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Abstract. We present a new, misuse-resistant scheme for online authen-
ticated encryption, following the framework set forth by Fleischmann et
al. (FSE 2012). Our scheme, COBRA, is roughly as efficient as the GCM
mode of operation for nonce-based authenticated encryption, perform-
ing one block cipher call plus one finite field multiplication per message
block in a parallelizable way. The major difference from GCM is that
COBRA preserves privacy up to prefix under nonce repetition. However,
COBRA only provides authenticity against nonce-respecting adversaries.
As compared to COPA (ASIACRYPT 2013), our new scheme requires no
block cipher inverse and hence enjoys provable security under a weaker
assumption about the underlying block cipher. In addition, COBRA can
possibly perform better than COPA on platforms where finite field mul-
tiplication can be implemented faster than the block cipher in use, since
COBRA essentially replaces half of the block cipher calls in COPA with
finite field multiplications.
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1 Introduction

Authenticated encryption (AE) schemes target the security goals of privacy and
integrity. The field of AE has received more interest in the light of the recently
announced CAESAR competition [9]. In the target scope of the competition fall
secure and efficient AE algorithms for specific or possibly multiple environments.

While AE can securely be achieved by combining a probabilistic encryption
scheme and a message authentication code using Bellare and Namprempre’s
generic composition [6], this approach comes at the cost of using two keys, one for
encryption and one for authentication. This and further efficiency optimization
reasons have led to the development of many dedicated nonce-based AE solutions
such as CCM [33], CWC [20], EAX [7], GCM [23], IACBC [18], IAPM [18],
OCB1-3 [21,27,29], and OTR [24].

Of these schemes, today GCM is the most widely deployed. GCM has been
standardized by many organizations including ANSI, IEEE, ISO/IEC, and NIST.
GCM has also been adopted by major cryptographic protocols such as IPsec,
SSH, and TLS/SSL.



One advantage of GCM is that it performs well on Intel CPUs. According
to Gladman [13], GCM outperforms CCM, CWC, and EAX on Intel P3/P4 and
AMD 64(32/64) processors, if a 64K table is used with GCM. This is mostly
due to the fact that finite-field multiplication over GF(2128) can be implemented
efficiently on these platforms so that it runs faster than serial AES or hashing
modulo 2127 − 1.

There are several ways of parallelizing the polynomial hashing in GCM [14].
For example, instead of performing finite-field multiplications sequentially by
Horner’s rule as

(((

X[1]L⊕X[2]
)

L⊕X[3]
)

L⊕X[4]
)

L, one precomputes L2, L3

and L4, stores them in a table, and then computes the hash in a parallelizable
way as X[1]L4+X[2]L3+X[3]L2+X[4]L. Here L denotes the key of polynomial
hashing and X[i] the data blocks.

On more recent Intel CPUs such as Nehalem and Sandy Bridge, finite-
field multiplication runs slower than AES [21]. Note that these processors are
equipped with dedicated instruction sets, PCLMULQDQ for finite-field multi-
plication and AES-NI for AES block cipher computation. However, according
to the latest report by Gueron [15] PCLMULQDQ is now more efficient on the
latest Haswell processor, making finite-field multiplication over GF(2128) faster
than AES block cipher computation. This also makes GCM still attractive for
use on Intel platforms.

Another advantage of GCM is the fact that it does not require the block
cipher inverse. This contrasts sharply with schemes like OCB, where the cipher
inverse is necessary for decryption. Besides the extra cost to implement the
inverse algorithm, the problem is that the security proof needs to rely on a
stronger assumption about the underlying block cipher if its inverse is used
by the scheme. This issue has been discussed for OCB [5] and has led to the
invention of OTR [24].

Given these features and its wide-spread use, GCM is often considered as a
reference AE mode of operation. In fact, the call for submissions of the CAESAR
competition [9] requires that authors “must explain, in particular, why users
should prefer this cipher over AES-GCM.”

All of the above-mentioned dedicated schemes are proven secure in a nonce-
respecting model — formalism proposed by Rogaway [28] — where an adversary
is limited to making encryption queries only with non-repeating nonce values.
For the cases when nonce values do repeat, none of these AE schemes provides
any formal security guarantees. Indeed, all of these schemes, including the latest
OTR, can be “attacked” under nonce repetition, as described by Fleischmann
et al. [12].

Nonce repetition can, however, occur in practice due to the fact that the
nonce is chosen by the application programmer rather than the scheme itself
as discussed by Fleishmann et al. [12]. Examples of nonce repetition are flawed
implementations [8, 10, 19, 22, 34], bad management of nonces by the user, and
backup resets or virtual machine clones when the nonce is stored as a counter.

One way to address these situations is to design AE schemes which provide
misuse resistance in a model where the adversary can perform queries with re-

2



peating nonces. Such schemes include the deterministic AE solutions SIV [30],
BTM [16], and HBS [17], and also the authenticated online ciphers McOE-G [12],
APE [2], and COPA [3]. The latter schemes are more efficient (need to process
the message just once), even though the security under nonce repetition is limited
to indistinguishability up to a common prefix.

We note that we are missing a “GCM-like” authenticated online cipher.
McOE-G makes one block cipher call plus one finite-field multiplication per
message block, but it is inherently sequential and not parallelizable like GCM.
APE is permutation-based and sequential. COPA is parallelizable, but it makes
two block cipher calls per message block. Moreover, all of these schemes require
the inverse primitive calls for decryption. In this paper, therefore, we set out
to propose a new authenticated online cipher whose efficiency is comparable to
that of GCM.

Our Results. We present a secure and efficient solution for AE, which we
name COBRA. A formal description of COBRA for integral message blocks is
given in Sect. 3, and it is depicted in Figs. 2-3. (A description of COBRA for
arbitrary-length messages is given in App. A.)

Design. At first glance our design may seem to combine characteristics of the
COPA [3] and OTR [24] designs. Indeed, to ensure misuse-resistance we include
features from COPA and then substitute the parallelization procedures with the
two-round balanced Feistel structure as proposed by Minematsu [24] in OTR.
The latter design decision enables the use of just a single type of primitive,
namely a block cipher in the forward encryption direction, without losing paral-
lelizability, for efficiently authenticating and encrypting at the same time using
polynomial hashing. It also allows for a scheme that does not need the inverse
of the block cipher in decryption.

However, the construction of COBRA is not motivated by the mere combi-
nation of the two designs. Indeed, the employment of the Feistel network seems
necessary for efficiently authenticating and encrypting at the same time using
polynomial hashing. It also allows for a scheme that does not need the inverse
of the block cipher in decryption. In order to achieve integrity of COBRA, we
utilize the checksum of intermediate state values of the Feistel structure, which is
similar to a technique proposed by Anderson et al. in their ManTiCore design [1].

Security. In Sect. 4, we prove that COBRA is secure against chosen-plaintext
attacks (CPA) and against forgery up to approximately 2n/2 queries, where n is
the block length of the underlying cipher. Our result for privacy covers nonce-
repeating attackers. This contrasts sharply with GCM whose security collapses
once the nonce is repeated. Note that authenticity of COBRA requires nonce-
respecting attackers.

Our new scheme requires no block cipher inverse and hence enjoys provable
security under the pseudo-random permutation (PRP) assumption about the
underlying block cipher. This is not the case for COPA, whose security proof
relies on a stronger assumption about the block cipher.
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Our proof itself is simplified by decomposing COBRA into smaller parts
which are dealt with individually. The main idea here is to turn a call to the
block cipher into a call to a tweakable cipher which we instantiate with Rogaway’s
XE [27] construction. COBRA utilizes universal hashing (finite-field multiplica-
tion) and produces the tag using intermediate values of the Feistel networks.
These differences make COBRA’s proof slightly simpler than that of COPA.

Efficiency. The efficiency of COBRA is comparable to that GCM. That is, they
both perform one block cipher call plus one finite field multiplication per message
block in a parallelizable way.

As compared to COPA, COBRA saves the cost of implementing the inverse
of the underlying block cipher. COBRA performs potentially better than COPA
on platforms where the finite-field multiplication runs faster than the underlying
block cipher call. Such CPUs include Intel’s latest Haswell processor, where a
128-bit multiplication using the PCLMULQDQ instruction set runs faster than
one AES call even using the AES-NI instruction set, hence essentially faster than
any other block cipher implemented.

Attack On Previous Scheme. In the period between acceptance and publi-
cation of this paper, Nandi found an attack on the authenticity of the scheme
using a nonce-repeating adversary [25]. As a result we have reduced the secu-
rity claim of authenticity from being secure against nonce-repeating adversaries
to being secure against nonce-respecting adversaries and we have made a small
adjustment in the processing of the nonce to accomplish this security level: in-
stead of multiplying the nonce with the message blocks, we use it in the block
cipher call to create the secret value L. This does not change the privacy proof
and authenticity is achieved for the same reason that authenticity is achieved in
OTR.

2 Preliminaries

By ({0, 1}n)+ we denote the set of strings whose length is a positive multiple
of n bits. Given two strings A and B, we use A ‖ B and AB interchangeably
to denote the concatenation of A and B. For A ∈ {0, 1}∗, by A10∗ we denote
the string with a 1 appended, and then padded with zeros until its length is a
multiple of n. If X is a string with length a multiple of n, by X[i] we denote the
ith n-bit block of X. The length of a string X is denoted by |X|.

A block cipher E : K×{0, 1}n → {0, 1}n is a function that takes as input a key
k ∈ K and a plaintext M ∈ {0, 1}n, and produces a ciphertext C = E(k,M).
We sometimes write Ek(·) = E(k, ·). For a fixed key k, a block cipher is a
permutation on n bits.

We can view the set {0, 1}n of bit strings as the finite field GF(2n) consisting
of 2n elements. To this end, we represent an element of GF(2n) as a polyno-
mial over the field GF(2) of degree less than n, and a string an−1an−2 · · · a1a0 ∈
{0, 1}n corresponds to the polynomial an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0 ∈
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GF(2n). The addition in the field is simply addition of polynomials over GF(2)
(i.e., bitwise XOR, denoted by ⊕). To define multiplication in the field, we fix
an irreducible polynomial f(x) of degree n over the field GF(2). For a(x), b(x) ∈
GF(2n), their product is defined as a(x)b(x) mod f(x) — polynomial multipli-
cation over the field GF(2) reduced modulo f(x). We simply write a(x)b(x) and
a(x)·b(x) to mean the product in the field GF(2n), and denote the multiplication
by ⊗.

The set {0, 1}n can alternatively be regarded as a set of integers ranging
from 0 through 2n − 1, where a string an−1an−2 · · · a1a0 ∈ {0, 1}

n corresponds
to the integer an−12

n−1+an−22
n−2+ · · ·+a12+a0 ∈ [0, 2n−1]. Based on these

conversions, we often simply write elements of GF(2n) as integers. For example,
“2” means x and “3” means x+ 1. When we write multiplications such as 2 · 3,
we mean those in the field GF(2n).

3 Specification

In this section we give the specification of our scheme COBRA. Here we define
COBRA for messages whose length is a positive multiple of 2n, where n denotes
the block length of the underlying block cipher. The case of fractional messages
is given in App. A.

Let E : K × {0, 1}n → {0, 1}n be an n-bit block cipher. COBRA consists of
two functionalities, an encryption function E and a decryption function D:

E : K × {0, 1}n−1 × {0, 1}∗ × ({0, 1}2n)+ → ({0, 1}2n)+ × {0, 1}n,

D : K × {0, 1}n−1 × {0, 1}∗ × ({0, 1}2n)+ × {0, 1}n → ({0, 1}2n)+ ∪ {⊥}.

The function E takes as input a key K, a nonce N , associated data A, and a
message M , and returns a ciphertext C and tag T : (C, T )← E(K,N,A,M). The
decryption function D also gets a ciphertext C and tag T in addition to a key,
nonce and associated data; it outputs M if the tag is correct and ⊥ otherwise,
which we denote as M/⊥ ← D(K,N,A,C, T ).

On input of a key K, nonce N , associated data A, and a message M padded
into n-bit blocks M [1]M [2] · · ·M [2d] (resp., a ciphertext C = C[1]C[2] · · ·C[2d]
and tag T ), the function E (resp., D) is defined in Fig. 1. Note that the functions
are sound: for any K,N,A,M we have M ← D(K,N,A, E(K,N,A,M)). For the
case the associated data A is of length at most 4n and the message is of length
at most 6n, the function E is depicted in Figs. 2-3.

4 Security

We briefly settle some notation for the security analysis in Sect. 4.1. In Sect. 4.2,
we introduce some preliminary results related to COBRA. Confidentiality of
COBRA is then proven in Sect. 4.3, and integrity in Sect. 4.4.
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COBRA-Encrypt E [E](N,A,M):

L← Ek(N‖1), Σ ← 0
τ ← 4L, V ← L
for i = 1, . . . , d do

V ← V ⊕M [2i− 1]
C[2i− 1]← V
V ← (V ⊗ L)⊕M [2i]
C[2i]← V
ρ← Ek(τ ⊕ C[2i])
Σ ← Σ ⊕ ρ
C[2i− 1]← ρ⊕ C[2i− 1]
σ ← Ek(τ ⊕ L⊕ C[2i− 1])
Σ ← Σ ⊕ σ
C[2i]← σ ⊕ C[2i]
if i < d then

V ← V ⊗ L
τ ← 2τ

end if

end for

U ←ProcessAD[E](A)
T ←ComputeTag[E](L, τ,Σ,N,U)
return (C, T )

COBRA-Decrypt D[E](N,A,C, T ):

L← Ek(N‖1), Σ ← 0
τ ← 4L, V ← L
for i = 1, . . . , d do

σ ← Ek(τ ⊕ L⊕ C[2i− 1])
Σ ← Σ ⊕ σ
M [2i]← σ ⊕ C[2i]
ρ← Ek(τ ⊕M [2i])
Σ ← Σ ⊕ ρ
V ′ ← ρ⊕ C[2i− 1]
M [2i− 1]← V ′ ⊕ V
V ′ ← V ′ ⊗ L
V ←M [2i]
M [2i]← V ′ ⊕M [2i]
if i < d then

V ← V ⊗ L
τ ← 2τ

end if

end for

U ←ProcessAD[E](A)
T ′ ←ComputeTag[E](L, τ,Σ,N,U)
return T = T ′ ? M : ⊥

ProcessAD[E](A):

X ← A ‖ 10∗

J ← Ek(0)
U ← J
for i = 1, . . . , |X|/n− 1 do

U ← (U ⊕X[i])⊗ J
end for

U ← Ek(2J ⊕ U ⊕X[c])
return U

ComputeTag[E](L, τ,Σ,N,U):

τ ← 3(τ ⊕ L)
T ← Ek(τ ⊕Σ)
τ ← 3τ
T ← Ek(τ ⊕ T ⊕N ⊕ U)
return T

Fig. 1: COBRA.

4.1 Notation

When writing x
$

← X for some finite set X we mean that x is sampled uniformly
from X. We write Pr

[

A
∣

∣ B
]

to denote the probability of event A given B.

Say that M ∈ {0, 1}2nℓ. We write M [1]M [2] · · ·M [2ℓ]
n
←− M to denote the

blocks that make up M , and M̂ [1]M̂ [2] · · · M̂ [ℓ]
2n
←− M to denote the fragments

that make up M . Note that a fragment is made of two blocks: M̂ [i] = M [2i−1] ‖
M [2i].

For convenience, we use the notation

∆
D

(f ; g) :=
∣

∣Pr[Df = 1]− Pr[Dg = 1]
∣

∣ (1)

to denote the distinguishing advantages of adversary D in distinguishing oracles
f and g, where the notationDO indicates the value output byD after interacting
with oracle O. The probabilities are defined over the random coins used in the
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+
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20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

L

L L L L L

Fig. 2: Processing plaintext. Note that L′ is defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 N‖1

J L

×

L′

4

Fig. 3: Processing associated data (top), computing the tag (bottom left), and
the secret values (bottom right).

oracles and the random coins of the adversary, if any. If a class of distinguishers
is described by some parameters, e.g. the number of queries q, then by ∆q(f ; g)
we denote the supremum of ∆D(f ; g) over all distinguishers D in this class of
adversaries. Multiple oracles are separated by a comma or given by a set, e.g.

∆(f1, f2 ; g1, g2) or ∆({f1, f2} ; {g1, g2}) denotes distinguishing the combination
of f1 and f2 from the combination of g1 and g2.

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.
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Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = ∆

D

(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$

← K, the randomness of π, and random coins of D, if any.
By Advprp

E (t, q) we denote the maximum advantage taken over all distinguishers
that run in time t and make q queries.

4.2 Preliminary Results

The input to each block cipher call in COBRA is first XORed with one of the
following masks:

{2J, 2iL, 2iL⊕ L, 3(2iL⊕ L), 32(2iL⊕ L)}, (2)

where i ≥ 2, J := Ek(0) and L := Ek(1). As a result, each block cipher call can
be viewed as a call to an XE construction [27]. Note that by using the doubling
method from [27], we can produce many different values of the mask from the
secret values J and L. Specifically, we adopt the tweaks used in [24], allowing us
to replace each of the XEs with independent URFs.

Lemma 1 ( [24, 27]). Let T denote some set of indices such that τ → µτ

maps all indices to all tweaks injectively. The permutations {Ek(µτ ⊕ ·)}τ∈T

are indistinguishable from independent URFs
{

ϕτ

}

τ∈T
. Specifically, let D be a

distinguisher running in time t and making at most q queries, then

∆
D

({Ek(µτ ⊕ ·)}τ∈T ; {ϕτ}τ∈T ) ≤
5q2

2n
+Advprp

E (D′),

where D′ is a distinguisher with running time similar to D, making 2q queries.

In Fig. 4 one can see a description of COBRA where the XE constructions are
replaced with URFs, where the URFs are labeled α (replacing the XE construc-
tion in ProcessAD), βN

i , γN
i for i ≥ 1 and all N (replacing them in COBRA-

Encrypt and COBRA-Decrypt), and δN1 , δN2 for all N (replacing them in
ComputeTag). Throughout, we will denote this scheme by E ′.

We can describe E ′ as a sequence of functions each computing one ciphertext
fragment, a function computing the tag, and a function processing the associated
data. More formally:

Definition 2. Say that E ′ maps (N,A,M) to (C, T ). Define fi : {0, 1}n ×
{0, 1}2ni → {0, 1}2n to be the function mapping (N, M̂ [1] · · · M̂ [i]) to Ĉ[i], h :
{0, 1}∗ → {0, 1}n the function mapping A to U (where U is as shown in Fig. 4),
and f ′ : {0, 1}n×{0, 1}∗×({0, 1}2n)+ → {0, 1}n the function mapping (N,A,M)
to T .
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As a second step, we replace the associated data computation h in E ′ with a
URF Ω:

Lemma 2. Let Ω : {0, 1}∗ → {0, 1}n be a URF and let D be a distinguisher
making at most q queries each of length less than nl, then

∆
D

(h ; Ω) ≤
lq2

2n
.

Proof. The URF α generates independent, uniformly distributed values as long
as its inputs are unique. The only issue is when two different A’s map to the same
input to α, which itself reduces to finding zeros of a polynomial in J of degree at
most l. Since J is an independent, uniformly distributed value generated using a
URP, and polynomials of degree l have at most l distinct zeroes, the probability
that a pair of plaintexts collides is l/2n. By allowing the adversary to make q
queries we get our desired bound. ⊓⊔

βN

1

γN

1

βN

2

γN

2

βN

3

γN

3

+

+

+

+

+

+

+ + + + + +

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

L

L L L L L ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

δN1

+N ⊕ U

δN2

T

Uα+×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J

Fig. 4: Construction with independent URFs.

We define E to be E ′ with h replaced by Ω. In other words, E corresponds to
COBRA where (i) the XE constructions have been replaced with independent
URFs, and (ii) h has been replaced with Ω. Formally, we obtain the following
result for E.

Proposition 1. Let (E ,D) denote COBRA and let D be a distinguisher making
at most q queries each of length less than 2nℓ, then

∆
D

(Ek ; E) ≤
5(2ℓq + 2q)2

2n
+

2ℓq2

2n
+Advprp

E (D′),

where the probability is taken over k
$

← K and the URFs in E, and D′ is a
distinguisher with running time similar to D, making 4ℓq + 4q queries.
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Proof. We first apply Lem. 1, where we note that one query by D leads to at
most 2ℓ+ 2 block cipher calls, and then Lem. 2 to get the desired result. ⊓⊔

Using Prop. 1, we will prove confidentiality of COBRA in Sect. 4.3 and
integrity in Sect. 4.4. For the proof of confidentiality, we present an additional
elementary lemma:

Lemma 3. Say f1, g1 are random functions independent of each other, and that
f2, g2 are independent random functions as well. Let D be a distinguisher for
{f1, g1} and {f2, g2} making qf queries to the fi oracles and qg queries to the gi
oracle. Then there exist distinguishers Df and Dg such that

∆
D

(f1, g1 ; f2, g2) ≤ ∆
Df

(f1 ; f2) + ∆
Dg

(g1 ; g2),

where Df makes qf queries and Dg makes qg queries.

4.3 Confidentiality

We adopt the definitions of security given in [3], yet rather than comparing our
scheme to a random variable over the set of all online permutations, we explicitly
describe an ideal online function in terms of URFs.

Definition 3 (Ideal Online Function). Let gi : {0, 1}
n×{0, 1}2ni → {0, 1}2n

be URFs and let g′ : {0, 1}n × {0, 1}∗ × ({0, 1}2n)+ → {0, 1}n be a URF. We
define $ : {0, 1}n × {0, 1}∗ × ({0, 1}2n)+ → ({0, 1}2n)+ × {0, 1}n as

$(N,A,M) = g1(N, M̂ [1]) ‖ g2(N, M̂ [1]M̂ [2]) ‖ · · · ‖ gℓ(N,M) ‖ g′(N,A,M)

where M̂ [1]M̂ [2] · · · M̂ [ℓ]
2n
←−M .

Definition 4 (IND-CPA). Let E be an encryption scheme. The IND-CPA
advantage of a distinguisher D relative to E is given by

Advcpa
E

(D) := ∆
D

(Ek ; $),

where k
$

← K and $ is as defined in Def. 3.

Theorem 1. Let E denote COBRA and let D be a distinguisher running in
time t and making at most q queries to E, each of length less than 2nℓ, then

Advcpa
E

(D) ≤
22(ℓ+ 1)2q2

2n
+Advprp

E (D′),

where D′ is a distinguisher with running time similar to D, making 4ℓq + 4q
queries.
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Proof. Let D be a distinguisher running in time t and making at most q queries
each of length less than 2nℓ. As a first step, we move from E to E, where the
underlying XE constructions are replaced by independent URFs, and h by Ω.
By Prop. 1:

∆
D

(Ek ; E) ≤
5(2ℓq + 2q)2

2n
+

2q2ℓ

2n
+Advprp

E (D′), (3)

where D′ has running time similar to D and makes at most 4ℓq + 4q queries.
Next, note that the fi’s and f ′ (cf. Def. 2) are independent functions, as their
underlying URFs βN

i , γN
i , δNi are independent functions. By Lem. 3:

∆
D

(E ; $) ≤ ∆
Dt

(f ′ ; g′) +

ℓ−1
∑

i=1

∆
Di

(fi ; gi). (4)

for some Dt that makes at most q queries of total length less than 2nℓ and Di

(for i ∈ {1, . . . , ℓ− 1}) that makes at most q queries (of fixed length). A bound
on ∆Di

(fi ; gi) for arbitrary i is derived in Lem. 4. In Lem. 5 we compute a
bound on ∆Dt

(f ′ ; g′). We find:

∆
D

(E ; $) ≤
q2(2ℓ+ 3)

2n
+

ℓ−1
∑

i=1

q22(2i+ 1)

2n
=

q2(2ℓ+ 3)

2n
+

q22(ℓ2 − 1)

2n
. (5)

The proof is completed by simplifying the obtained bound. ⊓⊔

Lemma 4. Let Di be a distinguisher making at most q queries, then

∆
Di

(fi ; gi) ≤
2(2i+ 1)q2

2n
.

Proof. The proof is similar to that of Lem. 2. We use that the inputs to the
URFs are polynomials of degree at most 2i+1, and that fi consists of two URFs
βN
i and γN

i . ⊓⊔

Lemma 5. Let Dt be a distinguisher making at most q queries each of length
less than 2nℓ, then

∆
Dt

(f ′ ; g′) ≤
(2ℓ+ 3)q2

2n
.

Proof. Without loss of generality, we may assume that the distinguisher does
not make repeat queries. Say that {(N1, A1,M1), . . . , (Ni, Ai,Mi)} is the query
history. We consider what happens on query (N∗, A∗,M∗).

Let Ui := Ω(Ai) and let Σi denote input to δNi

1 (see Fig. 4). Let U∗ and Σ∗

be the corresponding values for (N∗, A∗,M∗). We compute the probability that

U∗ ⊕ δN
∗

1 (Σ∗)⊕N∗ = Uj ⊕ δ
Nj

1 (Σj)⊕Nj (6)

for some j for which 1 ≤ j ≤ i.
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1. If A∗ 6= Aj then U∗ is independent of Uj ⊕ δ
Nj

1 (Σj)⊕ δN
∗

1 (Σ∗)⊕N∗ ⊕Nj ,
hence the probability that equation (6) is satisfied is not more than 1/2n.

2. If A∗ = Aj , then U∗ = Uj and we focus on the probability that

δN
∗

1 (Σ∗)⊕N∗ = δ
Nj

1 (Σj)⊕Nj . (7)

(a) If M∗ = Mj , then Σ∗ = Σj and equation (7) reduces to δN
∗

1 (Σ∗) ⊕

δ
Nj

1 (Σ∗) = N∗⊕Nj . Since we do not allow repeat queries N∗ 6= Nj , and
so this occurs with probability 1/2n.

(b) Say that M∗ 6= Mj , and let ρ∗ and ρj denote the output of the last call
to β made when processing M∗ and Mj , respectively. If ρ

∗ and ρj are
independent, then Σ∗ = Σj with probability 1/2n. If Σ∗ 6= Σj , then

δN
∗

1 (Σ∗) and δ
Nj

1 (Σj) are independent (and also independent of N∗ and
Nj), hence the probability of equation (7) being true is upper bounded
by 2/2n.
The probability that ρ∗ and ρj are not independent is upper bounded
by the probability of having a collision in the inputs to the last β call
(and only if M∗ and Mj are the same length), which is (2ℓ+ 1)/2n.

Putting our results together we get that

Pr(equation (6) holds) ≤ max

{

1

2n
,
2ℓ+ 1

2n
+

2

2n

}

=
2ℓ+ 3

2n
. (8)

This means that the probability that U∗⊕δN
∗

1 (Σ∗)⊕N∗ collides with any of the

previous Uj⊕δ
Nj

1 (Σj)⊕Nj is upper bounded by q(2ℓ+3)
2n . As long as the input to

δ2 is unique, the tag produced is uniform and independent of all previous values,
hence f ′ remains indistinguishable from g′. Summing over all queries, we get the
desired bound. ⊓⊔

4.4 Integrity

Definition 5. Let E be an AE scheme. The integrity advantage of a distin-
guisher D relative to E is given by

Advint
E (D) := ∆

D

(Ek,Dk ; Ek,⊥),

where k
$

← K and ⊥ is a function that responds with ⊥ on every query. We
assume that the distinguisher does not make queries of the form Dk(N,A,C, T ),
where (C, T ) = Ek(N,A,M) for some previously queried (N,A,M) and that it
does not query Ek twice under the same nonce.

Theorem 2. Let E denote COBRA and let D be a distinguisher running in time
t and making at most q queries to E and qf forgery attempts, each of length less
than 2nℓ, then

Advint
E (D) ≤

(3q + 1)qf
2n

+
22(ℓ+ 1)2q2

2n
+Advprp

E (D′),

12



where D′ is a distinguisher with running time similar to D, making 4ℓq + 4q
queries.

Proof. As with the proof of confidentiality, we use Prop. 1 to switch to E.
We first focus on adversaries with one forgery attempt, with (N∗, A∗, C∗, T ∗)

being the attempt. Let {(N1, A1,M1), . . . , (Nq, Aq,Mq)} denote the history of
queries made by the adversary to the encryption oracle, where (Ci, Ti) is the
output corresponding to (Ni, Ai,Mi) and each Ni is distinct. Let Ui := Ω(Ai),
U∗ := Ω(A∗), and let Σi denote the input to δNi

1 during the computation of
(Ni, Ai,Mi); define Σ∗ similarly. Note that

δNi

2

(

Ui ⊕ δNi

1 (Σi)⊕Ni

)

= Ti, (9)

and similarly for T ∗.
If

U∗ ⊕ δN
∗

1 (Σ∗)⊕N∗ 6= Ui ⊕ δNi

1 (Σi)⊕Ni (10)

for all i, then the input to δ2 is distinct from all previous inputs to δ2, hence the
output of δ2 from the forgery query is uniformly distributed and independent
of T ∗, which means that the forgery will be successful with probability at most
1/2n. Hence we focus on computing the probability that there is an i resulting
in a collision in the δ2 input.

Fix an i such that 1 ≤ i ≤ q. We compute the probability that

U∗ ⊕ δN
∗

1 (Σ∗)⊕N∗ = Ui ⊕ δNi

1 (Σi)⊕Ni. (11)

1. If A∗ 6= Ai, then U∗ is uniformly distributed and independent of Ui, hence
the probability that equation (11) is satisfied is bounded above by 1/2n.

2. If A∗ = Ai, then U∗ = Ui and we focus on the probability that

δN
∗

1 (Σ∗)⊕N∗ = δNi

1 (Σi)⊕Ni. (12)

(a) If C∗ = Cj , equation (12) reduces to

δN
∗

1 (Σ∗)⊕N∗ = δNi

1 (Σ∗)⊕Ni. (13)

Since A∗ = Aj , then either N∗ 6= Ni, in which case we only get a
successful forgery with probability 1/2n, or N∗ = Nj and T ∗ 6= Tj , in
which case we get a failed forgery attempt as well.

(b) Say that C∗ 6= Cj , and that they differ at the mth fragment, i.e. Ĉ∗[m] 6=

Ĉj [m]. We also assume that N∗ = Nj , because if N
∗ 6= Nj then the tags

are independent of each other since they are produced by independent

URFs δN
∗

2 and δ
Nj

2 .
Since N∗ = Nj , and Nj does not equal any of the other Ni, Σ∗ is
independent of allΣi for i 6= j. If C∗[2m−1] = Cj [2m−1], then C∗[2m] 6=
Cj [2m], hence the inputs to βN∗

m for C∗ and Cj are different. This means
thatΣ∗ = Σj with probability at most 1/2n, hence δ1(Σ

∗) = δ1(Σj) with

13



probability at most 2/2n. If δN
∗

1 (Σ∗) 6= δ
Nj

1 (Σj), then equation (12) is
satisfied with probability at most 1/2n since N∗ and Ni are independent
of the outputs of δ1. If C

∗[2m− 1] 6= Cj [2m− 1], we can apply the same
reasoning.

Putting the above results together, we get that the probability of equation (11)
being satisfied is bounded above by 3/2n. Hence, the probability that there exists
an i satisfying (11) is bounded above by 3q/2n. The probability that the forgery
is successful is thus bounded above by 3q/2n + 1/2n.

Generalizing to adversaries which can make up to qf forgery queries as ex-
plained in Andreeva et al. [4], we have our desired bound. ⊓⊔

5 Future Work

We shall implement COBRA and compare its software performance with GCM
and COPA. It is interesting to see how much of an overhead COBRA actually
has over GCM on a specific platform, possibly due to the Feistel network, larger
state, extra mask generation, and the reverse order of multplication and block
cipher call.
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A COBRA for Arbitrary-Length Messages

We use ciphertext stealing [31] in order to deal with messages of arbitrary length.
Let M be a message where M [1]M [2] · · ·M [2ℓ − 1]M [2ℓ] = M and |M [i]| = n
for 1 ≤ i < 2ℓ− 1.

A.1 ℓ > 1, |M [2ℓ − 1]| = n, and 0 < |M [2ℓ]| < n

We start by computing the ciphertext of M [1] · · ·M [2ℓ − 2] as is usually done
in COBRA, resulting in C[1] · · ·C[2ℓ− 2]. Let M∗ denote the rightmost |M [2ℓ]|
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bits of C[2ℓ− 2], and we write C[2ℓ− 2] = C ′[2ℓ− 2]M∗. Then we compute the
final ciphertext fragment C[2ℓ− 1]C[2ℓ] using M [2ℓ− 1]M [2ℓ]M∗ as our “new”
final message fragment, using different tweaks for the final block cipher calls.
The resulting ciphertext is

C[1] · · ·C[2ℓ− 3]C ′[2ℓ− 2]C[2ℓ− 1]C[2ℓ]. (14)

Fig. 5 shows a diagram of the process. Note that we can recover M∗ with just
knowledge of C[2ℓ− 1] and C[2ℓ]:

M [2ℓ]M∗ =
[

C[2ℓ]⊕ Ek,τ2(C[2ℓ− 1])
]

⊕
([

Ek,τ1

(

C[2ℓ]⊕ Ek,τ2(C[2ℓ− 1])
)

⊕ C[2ℓ− 1]
]

⊗ L
)

,

where Ek,τ1(x) := Ek(x⊕ 7 · 2ℓL′) and Ek,τ2(x) := Ek(x⊕ 7 · (2ℓL′ ⊕ L)).

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+ + + +

2ℓ−1L′

2ℓ−1L′

L

7 · 2ℓL′

7 · 2ℓL′

7 · L

M [2ℓ− 3] M [2ℓ− 2] M [2ℓ− 1] M [2ℓ] M∗

C[2ℓ− 3] C′[2ℓ − 2] M∗ C[2ℓ− 1] C[2ℓ]

× × ×

σ1 σ2

ρ1 ρ2

L L L

Fig. 5: Messages where the last block is not of full length, i.e. 0 < |M [2ℓ]| < n.
Here M∗ is “stolen” from ciphertext block C[2ℓ − 2] and used in the input to
the final fragment.

A.2 ℓ > 2 and 0 < |M [2ℓ − 1]| ≤ n

When there is no last block M [2ℓ], we replace it with the preceding ciphertext
block, C[2ℓ − 2]. Then we steal ciphertext M∗ of length |M [2ℓ − 1]| from the
ciphertext block C[2ℓ − 4] such that C[2ℓ − 4] = C ′[2ℓ − 4]M∗. The rest of the
computation is similar to the previous case (Sect. A.1) and is depicted in Fig. 6.

A.3 |M | ≤ 3n

The above methods only work for messages of length greater than 3n (otherwise
there is no ciphertext to steal from). We need to use different techniques in order
to deal with shortest messages.
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Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

2ℓ−2L′

2ℓ−2L′

L

2ℓ−1L′

2ℓ−1L′

L

7 · 2ℓL′

7 · 2ℓL′

7 · L

M [2ℓ− 5] M [2ℓ− 4] M [2ℓ− 3] M [2ℓ− 2] M [2ℓ − 1] M∗ C[2ℓ− 2]

C[2ℓ− 5] C′[2ℓ − 4] M∗ C[2ℓ− 3] C[2ℓ− 2] C[2ℓ− 1] C[2ℓ]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

L L L L L

Fig. 6: Messages where the last fragment is of length less than or equal to n, i.e.
0 < |M [2ℓ− 1]| ≤ n. Here M∗ is stolen from ciphertext block C[2ℓ− 4] and used
in the input to the final fragment together with ciphertext fragment C[2ℓ− 2].

For 2n < |M | ≤ 3n we can use a technique similar as to what is used in
COPA [3]. Instead of using XLS [26] which uses the inverse block cipher, we can
use HCH [11] in order to compute the output as follows:

C[1]C[2]T ′ ← E(M [1]M [2]) (15)

C[3]T ← HCH(M [3]T ′), (16)

where E denotes COBRA and the final output of the scheme is C[1]C[2]C[3]T .
For n < |M | < 2n we can use the tag-splitting method: we first compute

C[1]C[2]T ← E(M [1]M [2]10∗), (17)

then remove part of the tag so that the length of the output is equal to the
length of the input. Here, again, E is COBRA, except different tweaks must be
used from the case in which |M | = 2n.
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