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Abstract. Rotational cryptanalysis is a probabilistic attack applicable
to word oriented designs that use (almost) rotation-invariant constants.
It is believed that the success probability of rotational cryptanalysis
against ciphers and functions based on modular additions, rotations and
XORs, can be computed only by counting the number of additions. We
show that this simple formula is incorrect due to the invalid Markov ci-
pher assumption used for computing the probability. More precisely, we
show that chained modular additions used in ARX ciphers do not form
a Markov chain with regards to rotational analysis, thus the rotational
probability cannot be computed as a simple product of rotational proba-
bilities of individual modular additions. We provide a precise value of the
probability of such chains and give a new algorithm for computing the
rotational probability of ARX ciphers. We use the algorithm to correct
the rotational attacks on BLAKE2 and to provide valid rotational attacks
against the simplified version of Skein.

Keywords: rotational cryptanalysis, Markov cipher, Markov chain, Skein,
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1 Introduction

Rotational cryptanalysis, formally introduced in [13], is a probabilistic attack
that follows the evolution of a so-called rotational pair through the rounds of a
function (or a cipher). It targets word-oriented functions and, for a successful
application, it requires all constants used in the functions to preserve their values
after a rotation. Rotational cryptanalysis has been launched against the building
blocks of several hash functions such as BLAKE2 [1, 10], Keccak [20], Shabal [3,
23], Skein [13, 15, 16], SM3 [17], (modified) SIMD and BMW [21], etc.

The chance of success of probabilistic attacks against a particular crypto-
graphic primitive is computed by finding the probability that inputs and corre-
sponding outputs (produced after application of the primitive) have a specific



property that is unexpected for a random permutation/function. For instance,
in differential attacks [2], the probability that a pair of plaintexts with a specific
difference generates a pair of ciphertexts with another specific difference is un-
usually high. To compute the probability, one has to investigate the propagation
of the input difference through rounds of the cipher. The propagation feature is
known as a differential characteristic and its probability is computed as a product
of the probabilities of all single-round characteristics. Lai and Massey [18] show
that this shortcut in the probability calculation is correct as long as the keys
used in the rounds are chosen at random independently and uniformly and the
cipher can be modeled as a Markov cipher. This is to say that an iterated cipher
can be seen as a sequence of independent rounds, where the round keys are in-
dependent and the differential probability of the round functions is independent
of the inputs (but not of the input/output difference). Lai and Massey argue
that in such a case, the differences after each round (which follows a differential
characteristic) can be modeled by a Markov chain. Consequently, the differential
probability of each round depends on the input and the output difference only
(the differences in previous rounds can be ignored).

The Markov cipher assumption (which results in a Markov chain assumption)
is used in practically all differential attacks as well as in other probabilistic
attacks. This is despite the fact that the round keys are not independent but are
produced from a single master by the key scheduling algorithm. Moreover, some
ciphers do not use round keys in every round (after each non-linear operation)
– see LED [11] and Zorro [9], for an example of such ciphers. Nevertheless, in
practical cryptographic primitives, the role of independent and random round
keys is usually replaced by some state words. They introduce sufficient entropy
so one can argue that the Markov chain assumption holds. However, exceptions
from this rule with respect to differential analysis can be found in the case of
ARX or ARX-like primitives – we refer the reader to [4, 19, 22, 24, 25] for such
examples1.

Likewise, in the case of rotational cryptanalysis, probabilities are computed
under the Markov chain assumption. This makes rotational cryptanalysis excep-
tionally easy to apply as the rotational probability of a cryptographic primitive
is the product of rotational probabilities of all the operations/rounds that are
used in the primitive. For instance, in schemes based on modular additions, ro-
tations and XORs (further referred as ARX primitives), only modular addition
has rotational probability p+ smaller than 1. Thus the rotational probability of
the whole ARX primitive can be computed easily. If it uses q additions, then the
rotational probability is pq+. With minor modifications, this formula has been
used in rotational cryptanalysis of ARX designs.

Our Contribution. We show that in rotational analysis of cryptographic algo-
rithms based on ARX, the Markov chain assumption does not always hold. In
particular, we establish that rotational probability of an ARX primitive depends
not only on the number of modular additions but also on their positions. In gen-

1 We are grateful to the reviewers of FSE’15 for pointing out these exceptions.



eral, the more modular additions are chained (output of the previous additions
is the input of the next), the smaller the probability. We work out an explicit
formula for the probability of such chained additions and show that the rota-
tional probability of ARX should be computed as the product of the rotational
probabilities of modular addition chains. We also reveal that the way the round
keys are incorporated into the state, plays a crucial role in calculation of the
rotational probability. When round keys are XORed to the state, they might
break modular addition chains and thus increase the probability. On the other
hand, if they are merged using modular addition, the rotational probability of
ARX may be reduced.

Chained modular additions are used in ARX hash functions such as BLAKE2 [1]
and Skein [6, 7]. Both functions have been successfully attacked using rota-
tional cryptanalysis (in fact, rotational cryptanalysis was officially introduced
as a method of analysis on an instance of Skein [13]). The success can be at-
tributed to the lack of constants or to the use of (almost rotational) constants
in the designs. We correct the claimed complexity of rotational attacks against
BLAKE2 [10]. Our analysis suggests that, due to the aforementioned chains
of modular additions, the rotational attacks are applicable only to 7 rounds of
BLAKE2 instead of the claimed full 12 rounds in [10]. We also provide analysis of
the compression function of Skein. Note, in [13] it is shown that the compression
function reduced to 42 rounds is vulnerable to rotational attacks, and further,
the attack was extended in [15, 16] to include a rebound part, but the rotational
part of the attack is still on 42 rounds. We show that due to the structure of
addition chains in Skein, the rotational attacks on a version of Skein without
any subkey additions, works for 24-28 rounds only (depending on the rotation
amount).

The correctness of the results presented in this paper has been experimentally
verified on ARX primitives with different state sizes and different numbers of
round2.

2 Differential Cryptanalysis and Markov Ciphers

Differential cryptanalysis, introduced by Biham and Shamir [2], is a probabilis-
tic chosen-plaintext attack. It works against ciphers (and other cryptographic
primitives) whose differential properties deviate from those expected by a ran-
dom cipher. Consider a cipher. We can determine a collection of input (plaintext)
differences and the corresponding output (ciphertext) differences. In differential
cryptanalysis, we try to identify a pair (α, β), which occurs with a much higher
probability than other (possible) pairs, where α is an input (plaintext) difference
and β is an output (ciphertext) difference. This property allows to distinguish
the cipher from a random permutation and in many cases may lead to secret key
recovery (or total cipher break). Finding two differences (α, β) (the pair (α, β)
is called a differential) that maximizes the probability is, in fact, the main goal
(and the most challenging task) of differential cryptanalysis.

2 The results of the experiments are given in the full version of this paper [14].



For a chosen plaintext difference, the ciphertext difference can be found by
propagating the plaintext difference through the encryption function of the ci-
pher. Most ciphers are iterated, i.e. their encryption function consists of repeti-
tive application of some (possibly weak) non-linear round function Y = f(X,Zi),
where X is a state at the beginning of the round, Zi is a key used in the round
i and Y is an output state. To find β, an initial plaintext difference α is propa-
gated round-by-round and after r rounds (for an r-round cipher), the ciphertext
difference β can be obtained. The evolution of differences generated after each
round is called a differential characteristic and can be represented by the follow-
ing sequence α = ∆Y (0), ∆Y (1), . . . ,∆Y (r) = β, where ∆Y (i) is the difference
at the output of the ith round.

The efficiency of differential cryptanalysis is tightly related to the probability
of differentials (differential characteristics) – the higher the probability the lower
the complexity. Lai and Massey [18] put a focus on the probability of differen-
tial characteristics and study conditions for differential characteristics to form a
Markov chain. Note that a sequence of discrete random variables v0, . . . , vr is a
Markov chain if, for 0 ≤ i < r,

Pr(vi+1 = βi+1|vi = βi, vi−1 = βi−1, . . . , v0 = β0) = Pr(vi+1 = βi+1|vi = βi).

They introduce the notion of Markov cipher as follows.

Definition 1. An iterated cipher with round function Y = f(X,Z) is a Markov
cipher if for all choices of α 6= 0, β 6= 0,

Pr(∆Y = β|∆X = α,X = γ)

is independent of γ when the round key Z is uniformly random, or equivalently,
if

Pr
Z

(∆Y = β|∆X = α,X = γ) = Pr
Z

(∆Y (1) = β1|∆X = α)

for all choices of γ.

Their main result is described by the following theorem.

Theorem 1 ([18]). If an r-round iterated cipher is a Markov cipher and the
r round subkeys are independent and uniformly random, then the sequence of
differences ∆Y (0), ∆Y (1), . . . ,∆Y (r) is a Markov chain.

In other words, the probability of differential characteristics is a product of the
probabilities of the single-round characteristics (as they form a Markov chain),
as long as the probabilities of the single-round characteristics do not depend on
the value of the input state, where round keys are independent and uniformly at
random (if the cipher is Markov).

It is important to notice that Lai-Massey result does not apply to the cases
when round keys are not injected in every round (see LED [11], Zorro [9]) or
when they are dependent (this is the case for all modern ciphers as all round
keys are produced from a single master key).



However, even in such cases, the probability of a characteristic for the whole
cipher is still computed as a product of probabilities of single-round charac-
teristics. The justification is based on the fact (or belief) that a round function
introduces enough entropy. The entropy makes the inputs to the next round look
completely random thus multiplying the probabilities of single-round character-
istics seems to be a valid estimate of the probability of the whole characteristic.

3 Rotational Cryptanalysis and Chained Modular
Additions

Rotational cryptanalysis is a probabilistic chosen-plaintext attack. It turns to be
an effective cryptanalytical tool against ciphers and hash functions that are based
on the three operations: modular additions (denoted as +), rotations (denoted
as ≪ r) and XORs (denoted as ⊕). Cryptographic algorithms that use the
three operations are called ARX primitives. A crucial requirement for rotational
cryptanalysis to work effectively is that all constants used in the ARX primitive
must preserve their values when rotated3. To launch a rotational attack, one
starts from a rotational pair of inputs, i.e. two states such that in the first
state all words are chosen at random, while the second state is produced by
rotating the words of the first state by a fixed amount. If for such input pair
(called a rotational pair), the corresponding output pair of the ARX primitive
is also rotational, with a probability higher than for a random permutation (or
a function), then this property can be used to distinguish the ARX primitive
from a random permutation (or a function).

It is claimed in [13] that rotational probabilities of an ARX primitive could be
found by multiplying individual rotational probabilities of all the transformations
used in the primitive. As ARX is composed of three distinct operations only,
the rotational probabilities of addition, rotation and XOR can be computed.
Probabilities of the latter two are:

Pr((x≪ r1) ≪ r2 = (x≪ r2) ≪ r1) = 1,

Pr(x≪ r ⊕ y ≪ r = (x⊕ y) ≪ r) = 1,

while rotational probability of modular addition is given by the following lemma.

Lemma 1 (Daum[5]).

Pr((x+ y) ≪ r = x≪ r + y ≪ r) =
1

4
(1 + 2r−n + 2−r + 2−n).

As modular addition only has rotational probability less than one, it is concluded
that the theorem given below holds.

3 This requirement can be relaxed to some extent and instead of assuming completely
rotational constant, one can work with constants that are almost rotational, i.e. the
XOR difference between the initial constant and the rotated one gives a word of
small Hamming weight.
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Fig. 1. Two ARX primitives with equal number of additions but different rotational
probabilities.

Theorem 2 ([13]). Let q be the number of modular additions in an ARX primi-
tive (that has an arbitrary number of rotations and XORs). Then rotational prob-
ability of the ARX primitive is pq+, where p+ is rotational probability of modular
addition (which depends on the rotation parameter r and the word size n).

In other words, to find rotational probability of ARX, one has to count the
number of additions q only. If pq+ > 2−m, where m is the state size, then the
primitive is susceptible to rotational cryptanalysis. Theorem 2 is true under the
(tacit) assumption that an ARX cipher is Markov and round keys are chosen
independently and uniformly at random. Note that as in differential cryptanaly-
sis, if round keys are not used in every round, then randomness (required by the
Markov chain) must come from the state words, which are updated by the three
operations of ARX. Rotations and XORs have rotational probability of 1 and
thus are independent of the inputs. The case of modular addition is different.
Rotational probability of modular addition is as determined by Lemma 1 as long
as inputs are random. The output of modular addition is biased when an input
pair is rotational. That is if (x+ y) ≪ r = x≪ r+ y ≪ r and r > 0, then the
value z = x + y is biased. If the output of modular addition is taken as input
to another addition, then rotational probability of the second addition may not
follow Lemma 1 although Theorem 2 states that this should be irrelevant.

To illustrate the issue, let us focus on two toy ARX primitives given in Fig. 1.
Each of them has three inputs a, b, k, two outputs u and w, and uses two modular
additions. If the rotation amount r equals 1 and the word size is 64 bits, then
by Lemma 1, rotational probability of modular addition is 2−1.415 and thus by
Theorem 2, rotational probability of both of the primitives should be 2−2.83.
Note that for rotation amount of 1, rotational probability of modular addition
strongly depends on the value of the most significant bits of the inputs. More
precisely, the sum of the most significant bits of the inputs should not be larger
than 1.

In the ARX construction on the left of Fig. 1, the two modular additions are
chained, i.e. the output of the first is the input to the second. The most significant



bit of the word d = a+b, when (a+b) ≪ 1 = a≪ 1+b≪ 1, is biased towards
1. Therefore, the second modular addition u = k + d has rotational probability
smaller than the one given by Lemma 1. As the result, Theorem 2 fails to give
the correct probability.

In the ARX on the right of Fig. 1, the two modular additions are separated by
rotation. In this case, although the most significant bit of d is still biased towards
1, the rotation moves this bit to a different position, where the mentioned bias
is negligible for the computation of the rotational probability. Furthermore, the
least significant bit of d ≪ r becomes a completely random bit and thus the
second modular addition d≪ r+k has probability given by Lemma 1. Therefore,
in this case, Theorem 2 works as expected.

These two examples suggest that rotational probability of ARX cannot be
computed simply by counting the number of modular additions. Instead, one has
to investigate the relative positions of modular additions, i.e. if they are chained
or separated by rotations. In fact, the longer the chain of modular additions, the
lower the rotational probability for each consecutive addition. The rotational
probability of chained modular additions is given by the following lemma.

Lemma 2 (Chained modular additions). Let a1, . . . , ak be n-bit words cho-
sen at random and let r be a positive integer such that 0 < r < n. Then

Pr([(a1 + a2) ≪ r = a1 ≪ r + a2 ≪ r]∧
∧[(a1 + a2 + a3) ≪ r = a1 ≪ r + a2 ≪ r + a3 ≪ r]∧
∧ . . .
∧[(a1 + . . .+ ak) ≪ r = a1 ≪ r + . . .+ ak ≪ r]) =

=
1

2nk

(
k + 2r − 1

2r − 1

)(
k + 2n−r − 1

2n−r − 1

)
Proof. First we consider the rotational probability of addition of l terms:

(a1 + a2 + . . .+ al) ≪ r = a1 ≪ r + a2 ≪ r + . . .+ al ≪ r. (1)

Each of the n-bit words ai can be seen as a concatenation of two words: r-bit
word xi and (n− r)-bit word yi, that is, ai = xi‖yi, |xi| = r, |yi| = n− r. Then
(1) becomes:

(x1‖y1 + . . .+ xl‖yl) ≪ r = (x1‖y1) ≪ r + . . . (xl‖yl) ≪ r. (2)

The terms (xi‖yi) ≪ r in the right side of (2), after the rotation on r bits,
become (xi‖yi) ≪ r = yi‖xi, thus (2) can be rewritten as:

(x1‖y1 + . . .+ xl‖yl) ≪ r = y1‖x1 + . . . yl‖xl. (3)

The sum x1||y1 + . . . + xl‖yl in the left side of (3) can be expressed as (x1 +
. . . + xl + Cy1,...,yl

)‖(y1 + . . . + yl), where Cy1,...,yk
is the carry from the sum

y1 + . . . + yl. Similarly, the sum in the right side of (3) can be expressed as



(y1 + . . .+ yl +Cx1,...,xl
)‖(x1 + . . .+ xl). Therefore, after the rotation of the left

sum, we obtain:

(y1+. . .+yl)‖(x1+. . .+xl+Cy1,...,yl
) = (y1+. . .+yl+Cx1,...,xl

)‖(x1+. . .+xl). (4)

If we take into account the size of the words xi and yi, from (4) we get:

y1 + . . .+ yl ≡ y1 + . . .+ yl + Cx1,...,xl
(mod 2n−r),

x1 + . . .+ xl + Cy1,...,yl
≡ x1 + . . . xl (mod 2r),

that is:
Cx1,...xl

≡ 0 (mod 2n−r), Cy1,...,yl
≡ 0 (mod 2r). (5)

As a result, the rotational probability of l-sum addition is equivalent to the
probability that (5) will hold for a random values of xi, yi, i = 1, . . . , l.

The probability of chained modular additions given in the Lemma is therefore
equivalent to the probability of the following system:

Cx1,x2
≡ 0 (mod 2n−r), Cy1,y2

≡ 0 (mod 2r)

Cx1,x2,x3 ≡ 0 (mod 2n−r), Cy1,y2,y3 ≡ 0 (mod 2r)

. . .

Cx1,...xk
≡ 0 (mod 2n−r), Cy1,...,yk

≡ 0 (mod 2r).

Further we will show that the whole system is equivalent to

Cx1,...xk
= 0, Cy1,...,yk

= 0. (6)

To do so, we show, by induction on k, that the system of congruences on the
left-hand side above, i.e. Cx1,...,xi ≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k is equivalent
to the equation Cx1,...,xk

= 0. The same sequence of reasoning applies to the
right hand side of the above system to show that Cy1,...,yi

≡ 0 (mod 2r) for all
2 ≤ i ≤ k is equivalent to the equation Cy1,...yk

= 0.
First we deal with the easier reverse direction of the equivalence. Indeed, if

Cx1,...xk
= bx1+...+xk

2r c = 0 and hence x1 + . . .+xk < 2r, it follows (by positivity
of the xi’s) that x1 + . . . xi < 2r and hence Cx1,...,xi

= 0 and also Cx1,...,xi
≡ 0

(mod 2n−r) for all 2 ≤ i ≤ k, as required for the reverse direction.
We now prove the forward direction of the equivalence by induction on k. For

the induction base case, we take k = 2.The congruence Cx1,x2
≡ 0 (mod 2n−r)

is equivalent to Cx1,x2
= t · 2n−r for some non-negative integer t. As the carry

of addition of two words cannot be larger than 1, it means that Cx1,x2
∈ {0, 1}.

If the carry is 1, then from 1 = t · 2n−r it follows that t = 1 and 2n−r = 1.
However, r < n and thus 2n−r > 1. Therefore, the carry Cx1,x2 can only equal
zero, and thus Cx1,x2 ≡ 0 (mod 2n−r) is equivalent to Cx1,x2 = 0, proving the
induction base case k = 2.

For the induction step, suppose that for some k ≥ 2 the congruence system
Cx1,...,xi

≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k implies the equation Cx1,...xk
= 0. We

show that the congruence system Cx1,...,xi ≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k + 1



implies the equation Cx1,...xk+1
= 0. Indeed, by the induction hypothesis, we

have that the first k congruences of the system imply that Cx1,...,xk
= 0 and

hence x1 + . . .+ xk < 2r, whereas xk+1 < 2r, so x1 + . . . xk+1 < 2r + 2r = 2 · 2r
and thus Cx1,...,xk+1

= bx1+...+xk+1

2r c ∈ {0, 1}. Then, similarly as in the base case
above, the congruence Cx1,...,xk+1

≡ 0 (mod 2n−r) and the fact that r < n imply
that the value of the carry Cx1,...,xk+1

must be zero, which completes the proof
of the induction step. As a result, we have reduced the whole system to the two
equations given in (6).

Finally, let us find the probability that (6) holds, when xi, yi, i = 1 . . . , k are
random r-bit and (n− r)-bit words, respectively. Namely, we are looking at

Pr(x1 + . . . xk < 2r ∧ 0 ≤ xi < 2r) · Pr(y1 + . . . yk < 2n−r ∧ 0 ≤ yi < 2n−r) (7)

Note that

Pr(x1 + . . . xk < 2r ∧ 0 ≤ xi < 2r) =

2r−1∑
j=0

Pr(x1 + . . . xk = j ∧ 0 ≤ xi < 2r). (8)

Furthermore, the terms in the right side of (8) can be evaluated according to the
well known combinatorial formula

#{z1 + . . . zk = j ∧ 0 ≤ zi} =

(
j + k − 1

j

)
, (9)

Note that in (9), the condition 0 ≤ zi can be replaced with 0 ≤ zi < t when
t > j, as the number of tuples does not increase when zi ≥ t (the sum is always
larger than j). Therefore

Pr(z1 + . . . zk = j ∧ 0 ≤ zi < t ∧ t > j) =

(
j + k − 1

j

)
t−k (10)

and (7) can be expressed as:

Pr(x1 + . . . xk < 2r ∧ 0 ≤ xi < 2r) · Pr(y1 + . . . yk < 2n−r ∧ 0 ≤ yi < 2n−r) =

=

2r−1∑
j=0

(
j + k − 1

j

)
2−rk ·

2n−r−1∑
j=0

(
j + k − 1

j

)
2−(n−r)k =

=
1

2nk

2r−1∑
j=0

(
j + k − 1

j

)
·
2n−r−1∑

j=0

(
j + k − 1

j

)

Finally, we use the binomial coefficient formula (for m,n ∈ N )

m∑
j=0

(
n+ j

j

)
=

(
n+m+ 1

m

)
.



and we conclude the proof

Pr([(a1 + a2) ≪ r = a1 ≪ r + a2 ≪ r]∧
∧[(a1 + a2 + a3) ≪ r = a1 ≪ r + a2 ≪ r + a3 ≪ r]∧
∧ . . .
∧[(a1 + . . .+ ak) ≪ r = a1 ≪ r + . . .+ ak ≪ r]) =

1

2nk

2r−1∑
j=0

(
j + k − 1

j

)
·
2n−r−1∑

j=0

(
j + k − 1

j

)
=

=
1

2nk

(
k + 2r − 1

2r − 1

)(
k + 2n−r − 1

2n−r − 1

)
.

ut

From the above lemma, we obtain the following important result, which forms
the basis for our analysis.

Fact 1 Chained modular additions do NOT form a Markov chain with respect
to rotational differences. Rotational probabilities of chained modular additions
cannot be computed as product of probabilities of the individual modular addi-
tions.

We used GNU Multiple Precision Floating-Point Reliably library (GNU
MPFR) to compute rotational probabilities of chained modular additions accord-
ing to the results of Lemma 2. Probabilities for 64-bit words, rotation parame-
ters of 1 and 2 and precision of 10000 digits are given in Table 1. For instance,
when the rotation parameter is 1 and there are 25 chained modular additions,
probability that outputs of these 25 additions are rotational is 2−109.6. This is
to be compared to the claim of Theorem 2, which predicts that probability is
2−1.415·25 ≈ 2−35.4. We note that we have also computed the rotational proba-
bilities when the rotation amount is greater than 2. The discrepancy is present
as well, and it has the tendency to grow – the closer the rotation amount to n/2,
the larger the discrepancy between the claims of Theorem 2 and of our Lemma 2.

Note that Lemma 2 is used when outputs of all chained additions need to be
rotational. This is an important requirement as in ARX, outputs of intermedi-
ate modular additions are used as inputs to other operations and are assumed
to be rotational. For instance, in Fig. 1, we need d to be rotational, as further
it is used in computing the value of w. In contrast, if only the final output of
multiple modular additions needs to be rotational, then the rotational probabil-
ity is computed under different formula (due to space constrains, we omit the
formula).

Above it is assumed that only rotations can break the chain of modular
additions. We point out that XORs also break such chains as long as the second
term of the XOR is a random value. In practice, for ARX algorithms, the chains
are broken by both XORs and rotations. Moreover, due to the possibility of XOR
to break chains of modular additions, rotational probability of ARX primitives



Table 1. The comparison of the rotational probabilities (log2) of chained modular
additions of 64-bit words given by Theorem 2 of [13], and by our Lemma 2.

rotation amount : 1

# of additions 1 2 3 4 5 6 7 8

Theorem 2 [13] −1.4 −2.8 −4.2 −5.7 −7.1 −8.5 −9.9 −11.3

Lemma 2 −1.4 −3.6 −6.3 −9.3 −12.7 −16.3 −20.1 −24.1

# of additions 9 10 11 12 13 14 15 16

Theorem 2 [13] −12.7 −14.1 −15.6 −17.0 −18.4 −19.8 −21.2 −22.6

Lemma 2 −28.3 −32.7 −37.1 −41.7 −46.4 −51.3 −56.2 −61.2

# of additions 17 18 19 20 21 22 23 24

Theorem 2 [13] −24.1 −25.5 −26.9 −28.3 −29.7 −31.1 −32.5 −34.0

Lemma 2 −66.3 −71.4 −76.7 −82.0 −87.4 −92.9 −98.4 −104.0

# of additions 25 26 27 28 29 30 31 32

Theorem 2 [13] −35.4 −36.8 −38.2 −39.6 −41.0 −42.4 −43.9 −45.3

Lemma 2 −109.6 −115.3 −121.1 −126.9 −132.8 −138.7 −144.6 −150.6

rotation amount : 2

# of additions 1 2 3 4 5 6 7 8

Theorem 2 [13] −1.7 −3.4 −5.0 −6.7 −8.4 −10.1 −11.7 −13.4

Lemma 2 −1.7 −4.3 −7.5 −11.1 −15.1 −19.4 −23.9 −28.7

# of additions 9 10 11 12 13 14 15 16

Theorem 2 [13] −15.1 −16.8 −18.4 −20.1 −21.8 −23.5 −25.1 −26.8

Lemma 2 −33.6 −38.7 −44.0 −49.4 −54.9 −60.6 −66.3 −72.2

# of additions 17 18 19 20 21 22 23 24

Theorem 2 [13] −28.5 −30.2 −31.8 −33.5 −35.2 −36.9 −38.5 −40.2

Lemma 2 −78.1 −84.2 −90.3 −96.5 −102.8 −109.1 −115.5 −122.0

# of additions 25 26 27 28 29 30 31 32

Theorem 2 [13] −41.9 −43.6 −45.3 −46.9 −48.6 −50.3 −52.0 −53.6

Lemma 2 −128.5 −135.1 −141.8 −148.5 −155.3 −162.1 −169.0 −175.9

highly depends on the way round keys are incorporated into the state, i.e. it is
important if round keys are modularly added or XORed to the state. To illustrate
this, let us focus on Fig. 2. We have two ARX primitives, each with two modular
additions. The difference is that in the ARX on the left of the figure, the round
key is modularly added to the state while in the ARX on the right, the round
key is XORed to the state. We can see from the figure that in the left ARX
the round key does not break the chain of modular additions, while in the right
ARX it does. Hence for the left ARX, we have to use Lemma 2 to compute the
rotational probability and thus it is much lower.
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Fig. 2. Two ARX primitives with different incorporations of the subkeys: in the ARX
on the left the subkey is modularly added hence does not break the chain of modular
additions, while in the ARX on the right the subkey is XORed to the state, thus it
breaks the chain.

The correctness of our analysis has been tested using computer simulations.
Our tests have confirmed the predicted rotational probabilities – for the details,
refer to the full version of this paper [14].

4 Applications

Lemma 2 suggests that the rotational probability of ARX can be computed more
accurately if we take into account not only the number of additions used in ARX
but also their positions. We cluster the additions into chains and calculate the
rotational probability as follows:

1. Find all chains of modular additions (including the ones that are composed
of a single additions) in the ARX primitive.

2. For each chain, compute the rotational probability according to Lemma 2.

3. For the entire primitive, calculate the rotational probability as the product
of rotational probabilities of chains.

Consider an example of application of the above algorithm to the case of the ARX
primitives given in Fig. 1. Our task is to find rotational probabilities of these two
primitives when the rotation parameter is 1 (and the word size is 64 bits). The
ARX scheme on the left of Fig. 1 has only one chain of two modular additions.
Therefore, according to Table 1, the rotational probability of this chain is 2−3.6.
On the other hand, the ARX on the right of Fig. 1, has two chains composed of
a single modular addition and thus the rotational probability of this scheme is
2−1.4 · 2−1.4 = 2−2.8.

Now we are ready to revisit the existing rotational attacks on the ARX
primitives functions.



4.1 Application to Rotational Cryptanalysis of BLAKE2

BLAKE2 [1] is a hash function, which supports 256 and 512-bit outputs. Further
on we analyze the version with 512-bit output only but we note that similar
analysis applies to the other version too. The compression function of BLAKE2

is based on a permutation P (V,M), where V is a state of sixteen 64-bit words
vi, and M is a message input also composed of sixteen words mi. The function
P consists of 12 identical rounds and each round uses 8 applications of the
sub-primitive Gi(a, b, c, d) = G(a, b, c, d,mf(i),mg(i)), where f(i) g(i) implement
a permutation on a set of 16 message words. The primitive G is first applied
columnwise to 4 columns, and then diagonalwise. The column and diagonal steps
are defined, respectively, as:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15),

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G(v2, v7, v8, v13), G7(v3, v4, v9, v14).

The function G(a, b, c, d,m1,m2) itself works as follows:

1 : a← a+ b+mi 5 : a← a+ b+mj

2 : d← (d⊕ a) ≫ 32 6 : d← (d⊕ a) ≫ 16
3 : c← c+ d 7 : c← c+ d
4 : b← (b⊕ c) ≫ 24 8 : b← (b⊕ c) ≫ 63

Rotational cryptanalysis of the BLAKE2 permutation [10] uses the rotational
parameter equal to 1 (in order to increase the probability) and thus rotational
probability of addition is around 2−1.4. Further, it is noted that the function
G has 6 modular additions thus the expected rotational probability of G is
2−1.4·6 = 2−8.4. The authors also note that the experimental results show that
rotational probability is slightly lower or around 2−9.1. They took this as rota-
tional probability of one application of G and because the whole permutation has
12 rounds, each with 8 calls to G, they conclude that rotational probability of the
permutation used in the compression function of BLAKE2 is 2−9.1·12·8 = 2−873.6.
Since this permutation works for 1024 bits, a rotational distinguisher is claimed
for the full 12-round permutation.

Our rigorous analysis demonstrates that the actual probability would be far
lower due to chaining of modular additions, so the conclusion mentioned above
is incorrect. Without the loss of generality, we set all the message words to 0, as
this yields the rotational pair of messages delivering the highest rotational prob-
ability. Then identify all chained modular additions. Fig. 3 shows a round of the
permutation, where one can see exactly 8 chains of 4 modular additions each. We
can assume the non-chaining inputs of modular additions are independent since
they always go through rotations. Therefore, Lemma 2 can be applied. Note that
the 8 chains of modular additions continue through the next rounds, totaling 4R
additions in each chain over R rounds. Consequently, a 7-round permutation
(with 8 chains of 28 modular additions each) has rotational probability equal to
(2−126.9)8 = 2−1015.2 when the rotation amount equal to 1 (see Table 1). Taking
more rounds would result in the rotational probability smaller than 2−1024. In-
deed, Table 1 gives the probability of 2−132.8 for 29 chained modular additions



Fig. 3. The 8 chains (denoted in red) of 4 modular additions in one round of the
permutation of BLAKE2.

smaller or equal to 2−1062.4. Hence, a rotational distinguisher for the permuta-
tion of BLAKE2 works for up to 7 rounds only, which is smaller than 12 rounds
claimed in [10].

4.2 Application to Rotational Cryptanalysis of Skein

Skein [8] is a hash function proposed for the NIST SHA-3 competition, which
reached the final round of the competition. At each round the authors proposed
some tweaks to the previous version. Here we consider two such versions Skein

v1 [6] and Skein v2 [7] and refer to them as Skein, as the attacks [13, 16] target
them both. In order to stop rotational attacks, the designers changed the key
schedule in v3.

We consider the version of Skein with a 512-bit internal state, which we de-
note by Skein-512. The same analysis applies to other versions. The compression



function of Skein-512 is based on the block cipher Threefish, which is a 72-round
ARX scheme with 512-bit state seen as eight 64-bit words. Each round applies 4
parallel MIX functions (Fig. 4), and subkeys (message words) are added every 4
rounds. Subkeys are a bitwise linear function of the master key, the tweak value
(not to be confused with the submission tweak), and a round counter.

k0 k1 k2 k3 k4 k5 k6 k7
counter

MIX

Fig. 4. Four rounds of Threefish followed by a subkey addition. In total, Threefish uses
18 such four rounds. The rounds use different rotation amounts.

Skein (and the underlying Threefish) was used as a testbed for rotational
cryptanalysis [13] due to the rotation-invariant constant 0x555...555 used in
the key schedule and a low-weight counter. By setting the rotational amount to 2,
42 rounds were attacked in [13]. Then the attack was combined with the rebound



method and extended to 55 rounds in [16]. To deal with the round counter, the
authors had to drop the requirement of having rotational property preserved
after each round. Instead, using so called rotational errors and corrections, they
introduced a disturbance in the internal state and later corrected it in the manner
similar to the local collision concept.

The authors also noticed the difference between the theoretical rotational
probabilities (Lemma 1) and experimental values. To cope with this problem,
they used the experimental value for the 2-round span where the rotational
property is required, and a separate value for the local collision part around the
subkey injection. Their experiments are well matched with Table 1 and thus are
not questioned.

We do not attempt to do rigorous analysis of the corrections method, as it
would involve a much more tedious process of taking all constraints and counter
properties into account. Instead, we show that a simplified version of the per-
mutation, where all subkeys and counters are set to 0, has far lower rotational
probability than expected by Theorem 2.

It is easy to see 4 parallel addition chains on Fig. 4, which cover state words
S[0], S[2], S[4], S[6], with one addition per chain per round. We note that the
inputs to these additions coming from the other state words undergo rotations
and thus can be considered independent. Therefore, for R rounds of Threefish
we get 4 chains with R modular additions each. Since there are no constants,
we can set the rotation amount to 1 as the most beneficial for the attacker. Ta-
ble 1 clearly implies that a chain of length 28 has rotational probability smaller
or equal to (2−126.9). Therefore, 4 chains over 28 rounds yield the rotational
probability around 2−508. Setting the rotation parameter to 2 (as in the previ-
ous cryptanalyses of Skein) would reduce the number of attacked rounds to 24
(as (2−122.0)4 = 2−488). For comparison, [16] claims 42-round rotational distin-
guisher on Skein (with all subkeys and constants included), but with the use of
rotational corrections. We cannot disprove these results as our formulas do not
apply to the case when rotational corrections are used.

5 Conclusion

We have shown that the rotational probability of ARX depends not only on
the number of modular additions, but also on how they are connected. The
rotational probability of a chain of modular additions cannot be computed as a
product of probabilities of the individual additions. This is because the Markov
cipher assumption, used implicitly for computing the probability in such a way,
does not hold. Therefore, the chain of additions cannot be a Markov chain with
respect to rotational analysis, and thus its probability is lower and is defined by
Lemma 2. Our analysis also suggests that the way the subkeys are incorporated
into the cipher can influence the rotational probability not only because modular
added subkeys simply increase the total number of additions, but because XORed
subkeys can break the addition chains and thus can increase the probability.



We have investigated the application of rotational cryptanalysis only to ARX,
but we note that our methodology can be used for analysis of rotational attacks
on other primitives as well. For instance, the Markov cipher assumption used in
the recent rotational attacks on Keccak [20] is valid as in each round of Keccak,
there is a very strong diffusion, and, moreover, each of the 25 words goes through
a rotation. Therefore the rotational probability in the attacks on Keccak [20]
is correct. On the other hand, the assumption used the rotational analysis of
NORX [12] is clearly not valid (see Appendix B of [14]) as the diffusion in the
rounds of NORX does not introduce sufficient entropy at the inputs of the non-
linear operations. Hence, the probability of the rotational analysis of NORX [12]
is miscalculated4.

To summarize, the rotational probability of a cryptographic primitive not
necessarily equals to the product of the rotational probabilities of the individual
operations used in the primitive. Such shortcut in the estimation of probability
gives neither upper nor lower bound on the actual probability. The estimation
can be used only after confirming that the Markov assumption applies to the
primitive. Otherwise, the rotational probability must be computed ad-hoc.
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