-unpredictability and
claw-freeness properties. Since xoring with constants is output unpredictable and claw-
free [7], the xor-RKA security of the single-key, two-round EM construction follows.
Under chosen-ciphertext attacks, however, this construction falls prey to an attack of
Andreeva et al. [3] on the indifferentiability of two-round EM (adapted to the RKA
setting). For CCA security, we turn to three-round constructions, where we show of the
14 possible way to reuse keys, all but one fall prey to either offset switching attacks or
Andreeva et al.’s attack [3]. On the other hand, the three-round construction which uses
a single key meets the desired xor-RKA security in the CCA setting.

Dunkelman, Keller, and Shamir [24] consider several variants of the Even–Mansour
scheme, such as addition Even–Mansour where the xors are replaced with modular
additions, and involution Even–Mansour, where random permutations are replaced with
random involutions. It is reasonable to expect that our results can be modified to also
apply to these schemes. Another possible variant of the Even–Mansour scheme is one
where the same permutation is used across the rounds [17]; we briefly argue that our
proof techniques carry over to this permutation reuse setting.

As mentioned above, Lampe and Seurin [40] show that the 12-round EM construc-
tion is indifferentiable from the ideal cipher when a single key is used throughout the
rounds. Ristenpart, Shacham and Shrimpton [48], on the other hand, point out that indif-
ferentiability does not necessarily guarantee composition in multi-stage settings and go
on to note that the RKA game is multi-staged. This leaves open the question of whether
indifferentiability provides any form of RKA security. We show that if RKD functions
query the underlying primitive indirectly via the construction only, then composition
holds. This level of RKA security is fairly strong as, in our opinion, it is unclear what
it menas to syntactically changing the RKD functions from those in the ideal setting
which have access to the ideal cipher to those which (suddenly) get access to permuta-
tions. Our result, in particular, implies that Lampe and Seurin’s constructions [40] and
Holenstein, Künzler, and Tessaro’s 14-round Feistel construction [33] are RKA secure
against key offsets in the CCA setting.

Independently and concurrently to this work, Cogliati and Seurin [19,20] also study
the related-key security of iterated EM ciphers. Their Theorem 2 is very similar to our
Corollary 3; they analyze more general key schedules and obtain tighter bounds, while
our approach deals with a wider range of RKD functions.

2 Preliminaries

NOTATION. We write x ← y for assigning value y to variable x. We write x ←$ X
for the action of sampling x from a finite set X uniformly at random. If A is a prob-
abilistic algorithm we write y ←$ A(x1, . . . , xn) for the action of running A on in-
puts x1, . . . , xn with randomly chosen coins, and assigning the results to y. We let
[n] := {1, . . . , n}, and we denote the bitwise complement of a bit string x by x.
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BLOCKCIPHERS. A (block)cipher is a function E : K ×M −→M such that for every
k ∈ K the map E(k, ·) is a permutation onM. Such an E uniquely defines its inverse
map D(k, ·) for each key k. We write BC := (E,D) to denote a blockcipher, which
also implicitly defines the cipher’s key space K and message space or domainM. We
denote the set of all blockciphers with key space K and domainM by Block(K,M).
The ideal cipher with key space K and message space M corresponds to a model of
computation where all parties have oracle access to a uniformly chosen random element
of Block(K,M) in both the forward and backward directions. For a blockcipher BC :=
(E,D), notation ABC denotes oracle access to both E and D for A.

PERMUTATIONS. An ideal permutation can be viewed as a blockcipher whose key space
contains a single key. In this work, we are interested in building blockciphers with large
key spaces from a small number of ideal permutations P1, . . . ,Pt and their inverses.
This is equivalent to access to a blockcipher with key space [t], where Pi(x) := P(i, x).
In order to ease notation, we define a single oracle π, which provides access to all t
ideal permutations in both directions. This oracle takes as input (i, x, σ), where i ∈ [t],
x ∈ M, and σ ∈ {+,−} and returns Pi(x) if σ = + and P−1

i (x) if σ = −. Slightly
abusing notation, we define Pσi (x) := Pσ(i, x) := π(i, x, σ), and assume σ = +
whenever it is omitted from the superscript. A blockcipher constructed from t ideal
permutations π is written BCπ := (Eπ,Dπ).

RKD FUNCTIONS. A related-key deriving (RKD) function maps keys to keys in some
key space K. In this paper, we view RKD functions as circuits that may contain special
oracles gates π. An RKD set Φ is a set of RKD functions φπ : K −→ K, where π is an
oracle. (The oracle will be instantiated with π as defined above.) Throughout the paper
we assume that membership in RKD sets can be efficiently decided.

RKA SECURITY. Following [7,1], we formalize the RKA security of a blockcipher
BCπ := (Eπ,Dπ) in the (multiple) ideal-permutation model via the game shown in
Figure 2. The RKA game is parametrized by an RKD set Φ which specifies the RKD
functions that an adversary is permitted to query during its attack. This game also in-
cludes a procedure for oracle π defined above. We define the RKCCA advantage of an
adversary A via

Advrkcca
BCπ,Φ,t(A) := 2 · Pr [RKCCABCπ,A,Φ,t]− 1 .

The RKCPA game and advantage are defined similarly by considering adversaries that
do not make any RKDEC queries (backwards queries to the permutations are still per-
mitted).

RKA SECURITY OF THE IDEAL CIPHER. Following [7] we define the RKA security of
the ideal cipher IC′ := (iE′, iD′) by augmenting the procedures of the above game with
those for computing the ideal cipher in both directions, i.e., (iE′, iD′). When working
with the ideal cipher, t is often 0, but we consider RKD functions which have oracle
access to the ideal procedures iE′ and iD′ as in [1].

EVEN–MANSOUR CIPHERS. The t-round Even–Mansour (EM) cipher EMπ := (Eπ,Dπ)
with respect to t permutations P1,. . . ,Pt on domain {0, 1}n has key spaceK = {0, 1}n(t+1),
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RKCCABCπ,A,Φ,t:
b ←$ {0, 1}; k ←$ K
(P,P−1) ←$ Block([t],M)
(iE, iD) ←$ Block(K,M)
b′ ←$ ARKENC,RKDEC,π

Return (b′ = b)

π(i, x, σ):
Return Pσ(i, x)

RKENC(φπ, x):
k′ ← φπ(k)
If b = 0 Return iE(k′, x)
Return Eπ(k′, x)

RKDEC(φπ, x):
k′ ← φπ(k)
If b = 0 Return iD(k′, x)
Return Dπ(k′, x)

Fig. 2. Game defining the Φ-RKCCA security of a blockcipher BCπ := (Eπ,Dπ) with access to
t ideal permutations. An adversary can query the RKENC and RKDEC oracles with a φπ ∈ Φ
only. In the RKCPA game the adversary cannot query the RKDEC oracle.

domainM = {0, 1}n, and is defined via

Eπ((k1, . . . , kt+1), x) := Pt(· · ·P2(P1(x⊕ k1)⊕ k2) · · · )⊕ kt+1 ,

Dπ((k1, . . . , kt+1), x) := P−1
1 (· · ·P−1

t−1(P−1
t (x⊕ kt+1)⊕ kt) · · · )⊕ k1 .

In this work we are interested in EM ciphers where keys are reused in various
rounds. Following notation adopted in [4], we denote the EM construction where key
kij is used before round j by EMπ[i1, i2, . . . , it+1]. We call such key schedules simple.
Note that K = {0, 1}n·|{i1,i2,...,it+1}| in these constructions. Of particular interest to us
are the EMπ[1, 1], EMπ[1, 1, 1] and EMπ[1, 1, 1, 1] constructions, where a single key is
used in all rounds. We emphasize that the round permutations in all these constructions
are independently chosen, unless stated otherwise.

3 Indifferentiability and RKA Security

Given the indifferentiability results for the EM and Feistel constructions discussed in
the introduction, in this section we study to what extent (if any) an indifferentiable con-
struction can provide resilience against related-key attacks. We start by recalling what
it means for a blockcipher construction to be indifferentiable from the ideal cipher [43].

INDIFFERENTIABILITY. Let BCπ := (Eπ,Dπ) be a blockcipher and let S IC be a sim-
ulator with oracle access to the ideal cipher having the same key and message spaces
as those of BCπ . We define the indifferentiability advantage of a distinguished D with
respect to S against BCπ via

Advindiff
BCπ,t(S,D) := Pr

[
DBCπ,π

]
− Pr

[
DIC,S IC

]
,

where the first probability is taken over a random choice of π (as defined in Fig-
ure 2), and the second probability is taken over a random choice of a blockcipher
IC := (iE, iD). Note that in this definition we require a universal simulator that does
not depend on the indifferentiability distinguisher. We prove the following theorem in
the full version of the paper [28].
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Theorem 1. Let Φ be an RKD set consisting of function φOC having access to a block-
cipher oracle OC. Let π be as before, BCπ be a blockcipher construction, and S be
an indifferentiability simulator. Then for any adversary A against the Φ-RKCCA secu-
rity of BCπ , where the oracles in the RKD functions are instantiated with BCπ , there
are adversaries D1 and D2 against the indifferentiability of BCπ , and an adversary B
against the Φ-RKCCA of the ideal cipher, where the oracles in the RKD functions are
instantiated with the ideal cipher, such that

Advrkcca
BCπ,Φ,t(A) ≤ Advindiff

BCπ,t(S,D1) + Advindiff
BCπ,t(S,D2) + Advrkcca

IC,Φ,t(B) .

CARE WITH COMPOSITION. Ristenpart, Shacham, and Shrimpton [48] show that in-
differentiability does not always guarantee secure composition in multi-stage settings
where multiple adversaries can only communicate in restricted ways. The authors then
remark that RKA security is multi-staged. To see this, note that the RKA game can be
viewed as consisting of two adversaries Aπ1 and Aπ2 where Aπ1 corresponds to the stan-
dard RKA adversaryAπ andAπ2 is an adversary which has access to the key k, receives
an input fromAπ1 containing the description of an RKD function φπ and a value x, com-
putes φπ(k) using its access to π to get k′, and returns Eπ(k′, x) or Dπ(k′, x) to Aπ1 as
needed. With this formalization adversaryAπ2 cannot freely communicate withAπ1 as it
is restricted to send only encryption and decryption outputs. Our theorem above essen-
tially states that in settings where Aπ2 takes the restricted form ABCπ

2 indifferentiability
suffices. In our opinion, this restricted access to π suits the RKA security model par-
ticularly well. Indeed, when starting in the ideal setting where the RKD functions have
access to the ideal cipher, one needs to address how the oracles are instantiated when
moved to a construction. A natural way to do this is to simply instantiate the oracles
with those of the construction as well (and in this setting, as we show, indifferentiabil-
ity suffices). Giving the RKD functions direct access to π would constitute a syntactic
change in the two RKD sets for the ideal cipher and the construction, and it is unclear
one should compare RKA security in these settings.

Lampe and Seurin [40, Theorem 2] show that the 12-round EMπ[1, · · · , 1] construc-
tion is indifferentiable from the ideal cipher (with a universal simulator). Bellare and
Kohno [7], on the other hand, show that the ideal cipher is Φ⊕-RKCCA secure, where

Φ⊕ := {k 7→ k ⊕∆ : ∆ ∈ K} .

We therefore obtain as a corollary of the above theorem that the 12-round construc-
tion EMπ[1, · · · , 1] is Φ⊕-RKCCA secure. The same conclusion applies to the 14-
round Feistel construction of Holenstein, Künzler, and Tessaro [33]. These construc-
tion, however, are suboptimal in terms rounds with respect to RKA security. Barbosa
and Farshim [4] show that 4 rounds with key reuse suffices for Feistel networks. In the
following sections, we study the Even–Mansour ciphers with smaller number of rounds
while maintaining RKA security.

4 The RKA Security of EMπ[1, 1]

In this section we study RKD sets Φ for which the single-key Even–Mansour con-
struction provides Φ-RKCCA security. Our results are similar to those of Bellare and
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Kohno [7], Albrecht et al. [1], and Barbosa and Farshim [4] in that we identify a set of
restrictions on the RKD set Φ that allow us to establish a security proof. For the one-
round construction there are two simple key schedules up to relabeling: EMπ[1, 1] and
EMπ[1, 2]. Neither of these constructions can provide Φ⊕-RKCPA security due to the
offset-switching attacks discussed in the introduction. Despite this, we show that the
most simple of the EM constructions, EMπ[1, 1], provides a non-trivial level of RKA
security. The results of this section will also serve as a warm up to the end goal of
achieving strong forms of RKA security, which will encompass key offsets as a special
case.

4.1 Restricting RKD sets

Bellare and Kohno [7] observe that if an adversary is able to choose a φ ∈ Φ that has
predictable outputs on a randomly chosen key, then Φ-RKCCA security is not achiev-
able. To see this, let φ be the constant zero (or any predictable) function. An adversary
can simply test if it is interacting with the real or the ideal cipher by enciphering x
under the zero key and comparing it to the value it receives from its RKENC oracle
on (φ, x). This motivates the following definition of unpredictability, adapted to the
ideal-permutation model.

OUTPUT UNPREDICTABILITY (OUP). The advantage of an adversary A against the
output unpredictability of an RKD set Φ with access to t ideal permutations is defined
via

Advoup
Φ,t(A) := Pr [∃ (φπ, c) ∈ List : φπ(k) = c; List ←$ Aπ] .

Here List contains pairs of the form (φπ, c) for φπ ∈ Φ and c ∈ K, and π is the
oracle containing t ideal permutations. The probability is taken over a random choice
of k ←$ K, the t random permutations implicit in π, and the coins of the adversary.
Note that via a simple guessing argument, this definition can be shown to be equivalent
to one where the adversary is required to output a single pair, with a loss of 1/|List| in
the reduction.

A second condition that Bellare and Kohno [7] introduce is claw-freeness. Roughly
speaking, a set Φ has claws if there are two distinct φ1, φ2 ∈ Φ such that φ1(k) =
φ2(k). Although this condition is not in general necessary—given an arbitrary claw
there isn’t necessarily an attack—it turns out that existence of claws prevent natural
approaches to proofs of security. We lift claw-freeness to the ideal-permutation model
below.

CLAW-FREENESS (CF). The advantage of an adversary A against the claw-freeness of
an RKD set Φ with access to t ideal permutations is defined via

Advcf
Φ,t(A) := Pr [∃ (φπ1 , φ

π
2 ) ∈ List : φπ1 (k) = φπ2 (k) ∧ φπ1 6= φπ2 : List ←$ Aπ] .

Here List contains pairs of RKD functions, π is as before, and the probability space is
defined similarly to that for output unpredictability. Once again this definition is equiv-
alent to one where List is restricted to be of size one.
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Claw-freeness is not a strong enough condition for the one-round EM construction
to be RKA secure. Indeed, consider an adversary that queries its encryption oracle with
two pairs (φ1, x1) and (φ2, x2), possibly with x1 6= x2, such that

x1 ⊕ φ1(k) = x2 ⊕ φ2(k) .

Then the permutation underlying the construction will be queried at the same point and
the resulting ciphertexts will differ by φ1(k) ⊕ φ2(k) = x1 ⊕ x2, a predictable value.
This observation motivates a strengthening of the claw-freeness property.

XOR CLAW-FREENESS (XCF). The advantage of an adversaryA against the xor claw-
freeness of an RKD set Φ with access to t ideal permutations is defined via

Advxcf
Φ,t(A) := Pr [∃ (φπ1 , φ

π
2 , c) ∈ List : φπ1 (k)⊕ φπ2 (k) = c ∧ φπ1 6= φπ2 :List←$Aπ] .

The variables and probability space are defined similarly to those for claw-freeness.
Xor claw-freeness implies claw-freeness as the latter is a special case with c = 0.

That claw-freeness is weaker than xor claw-freeness can be seen by considering the set
Φ⊕ corresponding to xoring with constants. This set can be easily shown to be output
unpredictable and claw-free [7], but is not xor claw-free as

φ∆1
(k)⊕ φ∆2

(k) = ∆1 ⊕∆2 where φ∆(k) := k ⊕∆ .

We also observe that xor claw-freeness of Φ implies that there is at most one φ ∈ Φ
which is predictable as any two predictable RKD functions can be used to break xor
claw-freeness.

Let us now consider oracle access in the RKD functions. Following the attacks
identified in [1,4], we consider the oracle-dependent RKD set

Φ :=
{
id : k 7→ k, φP : k 7→ P(k)

}
.

Consider the following Φ-RKCPA adversary against EMπ[1, 1]. Query (id, 0) and get
y = P(k) ⊕ k. Query (φP, y) and get z. Return (z = 0). When interacting with
EMπ[1, 1] we have that

z = EP(P(k),P(k)⊕ k) = P(P(k)⊕ k ⊕ P(k))⊕ P(k) = P(k)⊕ P(k) = 0 .

On the other hand, this identity is true with probability at most 1/(2n − 1) with respect
to the ideal cipher. This attack stems from the fact that when answering an RKENC
query, π is evaluated at a point already queried by an RKD function. Our final restriction
below formalizes what it means for the oracle queries of the RKD function to be disjoint
from those of the adversary, including those made implicitly through the encryption or
decryption procedures, even up to xoring constants.

XOR QUERY INDEPENDENCE (XQI). The advantage of an adversaryA against the xor
query independence of an RKD set Φ with access to t ideal permutations is defined via

Advxqi
Φ,t(A) :=Pr

[
∃(i, σ, φπ1 , φπ2 , c) ∈ List : (i, φπ1 (k)⊕ c, σ) ∈ Qry[φπ2 (k)];List←$Aπ

]
10



where

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

Note that for the EM cipher, restricting the above definition to i = 1 suffices. We also
define query independence [1] as above but demand that c = 0.

EXAMPLES. The OUP, XCF, and XQI conditions introduced above do not lead to vacu-
ous RKD sets. As an example of an RKD set which is independent of the permutations
consider

Φxu := {k 7→ H(k, x) : x ∈ K′} ,
where H is an xor-universal hash function from K to K with key space K′. As a simple
instantiation, let K′ = {0, 1}k \ 0k and for k ∈ K′ define H(k, x) := k · x, where
{0, 1}k is interpreted as GF(2k) with respect to a fixed irreducible polynomial, and
multiplication is defined over GF(2k).

As an example of an oracle-dependent RKD set, one can take

Φ := {k 7→ P(k ⊕∆) : ∆ ∈ K} .

4.2 Sufficiency of the conditions

We now show that if an RKD set Φ meets the output unpredictability, xor claw-freeness
and xor query independence properties defined above, then EMπ[1, 1] provides Φ-
RKCCA security. Throughput the paper we denote the number of queries to various
oracles in an attack as follows:

qi : the number of direct, distinct queries to π with index i made by the adversaryA.
qem : the number of distinct queries to the RKENC and (if present) RKDEC oracles by
A.

qφi : the number of distinct queries to π with index i made by the RKD function φπ .

We call an RKA adversary repeat-free if it does not query its RKENC or RKDEC or-
acle on a pair (φ, x) twice. We call an RKA adversary redundancy-free if it does not
query RKENC on (φ, x) to get y and then RKDEC on (φ, y) to get x, or vice versa.
Without loss of generality, we assume that all adversaries in this paper are repeat-free
and redundancy-free.

Theorem 2 (Φ-RKCCA security of EMπ[1, 1]). Let Φ be an RKD set. Then for any
adversary A against the Φ-RKCCA security of EMπ[1, 1] with parameters as defined
above, there are adversaries B1, B2, B3 and B4 such that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Advoup

Φ,1(B1) + Advxqi
Φ,1(B2) + Advxcf

Φ,1(B3) + Advcf
Φ(B4)

+
qem(q1 +

∑
φ q

φ
1 )

2n − (q1 +
∑
φ q

φ
1 )

+
2q2
em

2n
,

where B1, B2, B3 and B4 output lists of sizes 2q1qem, 2q2
em, q2

em, and q2
em respectively

and they all make q1 queries to π.
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We give the intuition behind the proof here and leave the details to the full ver-
sion [28]. The adversary A in the Φ-RKCCA game is run with respect to the oracles

P(x), P−1(x), P(x⊕ φπ(k))⊕ φπ(k), P−1(x⊕ φπ(k))⊕ φπ(k) .

Our goal is to make a transition to an environment with the oracles

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) ,

where (iE, iD) denotes the ideal cipher. To this end, we consider two intermediate envi-
ronments where the last two oracles corresponding to RKENC and RKDEC are handled
via a forgetful oracle $ that returns uniform strings on each invocation, irrespectively of
its inputs. Applying this change to the first environment above gives

P(x), P−1(x), $(x⊕ φπ(k))⊕ φπ(k), $(x⊕ φπ(k))⊕ φπ(k) ,

while the second gives

P(x), P−1(x), $(φπ(k), x), $(φπ(k), x) ,

both of which are identical to the environment (P(x),P−1(x), $(), $()). We will now
argue that the above changes alter A’s winning probabilities negligibly, down to the
conditions on Φ that we introduced in the previous section.

Let us first look at the change where we replace iE(φπ(k), x) and iD(φπ(k), x) with
$(φπ(k), x). We introduce another game and replace the random keyed permutations
iE and iD by random keyed functions iF and iC:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) .

Via (a keyed extension of) the random permutation/random function (RP/RF) switching
lemma [8], the environments containing (iF, iC) and (iE, iD) can be shown to be indis-
tinguishable up to the birthday bound q2

em/2
n. The environments containing iF(φπ(k), x)

and iC(φπ(k), x) and two copies of $(φπ(k), x) and can be shown to be identical down
to the CF property. Indeed, an inconsistency could arise whenever (φπ1 , x1) 6= (φπ2 , x2)
but (φπ1 (k), x1) = (φπ2 (k), x2). This means x1 = x2 and hence we must have that
φπ1 6= φπ2 . But φπ1 (k) = φπ2 (k) and this leads to a break of the claw-freeness.

Let us now look at the changes made when we replace P±(x⊕φπ(k))⊕φπ(k) with
$(x⊕φπ(k))⊕φπ(k). We need to consider the points where a forgetful simulation of P
or P−1 via $ in the last two oracles leads to inconsistencies. Let us define the following
six lists.

List+P := [(a,P(a)) : A queries a to P], List−P := [(P−1(b), b) : A queries b to P−1] ,

List+φ :=[(a,P(a)) :φπ(k) queries P(a)], List−φ :=[(P−1(b), b) :φπ(k) queries P−1(b)]

List+$ := [(x⊕ φπ(k), $(x⊕ φπ(k))) : A queries (φπ, x) to RKENC] ,

List−$ := [($(φπ(k)⊕ y), φπ(k)⊕ y) : A queries (φπ, y) to RKDEC] .

Let List? be the union of the above lists over all φ queried to RKENC or RKDEC.
This list encodes the trace of the attack, as in the forgetful environment no queries to P

12



or P−1 are made while handling RKENC and RKDEC queries. This trace is consistent
with one coming from a permutation unless List? does not respect the permutivity prop-
erties, i.e., there are two entries (a, b), (a′, b′) ∈ List? such that it is not the case that
(a = a′ ⇐⇒ b = b′). Note that one of these pairs must be in List$ := List+$ ∪ List−$
as the other oracles are faithfully implemented. There is an inconsistency on List? if
and only if there is an inconsistency among two lists (one of which is either List+$ or
List−$ ). There are 20 possibilities to consider, including the order that queries are made.
We consider first query of a pair being on List+$ ; the other cases are dealt with symmet-
rically.

List+$ and List+P : (1) The first component of a pair on List+$ —we call this a first en-
try on List+$ —matches a first entry a on List+P . This means that for some query
(φπ, x) to RKENC we have that a = φπ(k) ⊕ x. This leads to a break of output
unpredictability. (2) The second entry on these lists match. More explicitly, we are
looking at the probability that P(a) = R, for R the output of $ on a forward query.
Here we can assume that R is known and this addresses the adaptivity of choice
of a. But even in this case the probability of this event is small as P is a random
permutation.

List+$ and List−P : (1) A second entry on List+$ matches a second entry b′ on List−P .
This means that for some query (φπ, x) to RKENC with output y we have that
b′ = φπ(k) ⊕ y. This leads to a break of output unpredictability. (2) The first
entries match on these lists. The argument is similar to case (2) above, but now is
for P−1.

List+$ and List+φ : (1) A first entry on List+$ matches a first entry List+φ . This means that
for some query (φπ1 , x) to RKENC we have that a = φπ1 (k) ⊕ x for a query a of
some other φπ2 . This leads to a break of xor query independence. (2) The second
entries match on these lists. The argument is as in case (2) of first pair of lists.

List+$ and List−φ : (1) A second entry on List+$ matches a second entry b′ on List−φ .
This means that for some query (φπ1 , x) to RKENC with output y we have that
b′ = φπ1 (k)⊕ y for a query b′ of some other φπ2 . This leads to a break of xor query
independence. (2) The first entries match on these lists. The argument is as in case
(2) of the second pair of lists.

List+$ and List+$ : Two first entries on List+$ match. This means that for two queries
(φπ1 , x1) and (φπ2 , x2) to RKENC we have that φπ1 (k)⊕ x1 = φπ2 (k)⊕ x2. Repeat-
freeness ensures that φ1 6= φ2 as otherwise x1 = x2 as well. This leads to a break
of xor claw-freeness. (2) The second entries match on these lists. Since the oracle
returns independent random values, this probability can be bounded by the birthday
bound.

List+$ and List−$ : A second entry on List+$ matches a second entry on List−$ . This
means that for a queries (φπ1 , x1) to RKENC with outputs y1 and (φπ2 , x2) to
RKDEC, we have that φπ1 (k) ⊕ y1 = φπ2 (k) ⊕ x2. Redundancy-freeness ensures
that φ1 6= φ2 as otherwise x2 would be an encryption of x1. This leads to a break
of xor claw-freeness. (2) The first entries match on these lists. The probability of
this event can be also bounded by the birthday bound.

Hence inconsistencies among any two pairs of lists happen with small probability,
and this shows that List? is also inconsistent with small probability.
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5 The Φ-RKCPA Security of EMπ[1, 1, 1]

The theorem established in the previous section does not encompass Φ⊕-RKA security
as this set is not xor claw-free. In this section, we investigate whether an extra round of
iteration can extend RKA security to the Φ⊕ set. For the two-round EM constructions,
up to relabelling, there are 5 simple key schedules: [1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 2, 2],
and [1, 2, 3]. It is easy to see that offset-switching attacks can be used to attack the Φ⊕-
RKCPA security of all but the first of these. In the following subsections we study the
RKA security of the only remaining construction, EMπ[1, 1, 1].

5.1 Weakening the conditions

We start by following a similar proof strategy to that given for EMπ[1, 1] and identify a
set of restrictions which are strong enough to enable a security proof, yet weak enough
to encompass the Φ⊕ set. Starting from the CPA environment

π(i, x, σ), P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

we simulate the P2 oracle forgetfully and move to a setting with oracles

π(i, x, σ), $(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ≡ π(i, x, σ), $() .

This game can be also be reached from the ideal game π(i, x, σ), iE(φπ(k), x) via an
application of the RP/RF switching lemma [8] and the claw-freeness property as in the
analysis of EMπ[1, 1].

We now analyze the probability that the second environment simulates the first one
in an inconsistent way. We look at inconsistencies which arise due to oracles being
queried on the same inputs. The first place such an inconsistency might arise is when
A makes an explicit π query (2, a,+) that matches a query made to $, i.e., P1(x ⊕
φπ(k)) ⊕ φπ(k) = a for some (φπ, x). Our first condition below addresses this event;
we give a slight strengthening of the condition as we will be using it later on.

FIRST-ORDER OUTPUT UNPREDICTABILITY. Let t ≥ 1. The advantage of an adversary
A against the first-order output unpredictability of an RKD set Φ with access to t ideal
permutations is defined via

Advoup1
Φ,t (A) := Pr[∃(i, σ, φπ, x, c) ∈ List s.t. Pσi (φπ(k)⊕ x)⊕ φπ(k) = c :

List ←$ Aπ] .

Oracle π, the probability space, and List are defined analogously to the previous def-
initions. Note that in the RKCPA setting we do not need to consider inconsistencies
resulting from inputs to P−1

1 or P−1
2 arising through RKDEC queries, and only need to

consider (i, σ) = (1,+) above.

Inconsistencies arising as a result of two RKENC queries (this oracle places queries
to $) lead to the following modification of claw-freeness.
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FIRST-ORDER CLAW-FREENESS. Let t ≥ 1. The advantage of an adversary A against
the first-order claw-freeness of an RKD set Φ with access to t ideal permutations is
defined via

Advcf1
Φ,t(A) := Pr[∃ (i, σ, φπ1 , x1, φ

π
2 , x2) ∈ List s.t.

Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k)=Pσi (φπ2 (k)⊕ x2)⊕ φπ2 (k) ∧ φπ1 6= φπ2 :List ←$Aπ] .

We now look at inconsistencies in the simulation due to a mismatch in an RKD query
to π and a query to $ made via the RKENC oracle. Since only the second function is
forgetfully simulated, we require independence of queries for P2 only. Once again, in
the RKCPA setting, restricting the definition to (i, σ) = (1,+) suffices.

FIRST-ORDER QUERY INDEPENDENCE. Let t ≥ 2. The advantage of an adversary
A against the first-order query independence of an RKD set Φ with access to t ideal
permutations is defined via

Advqi1
Φ,t(A) := Pr[∃(i, σ, φπ1 , x1, φ

π
2 ) ∈ List : (2,Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k),±) ∈

∈ Qry[φπ2 (k)]; List ←$ Aπ] ,

where, as before,

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

The new set of conditions identified above allow us to carry out a similar proof
strategy to that of Theorem 2 and establish the following result. (See the full version [28]
for the details of the proof.)

Theorem 3 (Φ-RKCPA security of EMπ[1, 1, 1]). Let Φ be an RKD set. Then for any
adversaryA against the Φ-RKCPA security of EMπ[1, 1, 1] with parameters as defined
before there are B1a against OUP1 , B1b against OUP , B2a against QI1, B2b against
XQI, B3 against CF1, and B4 against CF such that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤ Advoup1

Φ,2 (B1a)+Advoup
Φ,2(B1b)+Advqi1

Φ,2(B2a)+Advxqi
Φ,2(B2b)

+ 2Advcf1
Φ,2(B3) + Advcf

Φ,2(B4) +
qem(q2 +

∑
φ q

φ
2 )

2n − (q2 +
∑
φ q

φ
2 )

+
2q2
em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em, B3 a

list of length q2
em, and B4 a list of length at most q2

em.

5.2 Φ⊕-RKCPA security

We show that the restrictions identified above are weak enough so that the offset RKD
set Φ⊕ can be shown to satisfy them. We start by showing that for oracle-independent
sets, Φ is output unpredictable and claw-free if and only if it is first-order output unpre-
dictable and first-order claw-free.
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Proposition 1 (OUP ∧ CF ⇐⇒ OUP1 ∧ CF1). Let Φ be an oracle-independent
RKD set and let t ≥ 1. Then for any adversary A against the OUP (resp. CF) game
outputting a list of size ` and placing qi permutation queries with index i, there is an
adversary B1 (resp. B2) outputting a list of size ` (resp. `) and placing qi + δ1i` (resp.
qi) permutation queries with index i such that

Advoup
Φ,t(A) ≤ Advoup1

Φ,t (B1) and Advcf
Φ,t(A) ≤ Advcf1

Φ,t(B2) .

Moreover, for any adversary A against OUP1 with parameters as before, there is an
adversary B1 against OUP outputting a list of size ` · qπ := ` ·

∑
i qi, where it places

qi permutation queries with index i such that

Advoup1
Φ,t (A) ≤ Advoup

Φ,t(B1) +
`(qπ + 1)

2n − `
.

Finally, for any adversary A against CF1 with parameters as before, there are adver-
saries B1 and B2, where B1 is as in the previous case, and B2 outputs a list of size `
and makes qi permutation queries with index i such that

Advcf1
Φ,t(A) ≤ Advoup

Φ,t(B1) + 2 ·Advcf
Φ,t(B2) +

`

2n − `
+

`

2n − 2`
.

Bellare and Kohno [7] show that the RKD set Φ⊕ is output unpredictable with ad-
vantage `/2n for any adversary outputting a list of size `, and claw-free with advantage
0. The above proposition allow us to conclude that this set is also first-order output
unpredictable and first-order claw-free.

Corollary 1. Let t ≥ 1 and suppose Φ⊕ is defined with respect to a key space of size
2n. Then for anyA outputting a list of at most ` ≤ 2n/4 and making at most q1 queries
to its P1 oracle,

Advoup1
Φ⊕,t(A) ≤ ` · (q1 + 1)

2n−1
and Advcf1

Φ⊕,t(A) ≤ ` · (q1 + 2)

2n−1
.

This corollary together with Theorem 3 allow us to establish that EMπ[1, 1, 1] is
Φ⊕-RKCPA secure.

Corollary 2. For any adversary A against the Φ⊕-RKCPA security of EMπ[1, 1, 1]
that makes at most qπ queries to its π oracle (of which qi are to π(i, ·, ·)) and at most
qem queries to its RKENC oracle, with q2qem, q2

em ≤ 2n/4, we have

Advrkcpa
EMπ [1,1,1],Φ⊕,2(A) ≤ qem(q2 + qem)(2q1 + 5)

2n
+

q2qem
2n − q2

.

We remark that via a direct analysis (but at the expense of modularity) the cubic bound
above can be tightened to a quadratic one.

REMARK. The above results raises the question if the security proof can be extended to
the CCA setting. Adapting an attack due to Andreeva et al. [3] on the indifferentiability
of the two-round EM construction to the RKA setting, it can be seen that EMπ[1, 1, 1] is
Φ⊕-RKCCA insecure. Details are given in the full version [28]. This attack also applies
if P2 = P1.
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6 The Φ-RKCCA Security of EMπ[1, 1, 1, 1]

Building on the results of the previous sections, we set out to find a key schedule for the
iterated Even–Mansour construction that provides Φ⊕-RKCCA security. Our previous
results show that at least three rounds are necessary. We start by showing that of the
fourteen possible simple key schedules for three-round EM, all but one fall prey to Φ⊕-
RKCCA attacks. We then show that the remaining EMπ[1, 1, 1, 1] construction does
indeed provide Φ⊕-RKCCA security.

Up to relabeling, then there are 14 possible key schedules for the three-round Even–
Mansour schemes. Of these, 9 are susceptible to offset-switching attacks. These are key
schedules where a key appears only in the first or the last round and nowhere else, e.g.,
[1, 2, 2, 2], [1, 2, 2, 3], or [1, 2, 2, 1]. This rules out 9 key schedules. Another 4 can be at-
tacked using Andreeva et al.’s attack [3]. These are the [1, 1, 2, 1], [1, 2, 1, 1], [1, 1, 2, 2],
and [1, 2, 1, 2] schedules. Details are given in the full version of the paper [28].

These attacks give a generic 4-query related-key distinguisher for reduced-round
LED [32] (8 out of 32 rounds for LED-64 and 16 out of 48 for LED-128). Our results
lend support to the designers’ claim that LED provides good related-key attack security
in spite of the simple key schedule, even though they do not apply directly to LED as
the round functions are neither random permutations nor independent.

We now show that EMπ[1, 1, 1, 1] achieves Φ-RKCCA security for sets Φ which
include, amongst others, the Φ⊕ set. As before, we motivate a number of restrictions
on Φ by considering a simulation strategy and analyzing the inconsistencies that could
arise. The adversary in the Φ-RKCCA game with respect to the construction has access
to π and the oracles

P3(P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

P−1
1 (P−1

2 (P−1
3 (x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

Once again we aim to simulate the above two oracles by returning uniformly random
values. There are at least two way to perform this:

(a) Simulate the outer permutations in RKENC and RKDEC forgetfully. That is, the
P3 oracle in RKENC and the P−1

1 oracle in RKDEC are forgetfully implemented.
(b) Simulate the middle oracles P2 and P−1

2 forgetfully. This will ensure that the inputs
to P±1 and P±3 are randomized, and hence their outputs will be also random.

The first approach, although in some sense the more natural one, does not work. This
is due to the fact that P1 (resp. P3) also appear as the first-round permutation in RKENC
(resp. RKDEC). An adversary which performs an offset switch can trigger collisions in
these oracles without being detected. We therefore adapt the second simulation strategy
and for forgetful oracle $ consider

P3($(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

P−1
1 ($(P−1

3 (x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

We now consider inconsistencies, starting with a query collision between π (from a
query of A) and $ arising from either the forward or backwards direction. Here we rely
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on first-order output unpredictability, but note that (i, σ) = (1,+) and (i, σ) = (3,−)
will be critically relied on. Collisions arising between an RKD query to π and a $ query
in either direction can be ruled out down to first-order query independence; once again
(i, σ) ∈ {(1,+), (3,−)} will be used. Finally, the probability that a collision occurs as
a result of two queries to $ (due to forward or backward queries) can be bounded by the
first-order claw freeness property. As before, inconsistencies also arise due to collisions
between the outputs of oracle queries; the probability of this occurring can be bounded
information theoretically. Note that here we also rely on independence of queries to the
second permutation, but both cases (i, σ) ∈ {(1,+), (3,−)} in the definition will be
used. We formally prove the following theorem in [28].

Theorem 4 (Φ-RKCCA security of EMπ[1, 1, 1, 1]). Let Φ be an RKD set. Then for
any adversary A against the Φ-RKCPA security of EMπ[1, 1, 1, 1] with parameters as
before, we have adversaries B1, B2, B3, and B4 such that

Advrkcca
EMπ [1,1,1,1],Φ,3(A) ≤Advoup1

Φ,3 (B1) + Advxqi1
Φ,3 (B2) + 2Advcf1

Φ,3(B3)

+ Advcf
Φ,3(B4) +

2q2
em

2n
+

2qem(q2 +
∑
φ q

φ
2 )

2n − (q2 +
∑
φ q

φ
2 )

,

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of length

q2
em, and B4 a list of length at most q2

em.

Corollary 1 together with Theorem 4 allow us to establish that the three-round
single-key Even–Manour construction with independent round permutations is Φ⊕-
RKCCA secure:

Corollary 3. For any adversary A against the Φ⊕-RKCCA security of EMπ[1, 1, 1, 1]
with parameters defined as before. Then

Advrkcca
EMπ [1,1,1,1],Φ⊕,3(A) ≤ 2qem(q2 + qem)(2q1 + 2q3 + 9)

2n
+

2qemq2

2n − q2
.

Once again, via a direct analysis (but at the expense of modularity) the cubic bound
above can be tightened to a quadratic one.
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