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Abstract. We propose pure OMD (p-OMD) as a new variant of the
Offset Merkle-Damgérd (OMD) authenticated encryption scheme. Our
new scheme inherits all desirable security features of OMD while having
a more compact structure and providing higher efficiency. The origi-
nal OMD scheme, as submitted to the CAESAR competition, couples a
single pass of a variant of the Merkle-Damgérd (MD) iteration with the
counter-based XOR MAC algorithm to provide privacy and authenticity.
Our improved p-OMD scheme dispenses with the XOR MAC algorithm
and is purely based on the MD iteration; hence, the name “pure” OMD.
To process a message of ¢ blocks and associated data of a blocks, OMD
needs ¢ + a + 2 calls to the compression function while p-OMD only re-
quires max {¢,a} + 2 calls. Therefore, for a typical case where £ > a,
p-OMD makes just ¢ + 2 calls to the compression function; that is, as-
sociated data is processed almost freely compared to OMD. We prove
the security of p-OMD under the same standard assumption (pseudo-
randomness of the compression function) as made in OMD; moreover,
the security bound for p-OMD is the same as that of OMD, showing that
the modifications made to boost the performance are without any loss
of security.

Keywords: Authenticated encryption, OMD, associated data, perfor-
mance, CAESAR competition.

1 Introduction

An authenticated encryption (AE) scheme provides two complementary
data security goals: confidentiality (privacy) and integrity (authentic-
ity). Traditionally, these goals were achieved by combining two cryp-
tographic primitives, a privacy-only encryption scheme and a message
authentication code (MAC)—a paradigm known as generic composition
(GC) |7,8,20]. The notion of AE, as a desirable symmetric-key primitive
in its own right, was introduced in 2000 [7,[9,/18]. Since then, security
notions for AE schemes have been defined and refined [141[23},25-27], to-
gether with many dedicated AE designs seeking some advantages over the
GC-based schemes.



AE schemes have been studied for over a decade, yet the topic re-
mains a highly active and interesting area of research as evidenced by the
currently running CAESAR competition |10]. OMD [12,[13] is one of 57
first-round CAESAR submissions, among which, at the time of writing
this paper, 8 submissions are withdrawn due to major security flaws.

Among the features that OMD possesses, the following two are no-
tably interesting and distinctive: OMD is the only CAESAR submission
that is designed (as a mode of operation) based on a compression func-
tion [3], and it provides (provably) high security levels (about twice that
of the AES-based submissions) when implemented with an off-the-shelf
compression function such as those of the standard SHA family [2].

Instantiations of OMD using the compression functions of SHA-256
and SHA-512, called OMD-sha256 and OMD-sha512 respectively, can
freely benefit from the widely-deployed optimized implementations of
these primitives, e.g. |15,|16]; in particular, OMD-sha256 can take ad-
vantage of the new Intel SHA Extensions |17].

Motivated by the aforementioned appealing features of OMD, we fur-
ther investigate the possibility of making algorithmic improvements to
the original OMD scheme towards boosting its efficiency, while preserv-
ing its security properties. We show that there is a natural way (inspired
from the work of [28]) to modify OMD to make it more compact and ef-
ficient with respect to processing associated data (AD). Our new variant
of OMD—called pure OMD (p-OMD)—has the following features:

— It inherits all desirable security features of OMD. We prove
the security of p-OMD under the same standard assumption (namely,
pseudo-randomness of the compression function) as made in OMD.
Furthermore, the proven security bounds for p-OMD are the same as
those of OMD. This shows that the modifications we made to OMD,
to obtain the performance-boosted variant p-OMD, are without sac-
rificing any security.

— It has a more compact structure and processing AD is al-
most free. The original OMD scheme couples a single pass of the
MD iteration—in which the chaining values are xored with specially
crafted offsets—with the counter-based XOR MAC algorithm [6] to
process a message and its associated data. The p-OMD scheme dis-
penses with the XOR MAC algorithm and is solely based on the
(masked) MD iteration. This is achieved by absorbing the associated
data blocks during the core MD path rather than processing them sep-
arately by an additional XOR MAC algorithm. To encrypt a message
of £ blocks having associated data of a blocks, OMD needs £+a+2 calls



to the compression function while p-OMD only requires max {¢, a} +2
calls. That is, for a typical case where £ > a, p-OMD makes just £+ 2
calls independently of the length of AD.

We note that neither OMD nor p-OMD satisfy the nonce-reuse misuse-
resistance notions defined in [14}27]. Misuse-resistant variants of OMD
are recently proposed in [21], but in these variants the encryption process
is not online and they are less efficient than OMD.

A CORRECTION. In the preproceedings version of this paper, we claimed a
partial level of robustness to nonce misuse with respect to the authenticity
property. Tomer Ashur and Bart Mennink pointed out [4] that this claim
was incorrect; hence, we have removed the claim. This is the revised and
corrected version.

ORGANIZATION OF THE PAPER. Notations and prelimiary concepts are
presented in Section [2} Definitions of security notions for AE schemes
are reviewed in Section [3] Section [4] provides the specification of the p-
OMD mode of operation. In Section [5] we provide the security analysis
of p-OMD. Section [f] provides an experimental performance comparison
between p-OMD and OMD.

2 Preliminaries

NOTATIONS. Let z & S denote choosing an element = from a finite set
S uniformly at random. X <« Y is used for denoting the assignment
statement where the value of Y is assigned to X. All strings are binary
strings. The empty string is denoted by . The set of all strings of length n
bits (for some positive integer n) is denoted as {0, 1}", the set of all strings
whose lengths are upper-bounded by L is denoted by {0, 1}§L and the
set of all strings of finite length is denoted by {0, 1}". The notations X ||V’
and XY both stand for the string obtained by concatenating a string ¥
to a string X. For an m-bit string X = X[m — 1]--- X[0] we denote the
first (leftmost) bit by firstbit(X) = X [m — 1] and the last (rightmost) bit
by lastbit(X) = X[0]. Let X[i---j] = X[i]--- X[j] denote a substring of
X, form —1>1i > j > 0; by convention we let X[i---j] =¢if i <0 and
X[i---j]l=X[i---0]if j <O0.

For a non-negative integer ¢ let (i), ~denote the binary representa-
tion of ¢ by an m-bit string. For a bit string X = X[m — 1]--- X[0], let
str2num(X) = S X[i]2" denote the non-negative integer represented
by X. Let ntz(i) denote the number of trailing zeros (i.e. the number of



rightmost bits that are zero) in the binary representation of a positive
integer i. Let 1"0™ denote concatenation of n ones by m zeros.

We let firstbits;(X) = X[m — 1---m — i] denote the i leftmost bits
and lastbits;(X) = X[i —1---0] denote the i rightmost bits of X. For two
strings X = X[m—1]--- X[0]and Y = Y[n—1]---Y[0] of possibly differ-
ent lengths, let the notation X @Y denote the bitwise xor of firstbits;(X)
and firstbits;(Y") where ¢ = min {m, n}. Clearly, if X and Y have the same
length then X @Y matches the usual bitwise xor. For any string X, define
XPe=ch X =c.

The special symbol L signifies both that the value of a variable or
a function at some input is undefined, and an error. Let |Z| denote the
number of elements of Z if Z is a set, and the length of Z in bits if 7 is
a string. We let |e| = 0. For X € {0,1}" let X1||Xo--- || X & X denote
partitioning X into blocks X; such that |X;| = b for 1 <i<m —1 and
| Xm| < b; let m = | X|p denote length of X in b-bit blocks.

THE FINITE FIELD WITH 2" ELEMENTS. Let (GF(2"),®,.) denote the
Galois Field with 2" elements. An element o in GF'(2") is represented as
a formal polynomial a(X) = a, 1 X" ' +--- + a1 X + ag with binary
coefficients. We can assign an element a; € GF(2") to an integer i €
{0,...,2™ — 1} in a natural way, similar applies for o and a string s €
{0,1}™. We sometimes refer to the elements of GF'(2") directly by strings
or integers, if the context does not allow ambiguity. The addition “&”
and multiplication “.” of two field elements in GF(2") are defined as
usual [13]. For GF(22°%) we use Pys6(X) = X6 + X104 X5 + X2 4 1,
and for GF(2°!2) we use P512(X) = X°12 + X8 + X5 + X2 + 1 as the
irreducible polynomials used in the field multiplications.

ADVANTAGE FUNCTION. The insecurity of a scheme IT in regard to a se-
curity property xxx is measured using the resource parametrized function
Advi(r) = maza {AdvV*(A)}, where the maximum is taken over all
adversaries A which use resources bounded by r.

PseunporaNDOM FuncTiONS (PRFS) AND TWEAKABLE PRFS. Let
Func(m,n) = {f:{0,1}"" — {0,1}"} be the set of all functions from
m-bit strings to n-bit strings. A random function (RF) R with m-bit in-
put and n-bit output is a function selected uniformly at random from
Func(m,n). We denote this by R & Func(m,n).

Let Func’ (m,n) be the set of all functions {f T x {0,1}™ — {0, 1}"},
where T is a set of tweaks. A tweakable RF with the tweak space T,
m-bit input and n-bit output is a map R : T x {0,1}"™ — {0,1}" selected



uniformly at random from Func’ (m,n); i.e. R Func’ (m,n). Clearly,
if 7= {0,1}" then [Func’ (m,n)| = [Func(m+t,7n)|, and hence, R can be
instantiated using a random function R with (m + t)-bit input and n-bit
output. We use R (.) and R(T,.) interchangeably, for every T' € 7. No-
tice that each tweak T names a random function R : {0,1}™ — {0,1}"
and distinct tweaks name distinct (independent) random functions.

Let F : K x {0,1}™ — {0,1}" be a keyed function and let F : K x T x
{0,1}™ — {0,1}" be a keyed and tweakable function, where the key space
K is some nonempty set. Let Fx(.) = F(K,.) and 15[(?() = F(K,T,.).
Let A be an adversary. Then:

AdvE'(A) = Pr [K Sk ATKO o 1} —Pr [R & Func(m,n) : AT = 1}

i 7 ~ (.
Adv%rf(A) =Pr {K Sk AT O o 1} —Pr {R & Func” (m,n) : ARYO o 1}

The resource parametrized advantage functions are defined accord-
ingly, considering that the adversarial resources of interest here are the
time complexity (t) of the adversary and the total number of queries
(q) asked by the adversary (note that we just consider fixed-input-length
functions, so the lengths of queries are fixed and known). We say that
F is (t,q;€)-PRF if Adv%rf(t, q) < e. We say that F is (¢, ¢; €)-tweakable

PRF if Adv%rf(t, q) <e.

3 Security Notions for AEAD

SYNTAX OF AN AEAD SCHEME. A nonce-based authenticated encryp-
tion with associated data, AEAD for short, is a symmetric key scheme
I = (K,&,D). The key space K is some non-empty finite set. The en-
cryption algorithm & : K x N’ x A x M — CU{L} takes four arguments,
a secret key K € K, a nonce N € N, an associated data (a.k.a. header
data) A € A and a message M € M, and returns either a ciphertext
C € C or a special symbol | indicating an error. The decryption algo-
rithm D : K x N x Ax C — MU{L} takes four arguments (K, N, A, C)
and either outputs a message M € M or an error indicator L.

For correctness of the scheme, it is required that D(K, N, A,C) = M
for any C such that C = £(K, N, A, M). It is also assumed that if algo-
rithms £ and D receive parameter not belonging to their specified domain
of arguments they will output L. We write Ex (N, A, M) = E(K,N, A, M)
and similarly Dg (N, A,C) = D(K, N, A,C).



We assume that the message and associated data can be any binary
string of arbitrary but finite length; i.e. M = {0,1}" and A = {0,1}", but
the key and nonce are some fixed-length binary strings, i.e. N' = {0, 1}|N |
and K = {0,1}*, where the positive integers |N| and k are respectively
the nonce length and the key length of the scheme in bits. We assume
that |Ex (N, A, M)| = |M|+ 7 for some positive fixed constant 7; that is,
we will have C = C'||Tag where |C| = |M| and |Tag| = 7. We call C' the
core ciphertext and Tag the tag.

NONCE RESPECTING ADVERSARIES. Let A be an adversary. We say
that A is nonce-respecting if it never repeats a nonce in its encryp-
tion queries. That is, if A queries the encryption oracle Ek(-,-,-) on
(N1, Ay, My) - - (Ng, Ag, My) then Ny, --- , Ny must be distinct.

Privacy NoTioN. We adopt the privacy notion called indistinguisha-
bility of ciphertext from random bits under CPA (IND$-CPA), which is
defined in [26] as a stronger variant of the classical IND-CPA notion [5,7].

Let IT = (K, &, D) be a nonce-based AEAD scheme. Let A be a nonce-
respecting adversary. A is provided with an oracle which can be either
a real encryption oracle Ex(-,-,-) such that on input (N, A, M) returns
C=Ek(N,A, M), or a fake encryption oracle $(, -, -) which on any input
(N, A, M) returns |C| fresh random bits. The advantage of A in mounting
a chosen plaintext attack (CPA) against the privacy property of IT is
measured as follows:

AdVPT(A) = PriK & K0 ASKC) o 1) — Pr{ASG) = 1.

AUTHENTICITY NOTION. We adopt the established notion of authentic-
ity, called integrity of ciphertext (INT-CTXT) under CCA attacks. The
notion was originally defined in [7] for AE schemes and later revisited to
include (authentication of AD in) AEAD schemes in [23].

Let IT = (K, &, D) be a nonce-based AEAD scheme. Let A be a nonce-
respecting adversary. We stress that nonce-respecting is only regarded for
the encryption queries; that is, A can repeat nonces during its decryption
queries and it can also ask an encryption query with a nonce that was
already used in a decryption query. Let A be provided with the encryption
oracle £k (+,-,-) and the decryption oracle Dk (-,-,-); that is, we consider
adversaries that can mount chosen ciphertext attacks (CCA). We say that
A forges if it makes a decryption query (NN, A, C) such that Di (N, A,C) #
1 and no previous encryption query Ex (N, A, M) returned C.

AdvAth(A) = Pr[K & K0 ASK(o) D) forges).



RESOURCE PARAMETERS. Let (N!, A, M1) ... (N9 A% M%) denote the
encryption queries and (N'!, A", C'M) ... (N'% A'% C'%) the decryption
queries made by an adversary A. We define the resource parameters of
A as (t,qey v, 04,00, 047,07y Limaz ), where t is the time complexity, g,
and g, are respectively the total number of encryption queries and de-
cryption queries, Lpq, is the maximum length of each query in bits, 04 =
oy [AY, on = 300 [MY], o = 302, |A"| and o0 = 351, (|C7| = 7).
The absence of a resource parameter will mean that the parameter is
irrelevant in the context and hence omitted.

4 The p-OMD Mode of Operation

p-OMD is a mode of operation that converts a keyed compression function
to an AEAD scheme. To instantiate p-OMD, one must first choose and
fix a keyed compression function F' : K x ({0,1}" x {0,1}") — {0,1}"
and a tag length 7 < n; with the key space K = {0,1}* and m < n. Let
p-OMDIF, 7] denote the p-OMD instantiated by fixing F' and 7.

If the compression function at hand does not have a dedicated key
input per se, as it is the case for standard hash functions, then a keyed
compression function with n+m input bits can be obtained from the key-
less compression function with n 4 b input bits by allocating k input bits
for the key, such that b = m + k. For example, if we use the compression
function of SHA-256, we have n = 256,b = 512 and setting k = 256 will
give us a keyed compression function with m = n = 256.

DESCRIPTION OF THE MODE. The main design rationale behind p-OMD
is the integration of AD processing into the same MD path that pro-
cesses the message. Figure [I] shows a schematic representation of the
encryption algorithm of p-OMD|[F, 7]. The decryption algorithm can be
straightforwardly derived from the encryption algorithm with the addi-
tional verification of the authentication tag at the end of the decryption
process. While the overall structure of such design is rather simple, the
combined processing of the message and associated data blocks in p-OMD
creates several additional possible cases, to be treated and analyzed care-
fully, compared to the analysis of OMD. Figure [2| provides an algorithmic
description.

In the following we briefly explain the components that may need
further clarification.

(1) Computing Ap,; j. As shown in Figure (I, before each call to the
underlying compression function F', we xor a (key-dependent) mask-
ing value Ay ; ; to the chaining variable, where N is the nonce, the i

7



T>m My My_o My ]\7[[
4 L A; 1 L L i, L
i n bits
on NPy 4 N Fy NP DA F Fy Tag'
‘ M,y ‘ M, ‘ My M,
AN10 AN2,0 C ANi-1,0 Ci s AnN,e0 ANe+1,55
o -

Cy
Case A:l >0 and |Aln = £+ 1. Let My = M|[10™~MeI=1if |M,| < m and M, =
Let A/, = Al,[|10"~ 1AL 11 4 |[AL/| < n and A,, = A, otherwise.

M, otherwise.

Aparo

N,a’+1,1

<7'>m M,y Mo My M(
4 A, t i, L t
l i l n bits
on } ‘ FK %9 ‘ FK XXy } FK ‘l I oo Tag/
M~ My ‘ M, —~ ‘ Lar 1~
AN,z,o @ AN,Hl,jf
1 o

C, Cart1
Case B:(> 0 and |Aln < £+ 1. Let My = M;||10™ ‘W Lif |Me| < m and M, =
Let AL, = A, ||10"~ 1A 1=1 4 |Al/| <n and A, = A}, otherwise.

M, otherwise.

(T)m M, M, Aj Az,
, n+m n+m
n L m L A L . "
l i n bits
o } I Fr < Fi cee Fr — Fi coe Fi Tag’
‘ Mlé ‘ M, ‘ ‘
AN10 AN;2,0 AN,e41,0 ANey2,2 AN, t+a*+1,55

C; Cs

Case C:/ >0 and [A|, > £+ 1. Let M; = My||10™~™Mel=1 if |M,| < m and M, = M; otherwise.

= A}. otherwise.

Let Af. = A% |[10m+m =10 1=1jf A%,
(T)m A7 a1 AE
n+m n+m n+m
Al n m n m
l n bits
04 ‘ Fg — ‘ FK Fg ‘ ‘ Fy Tag’
AN Anz22 AN,n,*,Q AN,a*+1,5;
Case D: M = ¢ and |A| > n. Let A% = A% |10 14a- =1 if A%, Ar. = A« otherwise.
(T)m (T)m
A Tag’
. n bits
n bits n bits
on Fx Tag' o Tag' H
T bits
AN, ANn1,3 Tag
Case E: M =cand 0 < |A| <n. Let A’ = A’HIO"’M/"l Case F Obtaining the
M=A=¢ final tag.

if |[A’| < n and A’ = A’ otherwise.

Fig. 1. The encryption process of p-OMDI[F, 7]. Refer to Section |4 for details. See
Section [2| for our convention on the notation X @ Y for operands of different lengths.



component of the index is incremented at each call to the compression
function and the j component is changed when needed (according to
a pattern that will be detailed shortly). This method is known as the
X E method [24] and is used for converting F' to a tweakable function.
There are different plausible ways to compute such masking values
(under efficiency and security constraints) [11,{19}/24]. We adopt the
Gray code based method following [19]. In the following, all multipli-
cations (denoted by “.”) are in GF(2").

(a) PRECOMPUTATION. Let L.(0) = 0", L.(1) = Fg(0™,0™) and
L.(i) = i-Li1) for 2 < 4 < 15. Let L(0) = 16 - L«(1) and
L(j) =2-L(j — 1) for j > 1. For a fast implementation the val-
ues L, (i) and L(j) can be precomputed and stored in a table for
1 <i<15and 0 < j < [logy(bmaz)|, where £p,qz is the the bound
on the maximum number of blocks in M or A. Alternatively, (if
there is a memory restriction) they can be computed on-the-fly.
Note that all L.(i) are linear.

(b) COMPUTATION OF THE MASKING SEQUENCE. The masking val-
ues Ay, ; are computed sequentially as follows. Let Ango =
Fr(N|[10"= =Nl 0m). Fori > 1and j,j' € {0,1,...,15}: Ay, =
Ani—1,j0 @ L(ntz(i)) @ Ly (str2num ((j)a @ (j')4)). For details on
how we get this compact relation adopting the Gray code based
sequence partition method, we refer to Appendix ?77.

(2) Encryption Algorithm: To encrypt a message M € {0,1}* with
associated data A € {0,1}* using nonce N € {0,1}* and key K €
{0,1}*, obtaining a ciphertext C = C||Tag € {0,1}™*7 do the fol-
lowing.

(a) PARTITIONING THE MESSAGE AND ASSOCIATED DATA. The par-
titioning is done by the PARTITION subroutine in Figure
Let M||My--- My_1||My; & M. Let A'||A* < A where A’ «+
AlJA] —1---|A| — (£+ 1)n] and A* + A[|A| —|A'| —1---0] (refer
to the notations in Section . Let Aj||Ay--- AL, ||AL, <= A" and
Af[|As - An || Az &F A% The string A’ consists of o/ < (+1
n-bit blocks and these blocks will be simply absorbed into the
chaining variable during the message encryption. In a typical use
case where the associated data is (a header) shorter than the mes-
sage, we will have A’ = A i.e. A* = ¢ (Case A and Case B in
Figure [1)). The string A* will be non-empty only if |A| > (¢ + 1)n,
in which case, while A* is being processed, there are no more mes-
sage blocks to encrypt. To maximize the efficiency, we partition



1: Algorithm PRECOMPUTE(K) 22: PROC1(M, A’,H, A, i)

2: L.(0) =0" 23: if i=¢+ 1 then

3: L*(l) < FK(On, Om) 24: C’L—l «~— H (&) M’L—l

4: for i + 2 to 15 do 25: H«— H® A,

5: L.(i) =4 L«(1) 26: A<+ A @ L(ntz(i))

6: L(0) + 16 - L. (1) 27: if a* =0 then

7 for i + 1 to [logy(Ymax)] do 28: SWITCH(A, 5,4+ ja +
8: L) =2-L(i—1) Jn) )

9: return 29: H <+ Fg (H ® A, Mifl)

30: i i+1

1: Algorithm Ex (N, A, M) 31: if £> o/ then > STAGE 2
2:  if [N| >n—1 then 32: SWITCH(A, j,1)

3: return | 33: PROC2(M, H, A1)

4: PARTITION(A, M) 34: Ci—1+~ HO M;_,

5: PAD(A’, A*, M) 35: A <+ A® L(ntz(i))

6: A<« Fr(N|[10n—1=INI gm) 36: SWITCH(A, 5,8 +j4 + jur)
T A+ A® L(0) 37: H<+ Frg(H® A, M;_1)

8: H<+~0"j+0 38: i i+1

9: if a’ =0 and £ =0 then 39: else if a* > 0 then > STAGE 3
10 SWITCH(A, 5,3) 40: SWITCH(A, j,2)

11: else if a’ = 0 then 41: PROC3(A*, H, A1)

12: SWITCH(A, j,1) 42: Left <~ A*,[n+m —1---m)]
13: else 43: Right <= A%.[m —1---0]

14: H«+— Ho A 44: H < H @ Left

15: if @’ =1 and a* > 0 then 45: A+ A® L(ntz(4))

16: SWITCH(A, j,2) 46: SWITCH(A, j, 12+ ja + jur)
17: elseif a’ =1 and ¢ =0 then 47: H « Fi(H @ A, Right)

18: SWITCH(A, j,12+ja+jm)  48: Tag+ Hn—1---n—7]

19: H+ Fr(H® A {(T)m) 49: C + C1]||C2]| -+ ||C¢|| Tag
20: 14-2 50: return C
21: if @’ > 1 then > STAGE 1

Fig. 2. Description of the encryption algorithm of p-OMDIF,7]. STAGE 1 processes
blocks of message and AD simultaneously (Cases A,B and C in Figure [1]). STAGE 2
processes only message blocks (Case B in Figure|land the case when we only have a
message and no AD that is not in the Figure). STAGE 3 processes only double blocks of
AD (Cases C and D in Figure. Note that the Cases E and F are handled outside
of the three stages. Subroutines PARTITION, PAD, SWITCH and PROC1-3 are
described in Figure

10



the string A* into n + m-bit blocks so that we can make use of
both of the inputs to F' (see Case C and Case D in Figure [1)).

(b) PROCESSING THE MESSAGE AND ASSOCIATED DATA. The message
and associated data blocks are processed by the modified MD iter-
ation of the keyed compression functions F' as shown in Figure
For every call to F, the n-bit input (chaining variable) is masked
by the value Ay ;;; where, the N component in the index de-
notes the nonce; 7 starts with the value ¢ = 1 at the first call to
F and is incremented (by one) for every call; the j component is
used to separate logical parts in the encryption process as well as
different types of input arguments. Appropriate use of the j com-
ponent is essential for security and facilitates the analysis, as will
be described in the following.

(3) Selection of the j component in the index of the masks
Anj. We use different values of j to separate the calls to the
masked F' in different contexts. Let’s classify the calls to the
masked F to two types: (1) the final call to F' which returns the
tag, and (2) the internal calls. We note that in the special case
that M = ¢ and |A| < n there will be only one call to F' which
returns the tag; hence, it is considered as the final call.

Internal Calls. We use j € {0,1,2} for the internal calls made

to the masked F' as follows.
For i = 1, i.e. the first call to F', the value of j is determined
as follows:
x if £ >0 and a’ > 0 then let j =0,
x if £>0and a’ =0 then let j =1,
x if £ =0 and a* > 0 then let j = 2.
For 1 <i < £+ 1+ a*, depending on the presence of message
blocks and AD blocks to be processed at the i*™® call to the
masked F', we have:
x if both an n-bit AD block and an m-bit message block are
present then j = 0,
x if only an m-bit message block is present (no AD block is
processed) then j =1,
« if only an (n 4+ m)-bit AD block is present (no message
block is processed) then j = 2.

Final Call. The final call to F' which produces the authentication
tag uses jr € {3,4,5,...,14,15}. If the tag is produced by a
call to F' with ¢ # 1, we have three main cases depending on
the inputs to the final masked F'.

11



1: Subroutine PARTITION(A, M) 1: Subroutine PROCI1(M, A’, H, A1)
2: b<n+m 2: Tstop < min{¢,a’}
30 Miy||Mz---My_q||M; & M > 3:  for r < i to rstop do
(€= [M|m) 4: Cro1— H® M, _q
4: A"+ Al|Al—1---]A] — (£+ 1)n] 5: H+ HoA,
5: A* «— A[|A| —|A'|—1---0] 6: A+ A® L(ntz(r))
6 AYfAp--- AL AL, A e T H« Fi(H® A Mr—1)
(a/ = |A/‘n) 8: 14 Tstop + 1
* * * * b *
v (a*ﬁ:‘:ﬁ A)“**HA“* e4 ” 1. Subroutine PROC2(M, H, A, )
- nt+m 2: for r + i to ¢ do
1: Subroutine PAD(A’, A*, M) Zf Z’“—l < H @ M
2: if | M| mod m # 0 then : < A& L(ntz(r))
— _ _ 5: H«+— Fx(H® A, My_1)
3: My <+ My||10™ | M| -1 K
4: a1 6: i 0+1
5: else
6: M, +— M, 1: Subroutine PROC3(A*, H, A1)
7 gm0 2: for r < 1 to a* do
8: if |A’| mod n # 0 then 3 Lgft(—Aﬁ[n—l—m—l--vm]
) , , ne| A’ -1 4: Right <~ A%[m —1---0]
9: Ay = AY(I107 e 5: H + H & Left
10: JA 2 6: A+ A L(ntz(i +r — 1))
11: else if |A*| modn—l—m;é(lthen 7. H « Fx(H @ A, Right)
12: Ax, — A [[1on e Ag 11 8 icitat—1
13: ja <2
14: else
15: ja <0

1: Subroutine SWITCH(A, j, jnew)
2: A +— A® Li(str2num({j)a &
<jnew>4))

3: .] <_jlflew

Fig. 3. The subroutines used in the encryption algorithm of p-OMDI[F, 7] (Figure
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x If both an AD block and a message block are present in the
final call (see Case A in Figure [l)) then j; € {4,5,6,7};
where, we let j; = 4 if |[My| = m and |Al,| =n; let jr =5
if |[My| < m and |Al,| = n; let jy = 6 if [My| = m and
|Al,| < n, and otherwise (|[My| < m and |A),| < n) let
Jjr=T.

x If only a message block is present but no AD block is
processed in the final call (see Case B in Figure [1)) then
Jr € {8,9,10,11}; where, we let jy = 8 if [My| = m and
|AL| =n; let j; =9 if [My| < m and |Al,| =n; let j; = 10
if |M;| = m and |Al,| < n, and otherwise (|M;| < m and
|Al,| < n)let j; = 11 . For the special case where there
is no associate data at all, i.e. A = ¢, we let j; = 8 if
|M¢| = m and let j; =9 if |M,| < m.

+ If only an AD block is present but no message block is
processed in the final call (see Case C and Case D in
Figure [1) then j; € {12,13,14,15}; where, we let j; = 12
if |[My| = m and |A}«| = n+m; let jy = 13 if [M,| < m and
|AZ| =n+m;let jp =14 if [My| = m and |A}.| <n+m,
and otherwise (|M;| < m and |A}.| <n+m) let j; = 15.
For the special case where there is no message at all, i.e.
M = ¢, let jy = 12if |A}.| = n + m and let j; = 14 if
|A% | <n+m.

For i = 1 (meaning that the final call is the same as the first
call, which happens if M =& AND |A| < n) we need to apply
a special treatment:

* if both M = A = ¢ then j; = 3 (Case F in Figure [1),

* if M = ¢ and 0 < |A| < n then we let j; = 12 if |A| = n,
otherwise, let j; = 14 (Case E box in Figure [1)).

Note that there is no variable j; in Figure [2| as j; corresponds
to a special use of variable j in the last call to F'. Specifically, j¢
corresponds to the calls to the SWITCH subroutine that use the
value of new j of the form const + j4 + jas or the value 3.

(4) Decryption Algorithm: The decryption algorithm accepts a ci-
phertext C € {0,1}" together with associated data A € {0,1}" and
nonce N € {0, 1}|N|, and using key K € {0, l}k obtains a plaintext
M € {0,1}" or returns an invalid indication L. If |C| < 7 then return
L. Otherwise let C be the first |C|—7 bits of C and Tag be the remain-
ing 7 bits. Now, considering that the encryption process of p-OMD is
actually an additive stream cipher with an integrated authentication
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mechanism, the decryption process proceeds the same as the encryp-
tion process up until the verification of the tag, which happens at the
end of the decryption process where the newly computed tag Tag’ is
compared with the provided tag Tag. If Tag’ = Tag then output M,
otherwise output L.

5 Security Analysis

The security analysis for p-OMD is modular and easy to follow. The high-
level structure of the analysis is similar to that of OMD), as expected from
the similarities of the algorithms, though the details differ and are more
involved. We refer to the full version of this paper [22] for all omitted
details.

The proof is divided into three main steps as follows:

Step 1: Idealization of the p-OMD scheme using a tweakable random
function. We first analyse the security of a generalized variant of
p-OMDIF, 7] where the “masked F” (aimed to instantiate a tweak-
able function) is replaced by an ideal primitive; namely, a tweakable
random function R. This is the major proof step which differs from
and is more involved than that of OMD.

Step 2: Realization of the tweakable random function by a tweakble PRF.
This is a well-known classical method where the (ideal) random func-
tion is replaced by a PRF. This proof step is therefore the same as
that of OMD.

Step 3: Instantiation of the tweakable PRF via a PRF. To make a tweak-
able PRF out of a PRF, we use the XE method of [24] with the
masking sequence generated based on an appropriate adjustment of a
canonical Gray code sequence |19,26|. This step is similar to that of
OMD:; only the details of the mask generation function differ.

The security bound for p-OMD is given by Theorem

Theorem 1. Fizn >1,0<7 <n. Let F: £ x ({0,1}" x {0,1}"") —
{0,1}" be a PRF, where the key space K = {0,1}* for k > 1 and 1 <
m < n. We have

Ti 30’2
AdVE G (F Ges Oes bmaa) < Advi (¢, 20,) + 2ne

AdvEE e (F Ger Gus 0y bmaz) < ADVEY (1, 20) + 30° + Gobmaz | 9o
p— [Fyr]\™ T Hus s = F A" on on 9T

14



where q. and q, are, respectively, the number of encryption and decryption
queries, Lmar denotes the maximum number of the internal calls to F in
an encryption or decryption query, t' = t + cno for some constant c,
and o, and o are the total number of calls to the underlying compression
function F in all queries asked by the CPA and CCA adversaries against
the privacy and authenticity of the scheme, respectively.

The proof is obtained by combining Lemma [I] in Section [5.1] with
Lemma 2] in Section [£.2] and Lemma [3in Section (.3

5.1 Idealization of p-OMD

Let p-OMD[R, 7] be a generalization (idealization) of p-OMDI[F, 7] that
uses a tweakable random function R : T x ({0,1}" x {0,1}"™) — {0,1}"
instead of the masked F. The tweak space T consists of sixteen mutually
exclusive sets of tweaks T = U2 N x N x {i}, where N = {0, 1}V is
the set of nonces and N is the set of positive integers.

Lemma 1. Let p-OMD|R, 7] be the idealized scheme. Then

priv _
Advp—@MD[E,ﬂ (de; Oes bmaz) = 0

auth qvemam Qo

AV (g (e Qs 0 bnaz) < 00—+ o0

where q. and q, are, respectively, the number of encryption and decryption
queries, bmar denotes the maximum number of the internal calls to the
underlying tweakable random function R in an encryption or decryption
query, and o, and o are the total number of calls to R in all queries asked
by the CPA and CCA adversaries against the privacy and authenticity of
the scheme, respectively.

The proof (and figures depicting p-OMD(R, 7]) can be found in the
full version of the paper [22].

5.2 Realization of Tweakable RFs with Tweakable PRFs

This is a classical step in which the ideal primitive—tweakable random
function R—is replaced with a standard primitive—tweakable PRF F.
The security loss induced by this step is stated in the following lemma.
See the full version of this paper [22] for the proof.
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Lemma 2. Let R:T x ({0,1}"* x {0,1}™) — {0,1}" be a tweakable RF
and F: K x T x ({0,1}" x {0,1}") — {0,1}" be a tweakable PRF. Then

priv _ < priv _ ;gf /
Advp»@MD[F,T] (t7 q€7 0-67 émaac) = Advp-@M]D)[R,T] (q57 Uea Emax) + AdvF (t bl ae)
Adv™h (t, des Qs 0, bmaz) < Adv™™™ (Ges Qs 0y bmaz ) + AAVE(H o)

p-OMDI[F, 7] p-OMDI[R, 7] =

where q. and q, are, respectively, the number of encryption and decryp-
tion queries, ¢ = e + Gv, bmae denotes the mazimum number of the in-
ternal calls to F in an encryption or decryption query, t' =t + cno. and
t" =t + dno for some constants c,c, and o, and o are the total number
of calls to the underlying compression function F' in all queries asked by
the CPA and CCA adversaries against the privacy and authenticity of the
scheme, respectively.

5.3 Instantiation of Tweakable PRFs with PRFs

The last step is to instantiate the tweakable PRFs by means of a (keyed)
compression function which is assumed to be PRF. Similar to OMD, we
use the XE method of [24] as shown in Fig.

The proof and bound for this step follows from that of OMD, which in
turn is a straightforward adaptation of the proof of the XE construction
in [19]. Lemma states the bound for this transformation. Here, the only
aspect which is different between OMD and p-OMD is the way that the
masking sequence Ay ; ; is computed. It is proved in the full version of
this paper [22] that the required security and efficiency properties are
satisfied by the specific mask generation scheme of p-OMD), as described
in Section [4]

JYE

YT
@

S AR(T

Fig. 4. Building a tweakable PRF F}T) : {0,1}" x {0,1}™ — {0,1}" using a PRF
Fr :{0,1}" x {0,1}™ — {0,1}".
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Lemma 3. Let F: Kx ({0,1}" x{0,1}™) — {0,1}" be a function family
with key space K. Let F : K x T x ({0,1}" x {0,1}™) — {0,1}" be
defined by F’;<T>(X, Y)=Fr(X ® Ag(T)),Y) for everyT € T,K € K,
X €{0,1}",Y € {0,1}" and Ak(T) is the masking function of p-OMD
as defined in Section @ If F is PRF then F is tweakable PRF; more
precisely

Adv2'(t,q) < AdvR(t', 2q) + 327

6 Performance Comparison with OMD

To verify the performance advantage of p-OMD over OMD, with respect
to processing associated data, we implemented the two algorithms in soft-
ware and made some measurements to determine and compare their per-
formance.

The comparison is performed on the x86-64 architecture (Intel Core i7-
3632QM, with all measurements carried out on a single core). For OMD,
we used the OMD-sha512 instantiation optimised for the AVX1 instruc-
tion extension, which achieves the best result according to the CAESAR
benchmarking measurements [1]. We made the necessary modifications
(as in description of p-OMD) to the same code to obtain our imple-
mentation of p-OMD. Both OMD and p-OMD were instantiated with
the same parameters: key length=512, nonce length=256, tag length=256.
Both implementations have been built using the gcc compiler and setting
the -0Ofast optimization flag.

We measure the time complexity of the encryption process for varying
lengths of message and associated data. For the sake of this section, let m
denote the message length and a the AD length in bytes. We measure the
encryption time for m € {64,128,192,...,4096} and a € {64,128,...m}
for every value of m. That is, we consider the typical case when AD is at
most as long as the message.

For both OMD and p-OMD and for every pair of values m,a, we
measure the time of one encryption using the rdtsc instruction 200 times
to compute the mean time. This is repeated 91 times and the value we
take as the result is the median of these 91 mean encryption times. We
additionally apply the same procedure to measure time complexity of the
encryption of OMD with m € {64,128, ...,4096} and a = 0. The results
are shown in Figure
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The top left graph in Figure [b| shows that the relative complexity of
encryption of both OMD and p-OMD decreases as the length of AD in-
creases; however, p-OMD performs better than OMD. The top right graph
demonstrates that if the length of AD is close to the message length then
p-OMD has a clear advantage over OMD. The bottom right graph con-
firms that the p-OMD provides an almost free authentication of associated
data compared to OMD.

For both OMD and p-OMD, these measurements exclude the com-
plexity of the precomputation step in computing Ay ;; (see Section
which is done only once during the whole lifetime of a key. As an upper
bound, we measure the complexity of the precomputation step that is
sufficient to encrypt messages with length up to 2 blocks. For OMD the
precomputation step takes 5818 cycles while in p-OMD it requires 6863
cycles on average.

20 20 =
* p-OMD (m=4kB) * p-OMD (a = m)

+ OMD (m=4kB) * + OMD (a = m)
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Fig. 5. Performance comparisons between OMD and p-OMD. Top left: encryption
complexity with fixed message length. Top right: encryption complexity with equal
message length and AD length. Bottom right: comparison of OMD without AD
to OMD and p-OMD with AD. Bottom left: encryption complexity of p-OMD for
varying message and AD lengths.
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