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Abstract. It is well known that the classical three- and four-round Feistel con-
structions are provably secure under chosen-plaintext and chosen-ciphertext at-
tacks, respectively. However, irrespective of the number of rounds, no Feistel
construction can resist related-key attacks where the keys can be offset by a con-
stant. In this paper we show that, under suitable reuse of round keys, security
under related-key attacks can be provably attained. Our modification is simpler
and more efficient than alternatives obtained using generic transforms, namely
the PRG transform of Bellare and Cash (CRYPTO 2010) and its random-oracle
analogue outlined by Lucks (FSE 2004). Additionally we formalize Luck’s trans-
form and show that it does not always work if related keys are derived in an
oracle-dependent way, and then prove it sound under appropriate restrictions.

Keywords. Feistel construction, Luby–Rackoff, Related-key attack, Pseudoran-
dom permutation, Random oracle.

1 Introduction

Cryptographic algorithms deployed in the real world are subject to a multitude
of threats. Many of these threats are accounted for in the theoretical security
analysis carried out by cryptographers, but not all. Indeed, many documented
cases [32,15,14,39] show that theoretically secure cryptographic algorithms can
be vulnerable to relatively simple physical attacks, when these exploit imple-
mentation aspects that were abstracted away in the security analysis. For this
reason, an enormous research effort has been undertaken in recent years to
bridge the gap between physical security and theoretical security.

An important part of this effort has been dedicated to related-key attacks
(RKA), which were first identified by Knudsen and Biham [27,9] as an impor-
tant risk on implementations of block ciphers and symmetric-key cryptosys-
tems. The idea behind these attacks is as follows. The security of cryptographic
algorithms depends fundamentally on keeping secret keys hidden from attackers
for extended periods of time. For this reason, secret keys are typically stored and
manipulated in protected memory areas and dedicated hardware components. If
these mechanisms can be influenced by intrusive techniques (such as fault in-
jection [2]) an adversary may be able to disturb the value of a secret key and
observe results computed using the manipulated (likely correlated) key value.



Since the original work of Knudsen and Biham, there have been many re-
ported cases of successful related-key cryptanalysis [10,28,8], and notably of
the Advanced Encryption Standard (AES) [11,12]. These results led to the con-
sensual view that RKA resilience should be a standard design goal for low-level
cryptographic primitives such as block ciphers and hash functions. For example,
in the recent SHA-3 competition, candidates were analyzed with respect to such
attacks (c.f. the work of Khovratovich et al. [26]), which played an important
role in the selection process.

The importance of including RKA security as a design goal for basic crypto-
graphic components is further heightened by the fact that such low-level prim-
itives are often assumed to provide RKA security when used in higher-level
protocols. Prominent examples are the key derivation procedures in standard
protocols such as EMV [16] and the 3GPP integrity and confidentiality algo-
rithms [25], where efficiency considerations lead to the use of the same block
cipher under closely related keys. Similar assumptions arise in constructions of
tweakable ciphers [29], where a block cipher is called on keys which are offset
by XOR-ing tweak values.

PROVABLE RKA SECURITY. Bellare and Kohno [6] initiated the theoretical
treatment of security under related-key attacks by proposing definitions for RKA-
secure pseudorandom functions (PRFs) and pseudorandom permutations (PRPs),
and presenting possibility and impossibility results for these primitives. The
models proposed in [6] were extended by Albrecht et al. [1] to address the pos-
sibility of oracle-dependent attacks in idealized models of computation.

Various important positive results for provably RKA-secure constructions of
complex cryptographic primitives were subsequently published in the literature.
Bellare and Cash [4] obtained a breakthrough result by presenting a concrete
construction of an RKA-secure pseudorandom function based on standard com-
putational assumptions and in the standard model. Bellare, Cash, and Miller [5]
present a comprehensive treatment of RKA security for various cryptographic
primitives, focusing on the problem of leveraging the RKA resilience of one
primitive to construct RKA-secure instances of another. In particular, Bellare
et al. present a generic transformation in which an RKA-secure pseudorandom
generator can be used to convert instances of standard primitives such as dig-
ital signatures and identity-based encryption into RKA-secure ones. Concrete
constructions of RKA-secure public-key primitives were given by Wee and by
Bellare et al. in [42,7].

FEISTEL NETWORKS. A Feistel network [17,18] is a construction that permits
obtaining an efficiently computable and invertible permutation from an effi-
ciently computable function. The network is a cascade of simple Feistel per-
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mutations, each relying on a round function (f , g, and h) mapping bit strings of
length n to outputs of the same length. Here the input and output are shown as
tuples (L,R) and (L′, R′), where each component is a string of length n. For
any number of rounds, these networks provide an invertible permutation over
bit strings of length 2n. Figure 1 shows an example of a Feistel network with
three rounds.
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Fig. 1: A three-round Feistel network.

Feistel networks (and generalized variants such as those discussed by Hoang
and Rogaway in [23]) have been extensively used in the construction of sym-
metric cryptosystems (and even asymmetric ones such as RSA-OAEP), since
the notable case of the Data Encryption Standard (DES) in the 1970s [18]. In
particular, a multitude of block ciphers include Feistel-like constructions in their
design, including GOST, MYSTY1, Skipjack, BEAR / LION, CAST-256, RC6,
and MARS [38]. For this reason, the security properties of Feistel networks re-
ceived significant attention in the last decades.

SECURITY OF THE FEISTEL CONSTRUCTION. In their seminal paper, Luby and
Rackoff [30] showed that instantiating the round functions in a Feistel construc-
tion with independently keyed secure PRFs is sufficient to obtain a secure PRP.
For three rounds of cascading, this result applies when the adversary has access
to results of forward computations (i.e., under chosen-plaintext attacks), and for
four rounds, the result holds even if the adversary can additionally observe the
results of inverse computations (i.e., under chosen-ciphertext attacks).

Following Luby and Rackoff’s result, many subsequent works looked at the
security of Feistel networks and generalized variants thereof. Important results
were obtained with respect to the efficiency of the construction, for example by
reducing the necessary key material (c.f. the work of Patarin [36]) and by weak-
ening the security assumptions for some of the round functions as in the work of
Naor and Reingold in [35]. In a different direction, the security offered by Feis-
tel networks with increasing numbers of rounds was precisely characterized in
a sequence of works by Vaudenay [41], Maurer and Pietrzak [33], Patarin [37]
and Hoang and Rogaway [23]. Holenstein, Künzler, and Tessaro [24] used the
Feistel construction with fourteen rounds to establish the equivalence of the
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random-oracle and the ideal-cipher models in a broad range of applications via
the indifferentiability framework.

RKA SECURITY OF FEISTEL NETWORKS. Despite this large body of work on
the provable security of the Feistel construction and the positive results on the
RKA security of advanced cryptographic primitives referred above, the RKA
security of the Feistel construction has received little attention. Indeed, to the
best of our knowledge, only the work of Bellare and Kohno [6] touches upon
this topic, where a strong negative result is shown: the Feistel construction irre-
spective of the number of rounds is vulnerable to related-key attacks, provided
that the attacker is able to modify as little as a single bit in the key used in the
last round function.3

Referring to Figure 1, the attacker would proceed as follows. It would first
observe the output (L′1, R

′
1) of the permutation computed on an input (L,R).

Then, the adversary would modify round function h to some other function h′ by
manipulating its key, and observe the output (L′2, R

′
2) computed over the same

input. The adversary can now determine whether it is interacting with an ideal
permutation or not: If interacting with Feistel, the outputs will always satisfy
L′1 = L′2, whereas in for an ideal (keyed) permutation the two outputs will be
different with overwhelming probability. This attack is possible whenever the
adversary is able to independently tweak the round function of the output stage
in the network, independently of the number of rounds, and even if the round
functions are instantiated with RKA-secure PRFs.

This vulnerability is relevant for practical applications of Feistel construc-
tions, since many important cryptanalytic results such as those presented by
Biryukov et al. [11,12] can be described as utilizing related keys that are de-
rived by XOR-ing the original key with a constant. This in particular permits an
attacker to selectively modify the secret key for the output round in a Feistel
network and break the security of the construction. In this work we initiate the
treatment of provable RKA security of the Feistel constructions. Our main result
is to prove is that specific instances of Feistel networks that reuse round keys
offer intrinsic RKA security against practically relevant classes of RKD func-
tions, and thus overcome the negative result by Bellare and Kohno described
above. We now present our contributions in more detail.

CONTRIBUTIONS. Lucks [31] proposes a general solution to the RKA security
of any cryptographic primitive in the random-oracle model: hash the secret key
before applying it to the cryptosystem. The intuition is that, modeling the hash
function as a random oracle, any modification to the secret key will result in a

3 Note that this does not contradict the aforementioned fourteen-round indifferentiability result
as the RKA security game is multi-stage.
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new independent key to be used in the cryptosystem, confining the RKA adver-
sary to standard attacks. The RKA-secure PRG transform of Bellare, Cash, and
Miller (BCM) [5] that we discussed above can be seen as a special standard-
model analogue of this transform. Somewhat surprisingly, we show that the
original random oracle transform does not always result in an RKA-secure con-
struction. We amend this by first showing that, under certain restrictions on the
RKD set, the random oracle is an RKA-secure PRG, and then extending the
BCM result to the random-oracle model. The set of necessary restrictions is
permissive enough to include offsetting keys by constants (even if those keys
were hashed!) as a particular case. This solution, however, in addition to relying
on strong assumptions on the hash function, gives rise to decreased efficiency
with respect to the original primitive.

Moreover, the above result only applies to a transformed construction and
says nothing about the RKA security of Feistel constructions (which could be
present in the construction of the hash function itself!). We therefore revisit the
Bellare–Kohno (BK) negative result and complement it by characterizing the
class of RKA-attacks that can be sustained by three and four rounds Feistel
networks with independent round keys (i.e., the original Luby–Rackoff con-
structions). The class of tolerated attacks is highly restrictive and, in particular,
it excludes the XOR-with-constants set. (This was to be expected, since the BK
attack can be launched using these RKD functions.)

We next consider variants of Feistel constructions in which the keys to round
functions in different stages of the network may be reused. These variants were
already proposed in the literature (c.f. the work by Patarin [36]) due to the effi-
ciency and security benefits of reducing the necessary secret key material. How-
ever, we observe that key reuse has the added effect of limiting the power of an
RKA-adversary in targeting individual round keys. We build on this intuition to
obtain our main results: we show that Feistel networks with three (respectively
four) rounds can be proven CPA (respectively CCA) RKA secure by relying on
an RKA-secure PRF and using specific key assignments that reuse some of the
round keys.

Intuitively, our selection of key reusing assignments can be described as fol-
lows. It is well known that reusing the same keys in all rounds of the Feistel
network or, more generally, any palindromic assignment of the keys, leads to
totally insecure constructions. Also, the BK attack rules out key assignments
where the key to the output round (in both forward and inverse computations)
can be independently thwarted. These restrictions leave few plausible key as-
signments for intrinsic RKA security of three- and four-round Feistel networks.
From these candidates we selected two specific assignments based on two PRF
keys K1 and K2: we consider the key assignment (K1,K2,K2) for the three-
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round variant, and the (K1,K2,K1,K2) key assignment for the four-round vari-
ant. We prove that the three-round variant is CPA secure and that the four-round
variant is CCA secure, both in the RKA setting, assuming that the underlying
PRF is RKA secure, and that the RKD set satisfies natural restrictions akin to
those adopted, e.g., in [6].

Our results require no other modification to the original constructions in ad-
dition to the key assignment and therefore come with minimal modifications to
deployed implementations.4 Put differently, we are able to prove the RKA secu-
rity of the three-stage (CPA) and four-stage (CCA) Luby–Rackoff constructions,
whilst reducing the amount of key material and therefore potentially improving
the efficiency of the resulting implementations.

For practical applications, the most important aspect of our results is per-
haps that they cover the standard classes RKD functions considered in litera-
ture, namely those which offset the key by XOR-ing a constant. However, for
the sake of generality our presentation relies on a slightly more abstract frame-
work, where we characterize the covered classes of covered RKD functions by
defining a set of sufficient restrictions that they must satisfy. This approach also
enables a clearer and more modular presentation. For example, as an interme-
diate step, we formalize a notion of multi-key RKA security that may be of
independent interest, and relate it to the standard single-key variant.

From a foundational perspective, our result can be seen as one bringing
RKA security analysis to the classical constructions of pseudorandom objects.
Goldberg and Liskov [19] study this question for building RKA-secure pseudo-
random generators (where the seed is interpreted as the key) from one-way func-
tions via Goldreich–Levin [20]. However, the natural questions of transform-
ing RKA-secure PRGs to RKA-secure PRFs via the GGM construction [21] or
RKA-secure PRFs to PRPs via the Luby–Rackoff constructions [30] have not
been addressed yet. Our results can been seen as giving a positive answer to the
latter question.

2 Preliminaries

NOTATION. We write x ← y for the action of assigning the value y to the
variable x. We write x1, . . . , xn←$ X for sampling x1, . . . , xn from a finite set
X uniformly at random. If A is a probabilistic algorithm we denote the action
of running A on inputs x1, . . . , xn with independently chosen coins, and as-
signing the result to y1, . . . , yn by y1, . . . , yn←$ A(x1, . . . , xn). For a vector
x = (x1, . . . , xn), we define x|i = xi. We let [n] := {1, . . . , n}. A func-
tion ε(λ) is negligible if |ε(λ)| ∈ λ−ω(1). PPT as usual abbreviates probabilistic
polynomial-time.

4 Albeit imposing a stronger security assumption on the underlying PRF.
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KEYED FUNCTIONS AND PERMUTATIONS. Let Domλ, Rngλ, and KSpλ be
three families of finite sets parametrized by a security parameter λ ∈ N. We
denote the set of all functions ρ : Domλ −→ Rngλ by Func(Domλ,Rngλ).
A keyed function is a set of functions in Func(Domλ,Rngλ) indexed by the
elements of the key space KSpλ. We denote the set of all keyed functions
by Func(KSpλ,Domλ,Rngλ). By the ideal keyed function, we mean the fam-
ily of distributions corresponding to choosing a function uniformly at random
from Func(KSpλ,Domλ,Rngλ). The random oracle is the ideal keyed function
where KSpλ for each λ ∈ N contains a single key. We denote the set of all
permutations on Domλ by Perm(Domλ). Note that each permutation uniquely
defines its inverse permutation (which is also a member of this set). We define
a family of keyed permutations analogously by indexing a set of permutations
according to keys in some space KSpλ. We denote the set of all such keyed per-
mutations by Perm(KSpλ,Domλ). The ideal keyed permutation (a.k.a. the ideal
cipher) is defined as the family of distributions that choose a random element of
Perm(KSpλ,Domλ).

PSEUDORANDOM FUNCTION AND PERMUTATION FAMILY. A pseudorandom
function family PRF := {PRFλ}λ∈N is a family of efficiently implementable
keyed functions, i.e., functions PRFλ : KSpλ×Domλ −→ Domλ, where PRPλ
can be computed in polynomial time in λ, together with an efficient procedure
for sampling of keys and domain points which by a slight abuse of notation we
denote by KSp(1λ) and Dom(1λ), respectively. A pseudorandom permutation
family is defined analogously with the extra requirement that the inverse of each
permutation in the family is also efficiently computable.

3 RKA-Secure Pseudorandom Functions and Permutations

In this section we introduce the formal framework in which we will analyze the
RKA security of Feistel constructions. We begin by formalizing the notion of
a family of related-key deriving (RKD) functions, which will parametrize our
RKA security notions. Subsequently we introduce a generalization of the stan-
dard security model for RKA-secure pseudorandom functions and permutations
to a scenario where multiple secret keys may be present in the system and influ-
ence the secret key derived by an RKD function. This is the natural setting for
analyzing Feistel networks, as they use multiple instances of the same PRF.

FAMILY OF RKD SETS. A family of n-ary related-key deriving (RKD) sets Φ is
a family of RKD sets {Φλ} consisting of RKD functions φ (viewed as circuits)
which map an n-tuple of keys in some key space KSpλ to a new key in KSpλ,
i.e., φ : KSpnλ → KSpλ. Throughout the paper we assume that membership in
any RKD set can be efficiently decided.
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MULTI-KEY RKA SECURITY. Let PRP := {PRPλ : KSpλ × Domλ −→
Domλ} be a PRP family and let Φ := {Φλ} be a family of n-ary RKD sets
where the implicit key space of the RKD functions in Φλ is KSpλ. Let game
RKCCAPRP,A,Φ(1λ) be as shown in Figure 2. We say that PRP is Φ-RKCCA
secure if the advantage of any legitimate PPT adversary A defined as

Advrkcca
PRP,A,Φ(λ) := 2 · Pr

[
RKCCAPRP,A,Φ(1λ)

]
− 1

is negligible as a function of λ. An adversary is legitimate if it queries the RKFN

and RKFN−1 oracles with functions φ in Φλ only.5 We say PRP is Φ-RKCPA
secure if the above advantage is negligible for any legitimate PPT adversary A
that never queries its RKFN−1 oracle.

RKCCAPRP,A,Φ(1λ):
b←$ {0, 1}
π←$ Perm(KSpλ,Domλ)

K1, . . . ,Kn←$ KSp(1λ)

b′←$ ARKFN,RKFN−1

(1λ)
Return (b′ = b)

RKFN(φ, x):
K′ ← φ(K1, . . . ,Kn)
If b = 0 Return π(K′, x)
Return PRP(K′x)

RKFN−1(φ, x):
K′ ← φ(K1, . . . ,Kn)
If b = 0 Return π−1(K′, x)
Return PRP−1(K′, x)

Fig. 2: Game defining the Φ-RKCCA security of a PRP.

In the full version [3] of this paper we prove that under the following natural
(but strong) restriction on RKD sets, the single-key and multi-key RKA models
are equivalent: we impose that any φ ∈ Φλ is of the form φ : (K1, . . . ,Kn) 7→
ψ(Ki), where i ∈ [n] and ψ : KSpλ −→ KSpλ is a unary RKD function.

REMARK. The multi-key RKA model for PRFs (under chosen-plaintext attacks)
is recovered when π is sampled from Func(KSpλ,Domλ,Rngλ) and oracle
RKFN−1 is no longer present. When n = 1, we recover the single-key RKA
model for PRPs and PRFs as in [6]. The standard model for PRPs/PRFs is one
where the RKD sets Φλ contain the identity functions idλ : KSpλ −→ KSpλ;
K 7→ K only. The above definition is not the strongest multi-key security model
that one can envision. (For instance consider a model where the adversary can
choose the arity n.) However, since the applications that we will be consider-
ing in this paper have a fixed number of keys, the simpler definition above is
sufficient for our purposes.

4 The Random-Oracle Transform
One way to transform a standard pseudorandom permutation to one which re-
sists related-key attacks is to hash the PRP key before using it in the construc-
tion [31]. We call this the “Hash-then-PRP” transform. Bellare and Cash [4,

5 Throughout the paper, we assume all the adversaries are, in this sense, legitimate.
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RKAPRG,A,Φ(1λ):
ρ←$ Func(Dom,Rng)
H←$ Func(Dom′,Rng′)
K1, . . . ,Kn←$ Dom(1λ)
b←$ {0, 1}
b′←$ ARKFN,RO(1λ)
Return (b′ = b)

RKFN(φ):
K′ ← φH(K1, . . . ,Kn)
If b = 0 Return ρ(K′)
Return PRGH(K′)

RO(X):
Return H(X)

Fig. 3: Game defining the Φ-RKA security of a PRG. An adversary is legitimate if it queries
RKFN with a φ ∈ Φλ only.

Theorem 6.1] prove the soundness of this approach in the standard model for
a restricted class of RKD functions, when the hash function is replaced by an
RKA-secure pseudorandom generator. At first sight it appears that an ideal hash
function (i.e., the random oracle) should be a valid instantiation of this construc-
tion. However, in the random-oracle model (ROM) the security proof should be
carried out in a setting where all parties have access to the random oracle (which
models the hash function). In this section we consider the implications of this
observation, and show that the random oracle does not always give rise to a good
instantiation of the construction. We provide a set of sufficient conditions that
allows us to formally prove that the heuristic transform is sound in the ROM.

RKA-SECURE PRG IN ROM.6 We define an oracle RKD function to be a
circuit which contains special oracle gates, and we write an n-ary oracle RKD
function as φH : KSpn → KSp. Families of oracle RKD sets are defined in the
obvious way.

Let PRGH : Dom −→ Rng be a pseudorandom generator in the ROM. Let
game RKAPRG,A,Φ be as shown in Figure 3. We say that PRG is Φ-RKA secure
if the advantage of any PPT adversary A as defined below is negligible in λ.

Advrka
PRG,Φ,A(λ) := 2 · Pr

[
RKAPRF,A,Φ(1λ)

]
− 1 .

The question that we wish to answer is under which conditions does the random
oracle itself (i.e., when PRGH(X) := H(X)) constitute an RKA-secure PRG.
The attack we now show and the ensuing discussion demonstrate that this is only
the case if we exclude certain forms of oracle-dependent related-key attacks.

THE ATTACK. Consider a unary RKD set containing the identity function and
an oracle-dependent RKD function φH [1]: Φ := {id : K 7→ K, φH : K 7→
H(K)}. Here, H denotes the random oracle. Now consider an adversary that
first requests a PRG value of the seed by querying id to the RKFN oracle. It
receives as response a value y which is eitherH(K), when b = 1, or ρ(K) when

6 We remark that this game can also be seen as extension of correlated-input secure hashing [22]
to the random-oracle model.
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b = 0, where ρ is an independent random oracle. The adversary now queries y
to RO to get a new value z which is either H(H(K)) or H(ρ(K)). Finally, the
adversary queries φH to RKFN to get a value z′ which is either H(H(K)) or
ρ(H(K)). Now, when b = 1, then z = z′ with probability 1. When b = 0 the
values z and z′ would only match if H(ρ(K)) = ρ(H(K)). The probability of
this event is negligible, so the adversary wins with overwhelming probability by
returning (z = z′).

We now define a sufficient set of restrictions on oracle RKD sets that allow
us to prove a ROM analogue of the result by Bellare and Cash [4]. Intuitively the
restrictions are strong enough to rule out attacks that follow the above pattern.

OUTPUT UNPREDICTABILITY. A family of oracle RKD sets Φ is output unpre-
dictable (UP) if the following definition of advantage is negligible in λ for any
PPT adversary A outputting a list of RKD functions and a list of keys.

Advup
A,Φ(λ) := Pr [∃ (φ,K∗) ∈ L1 × L2 s.t. φH(K) = K∗ :

H←$ Func(KSp,KSp);K←$ KSpn; (L1, L2)←$ AH(1λ)
]

CLAW-FREENESS. A family of oracle RKD sets Φ is claw-free (CF) if the fol-
lowing definition of advantage is negligible in λ for any PPT adversary A out-
putting a list of RKD functions.

Advcf
A,Φ(λ) := Pr [∃ φH1 , φH2 ∈ L s.t. φH1 (K) = φH2 (K) ∧ φH1 6= φH2 :

H←$ Func(KSp,KSp);K←$ KSpn; L←$ AH(1λ)
]

QUERY INDEPENDENCE. A family of oracle RKD sets Φ is query independent
(QI) if the following definition of advantage is negligible in λ for any PPT ad-
versary A outputting a list of RKD functions.

Advqi
A,Φ(λ) := Pr [∃φH1 , φH2 ∈ L s.t. φH1 (K) ∈ Qry[φH2 (K)] :

H←$ Func(KSp,KSp);K←$ KSpn; L←$ AH(1λ)
]

Here, Qry[φH2 (K)] denotes the set of queries placed to H by φH2 when run on a
vector of keys K. Note that RKD functions φH1 and φH2 need not be distinct.

We recover the standard (non-oracle) definition of output unpredictability
and claw-freeness [6], when the RKD functions do not make any oracle queries:
the random oracle can be simulated using lazy sampling. Query independence
is trivially satisfied for such non-oracle RKD functions.

We now prove that the random oracle is an RKA-secure pseudorandom gen-
erator under the above restrictions on the oracle RKD set, and then build on this
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result to establish security of the Hash-then-PRP transform in the random ora-
cle model. Looking ahead, this result allows us to take a Luby–Rackoff PRP and
generically transform it to obtain an RKA-secure PRP. In subsequent sections
we will explore less intrusive, more efficient alternatives that take advantage of
the inner structure of the Feistel construction.

Theorem 1 (RKA security of the random oracle). Let Φ be a family of oracle
RKD sets. For any Φ-RKCCA adversaryA against the pseudorandom generator
PRGH(K) := H(K), there are adversaries A1, A2, and A3 such that

Advrkcpa
PRG,A,Φ(λ) ≤ Advup

A1,Φ
(λ) + 2 ·Advcf

A2,Φ(λ) + Advqi
A3,Φ

(λ) ,

Proof (Sketch). We give only the intuition; the details of the proof can be found
in the full version. Assume, without loss of generality, that the adversary never
places repeat queries to its RKFN and RO oracles. Let Game0 denote the RKA
game where H is used in the RKFN oracle (i.e., the challenge bit is 1).

We modify Game0 to Game1 by implementing the H oracle in the RKFN

oracle in a forgetful way (i.e., we won’t keep track of repetitions), but leaving
it unchanged for the explicit queries made through RO and the indirect queries
placed by the oracle RKD functions. Note that in this game the adversary re-
ceives independently and uniformly distributed strings from either of its oracles.

Games Game0 and Game1 are identical unless one of the following events
takes place: 1) A repeatH query is placed as a result of an explicit RO query and
an output of an oracle RKD function queried to RKFN: this leads to a violation
of the output unpredictability. 2) There is a repeat query to H as a result of two
distinct RKFN queries: this leads to a claw-freeness break. 3) There is a repeat
H query as a result of a query to RKFN and an indirect query placed by an
oracle RKD function to H: this breaks the query-independence property.

We now modify Game1 to Game2 by changing the forgetful oracle and im-
plementing it using an independently chosen (non-forgetful) random oracle. The
games are identical unless there is a claw among the RKD functions queried to
RKFN, which by the above analysis happens with negligible probability. Finally
note that Game2 is identical to the RKA game conditioned on b = 0.7 ut

In the full version we state and prove the analogue of the RKA-secure PRG
transform of Bellare, Cash, and Miller [5], which in combination with Theo-
rem 1 establishes security of the Hash-then-PRP transform in the random oracle
model.

7 This transition my be avoided by observing that Game0 and Game2 are also identical until the
same bad events which separate Game0 and Game1.
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5 The Feistel Construction

In this section we recall the formal definitions related to the Feistel construc-
tions and introduce the notion of key assignment. We also establish a general
result that permits shifting the analysis of Feistel networks with any number of
rounds where the round functions are instantiated with an RKA-secure PRF to
a more convenient setting where the round functions are instantiated with the
ideal keyed function.

FEISTEL NETWORKS. The one-round Feistel construction and its inverse with
respect to a function f is defined as

F[f ](L,R) := (R,L⊕ f(R)) and F−1[f ](L,R) := (R⊕ f(L), L) .

The n-round Feistel construction with respect to functions f1, . . . , fn is defined
recursively via the following equations (see Figure 1 for a pictorial representa-
tion).

F[f1, . . . , fn](L,R) := F[f2, . . . , fn](F[f1](L,R)) ,

F−1[f1, . . . , fn](L,R) := F−1[f1, . . . , fn−1](F−1[fn](L,R))

Typically, functions fi(·) are implemented using a PRF under independently
generated keysK1, . . . ,Kn. In our analysis we will also consider the conceptual
setting in which these functions are instantiated by an ideal keyed function ρ,
again under independently generated keys K1, . . . ,Kn. In this case we denote
the constructions by FPRF[K1, . . . ,Kn] and Fρ[K1, . . . ,Kn], respectively.

KEY ASSIGNMENT. A key assignment is a family of circuits κλ : KSpλ −→
KSpn, where KSp is an arbitrary key space. Given κ := {κλ} and K ∈ KSpλ,
we consider the associated n-round Feistel construction FPRF[κ(K)]. When the
key K ∈ KSpλ is randomly generated, we denote the construct by FPRF[κ]. For
example, the Hash-then-PRP transform of the previous section can be viewed as
FPRF[H]. We are, however, interested in simple key assignments of the form κ :
(K1, . . . ,Km) 7→ (Ki1 , . . . ,Kin), where i1, . . . , in are fixed indices in [m]. We
will therefore compactly write the Feistel construction associated to the simple
key assignment above by FPRF[i1, . . . , in]. For example, when κ(K1,K2) :=
(K1,K2,K2), the associated Feistel construction is written as FPRF[1, 2, 2].

When the round functions in a 3-round Feistel construction are instantiated
with a PRF under independent keys, we obtain the classic CPA-secure Luby–
Rackoff pseudorandom permutation. When 4 rounds are used, we obtain its
CCA-secure counterpart. As stated in the introduction, Bellare and Kohno [6]
observed that if an adversary can arbitrarily tamper with the key used in the last
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round of any Feistel network, then a successful related-key attack is possible
(even if the underlying PRF is RKA secure).

As discussed in the previous section, by applying the Hash-then-PRP trans-
form to the Luby–Rackoff construction, we can obtain a PRP which resists
related-key attacks. The underlying PRG can be instantiated in the standard
model via an RKA-secure PRF (e.g., that used in the Luby–Rackoff construc-
tion) as suggested in [4] or, outside the standard model, using random oracles.

Both transformations, however, come with two major drawbacks. The first
drawback is the performance penalty. The standard-model approach incurs a
total of six PRF computations in the 3-round network: 3 calls to generate the
keys and another 3 to compute the PRP.8 (The total number of calls is eight for
the CCA case.) Note that the amortized complexity of the construction cannot be
brought down back to 3 by storing the generated keys, as related-key attacks can
be applied to these keys. In the ROM transform (on top of strong assumptions)
the penalty will be smaller if the hash function is more efficient than the PRF.
However, this leads to a second drawback: the transform is software/hardware
intrusive, as extra circuitry for the implementation key-derivation procedure
need to be added.

For these reasons, in the remainder of the paper, we will consider more
efficient alternatives to obtaining RKA-secure PRPs by exploring directly the
structure of Feistel constructions via simple key assignments. Before doing so,
we prove a general theorem that allows us to move from the security analysis of
a Feistel construction with respect to an RKA-secure PRF to a setting in which
the round functions are instantiated by the ideal keyed function. Our result holds
for any number of rounds and any key assignment.

Theorem 2 (Computational RKA transition). Let Φ be a family of RKD sets
containing functions of the form KSpm −→ KSpm and let κ : KSpm −→ KSpn

be a key assignment. Define Ψ := ∪i(κ ◦ Φ)i, where (κ ◦ Φ)i is the RKD set
obtained by composing function in Φ by κ on the right and then projecting to i-
th component for 1 ≤ i ≤ n. Let ρ denote the ideal keyed function, and let PRF
denote be a pseudorandom function. Then for any PPT adversary A against the
Φ-RKCCA security of FPRF[κ], there is an adversary B against the Ψ-RKCPA
security of PRF such that

Advrkcca
FPRF[κ],A,Φ(λ) ≤ Advrkcca

Fρ[κ],A,Φ(λ) + Advrkcpa
PRF,B,Ψ(λ) .

An analogous result holds for Φ-RKCPA adversaries.

8 The overall tightness of security obtained via [4, Theorem 6.1] is also worse than what we
obtain here, although it is possible that it can be improved via a direct analysis.
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Proof (Sketch). We start with the Φ-RKCCA game for FPRF[κ] and replace all
n rounds function in the Feistel construction with an ideal keyed function. Any
change in an adversary A’s advantage in the two games can be used to break
the (multi-key) Ψ-RKCCA security of PRF via an adversary B. Algorithm B
runs A and answers its forward queries to the Feistel construction as follows.
On input (φ, x) where φ ∈ Φ, algorithm B sets ψ1 := (κ ◦ φ)|1 and calls the
RKFN oracle on (ψ1, x) to get x1. It then sets ψ2 := (κ ◦ φ)|2, queries RKFN

on (ψ2, x1) to get x2. Algorithm B continues in this way for all n rounds and
returns the final output. Backward queries can be also handled similarly using
RKFN in the reverse direction. Clearly, according to the challenge bit b used in
the Ψ-RKCPA game, B simulates the Φ-RKCCA game with the same challenge
bit b for algorithm A. ut

6 CPA Security: The 3-Round Constructions

As we discussed in the Introduction, no palindromic assignment of keys in a
three-round Feistel construction can result in a CPA-secure PRP, since the con-
struction in the forward direction can be used to compute inverses, and a trivial
distinguishing attack emerges. Moreover, if the key used in the third round is in-
dependent of those used in first and second rounds, then the BK attack applies.
Under these restriction, for simple key assignments and up to relabeling of the
indices, we are left with only one 3-round construction which can potentially
achieve CPA security under related-key attacks: FPRF[1, 2, 2].

The main proof of this section is an information-theoretic argument showing
that Fρ[1, 2, 2] is Φ-RKCPA secure for Φ’s which are claw-free and switch-free.
Combined with Theorem 2 in the previous section, this implies that FPRF[1, 2, 2]
offers intrinsic RKA-resilience, in the sense that it permits leveraging the RKA-
security properties of its underlying PRF.

For the security proof in this and the next sections we need to rely on an
additional restriction on RKD sets.

SWITCH-FREENESS. A family of RKD sets Φ with arity n > 2 is called switch-
free (SF) if the advantage of any PPT adversaryA as defined below is negligible
as a function of λ.

Advsf
A,Φ(λ) := Pr [(∃φ1, φ2 ∈ L)(∃i 6= j ∈ [n]) φ1(K)|i = φ2(K)|j :

K←$ KSpn; L←$ A(1λ)
]

We note that the switch-free and claw-free properties are in general incom-
parable. Consider, for example, the set consisting of id and a function which
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agrees with id on all but one point. This set is switch-free but not claw-free. Con-
versely, consider the set consisting of id and the map (K1,K2) 7→ (K2,K1).
This set is claw-free but not switch-free.

Theorem 3 (Fρ[1, 2, 2] security). Let Φ be a family of RKD sets. The Fρ[1, 2, 2]
construction is Φ-RKCPA secure in the ideal keyed function model if Φ is claw-
fee and switch-free. More precisely, for every Φ-RKCPA adversary A placing
at most Q(λ) queries to RKFN, there exist adversaries B1 and B2 such that

Advrkcpa
Fρ[1,2,2],A,Φ(λ) ≤ Adv

rf/rp
A,Φ (λ)+2Advsf

B1,Φ(λ)+4Advcf
B2,Φ(λ)+

25Q(λ)2

|Domλ|
.

Proof (Intuition). We give a high-level description of the proof and refer the
reader to the full version for the full details. We assume, without loss of gener-
ality, that the adversary is non-repeating in the sense that it not place redundant
repeat queries to its oracle. We start with the Φ-RKCPA game, and consider an
modified game where the round functions are implemented as follows. The first
round is implemented using a consistent ideal keyed function (as in the original
construction). The second and third round functions, however, will be forget-
ful and return independent random values on each invocation irrespective of the
input values. Note that the outputs of the network computed according to this
game are random, and, by an appropriate strengthening of the classical PRP/PRF
switching lemma (given in the full version), they are also indistinguishable from
an ideal keyed permutation. Furthermore, in this game the values of the outputs
of the first round function remain hidden as they are masked by random values
generated in the third round.

Now the game above differs from the original CPA game due to inconsis-
tencies occurring in computing round function values both across and within
the same round, when the adversary is able to cause collisions in round function
inputs in the original CPA game that are ignored in the game above. There are
five such pairs of inconsistencies possible (we keep track of queries to the first
round, so inconsistencies wont happen here). If there is a collision in inputs,
which include the keys, to the first and second or first and third rounds, then
the keys collide and this event leads to a violation of switch-freeness. Now sup-
pose the inconsistency is due to a collision between the inputs to the third round
function. Since the outputs of the second round function are randomly chosen
at each invocation, this event happens with probability roughly Q(λ)2/|Domλ|
by the birthday bound. Collisions between the inputs to the second and third
rounds also happen with negligible probably as the outputs of the first round
remain hidden from the adversary. Finally, we are left with collisions in the in-
puts to the second round function. Note that this means that the keys input to
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this function are identical. Now if the keys or right halves of the inputs used
in the first round in the two colliding queries were different, then the outputs
of the first round function would be random and independent, and a collision
would happen with a negligible probability (as first-round outputs are hidden).
If the keys and right halves were identical, a collision can only take place if the
left halves are also identical. However, due to the non-repeating condition, in
this case we must have that the queried RKD functions are distinct, and conse-
quently a claw in the RKD set is discovered. ut

We emphasize that we do not claim the switch-free and claw-free restric-
tions are necessary for non-existence of attacks. On the other hand, these re-
strictions are akin to those adopted in previous works on RKA security, and do
not overly constrain the practical applicability of our results. For example, the
n-ary RKD sets for XOR-ing with constants defined by

Φ⊕m := {φC1,...,Cm : (K1, . . . ,Km) 7→ (K1 ⊕ C1, . . . ,Km ⊕ Cm) :

(C1, . . . , Cm) ∈ KSpm}

can be easily shown to satisfy these restrictions. Unpredictability follows from
the fact that each map in the set induces a permutation over the keys (and hence
output distribution is uniform). For claw-freeness suppose we are given two
distinct RKD functions. Suppose they differ in their i-th component, i.e., Ci 6=
C ′i. Then, since the keys Ki and Kj are chosen independently and uniformly
at random, the probability that the i-th output keys match, i.e., that Ki ⊕ Ci =
Kj ⊕ C ′i, is negligible. Switch-freeness follows from a similar argument. Note
finally that the restrictions needed for the reduction to the RKA security of the
underlying PRF are easily shown to be satisfied by the above set, as the key
assignment is simple. We obtain the following corollary.

Corollary 1. FPRF[1, 2, 2] is a Φ⊕2 -RKCPA-secure pseudorandom permutation,
if PRF is a Φ⊕1 -RKCPA-secure PRF.

In the full version we characterize the RKA security of the original three-
round Luby–Rackoff construction, where three independent round keys are used.

7 CCA Security: The 4-Round Constructions

It is well known that the Fρ[1, 2, 3] construction is CCA insecure. For exam-
ple, the attacker can proceed as follows: 1) Choose arbitrary L,R,L′, query
RKFN(L,R) to obtain C1 and query RKFN(L′, R) to obtain C2; 2) Query
RKFN−1(C2 ⊕ (0, L⊕ L′)) to obtain C3; 3) Check if (C1 ⊕ C2 ⊕ Swap(C3))
is same as R. The same attack applies to all Feistel networks with three rounds,
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independently of the key assignment, and so there is no hope that such construc-
tions can achieve any form of CCA security.

In this section we investigate the CCA security of 4-round constructions
under related-key attacks. Due to the generic related-key attacks that we listed
in the previous section (insecurity of palindromic key assignment and tamper-
ing with the last key), and the fact the in the CCA model the construction
can be accessed in both the forward and backward directions, the only can-
didates than can potentially satisfy RKCCA security are: Fρ[1, 1, 2, 1], its in-
verse Fρ[1, 2, 1, 1], Fρ[1, 1, 2, 2], Fρ[1, 2, 1, 2], and Fρ[1, 2, 3, 1]. In this work,
we look at Fρ[1, 2, 1, 2].

The proof of RKCCA security for the F[1, 2, 1, 2] construction, as in the
RKCPA case, has two components: a computational part allowing transition
from PRFs to ideal keyed functions, and an information-theoretic argument that
establishes security when the construction is instantiated with an ideal keyed
function. The first part of the proof follows from Theorem 2. We now prove the
second part.

Theorem 4 (F[1, 2, 1, 2] security). Let Φ be a family of RKD sets. Suppose Φ
is claw-fee and switch-free. Then the Fρ[1, 2, 1, 2] construction is Φ-RKCPA
secure in the ideal keyed function model. More precisely, for every Φ-RKCCA
adversary A placing at most Q(λ) queries to RKFN or RKFN−1, there are B1

and B2 such that

Advrkcca
Fρ[1,2,1,2],A,Φ(λ) ≤ Adv

rf/rp
A,Φ (λ)+2Advsf

B1,Φ(λ)+8Advcf
B2,Φ(λ)+

28Q(λ)2

|Domλ|
.

Proof (Intuition). We give a high-level description of the proof and refer the
reader to the full version for the full details. The proof follows the same structure
as Theorem 3, but it is slightly more complex due to the possibility of collisions
occurring in the inputs of the round functions when they are used in the RKFN

and RKFN−1 oracles. We assume, without loss of generality, that the adversary
is non-repeating in the sense that it does not place repeat queries to either of
its oracles, does not decipher an enciphered value, and does not enciphered a
deciphered value.

We start with the Φ-RKCCA game where the round functions faithfully im-
plement an ideal keyed function. We then consider a game where all round
functions are implemented in a forgetful way except that 1) the input round
function in RKFN is consistent and also keeps track of the entries contributed
from RKFN−1’s output round; and 2) the input round function in RKFN−1 is
consistent and also keeps track of the entries contributed from RKFN’s output
round. In this game the output values of the construction are random and hence

17



indistinguishable from those from an ideal keyed permutation by the PRP/PRF
switching lemma . Furthermore, the outputs of the input round functions in the
RKFN and RKFN−1 oracles remain hidden as they are masked by the forgetful
action of the remaining round functions.

As in the CPA setting, we need to keep track of collisions in the inputs to
various pairs of round functions with lead to inconsistencies, as follows. 1) First
forward and fourth backward rounds are consistent with previous queries due
to their implementation. 2) Collisions between even and odd numbered round
functions in both directions happen with negligible probability due to switch-
freeness. 3) Inputs to the third and fourth forward rounds collide with negli-
gible probability with the previous inputs of all other round functions due to
the randomness of their respective inputs. A similar argument applies to the
first and second backward rounds. 4) Collisions between first forward and third
forward/backward rounds happen with negligible probability as the outputs of
the fourth backward round are random and remain hidden from the adversary.
A similar argument applies to the fourth/second rounds in the backward direc-
tion. 5) Collisions between second forward and fourth forward/backward rounds
happen with negligible probability as outputs of the first forward round are ran-
dom and remain hidden. A similar argument applies to the second round in the
backward direction. 6) Finally, collisions between the second forward round and
itself or second backward can be bounded using the fact that outputs of the first
forward round are random remain hidden, combined with claw-freeness, simi-
larly to the CPA case. A similar argument applies to the third backward round.

ut

As in the CPA setting, the family Φ⊕4 satisfies all the prerequisites required
for the reduction to the RKA security of the underlying PRF and we obtain the
following corollary.

Corollary 2. FPRF[1, 2, 1, 2] is a Φ⊕2 -RKCCA-secure PRP, if the underlying
PRF is a Φ⊕1 -RKCCA-secure PRF.

In the full version we give a positive result for the RKA security of the
original 4-round Luby–Rackoff construction.

8 Directions for Further Research

This works takes a first step in the construction of RKA-secure symmetric cryp-
tosystems based on Feistel networks, and leaves open a number of directions for
future research. From a conceptual point of view, the RKA-security of many-
round Feistel networks (including beyond-birthday-type concrete security) are
important open questions. From a practical point of view, the RKA security
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of alternative constructions of PRPs such as generalized Feistel networks [23]
and key-alternating ciphers [13], along with their potential (dis)advantages over
Feistel networks are another interesting direction for future work.

We conclude the paper with a conjecture about the RKA security of Feis-
tel networks with respect to arbitrary numbers of rounds and key assignments,
which generalizes the CCA characterization studied in [34], and generalizes our
result in Section 7 to the other plausible key assignments.

CONJECTURE. Let n > 3 be an integer, κ : KSpm −→ KSpn be a simple
key assignment, and Φ be a family of RKD sets consisting of functions φ :
KSpm −→ KSpm. Suppose that the following requirements are satisfied.

1. κ ◦ Φ is output unpredictable and claw-free.
2. (κ,Φ) is palindrome-fee: for any φ, φ′ ∈ Φ the probability over a random

(K1, . . . ,Km) that κ ◦ φ′(K1, . . . ,Km) = σ ◦ κ ◦ φ(K1, . . . ,Km) is neg-
ligible, where σ(K1, . . . ,Km) := (Km, . . . ,K1).

3. (κ,Φ) is first-key repeating: for any distinct φ, φ′ ∈ Φ the probability over a
random (K1, . . . ,Km) that [κ◦φ(K1, . . . ,Km)]1 6= [κ◦φ′(K1, . . . ,Km)]1
and [κ ◦ φ(K1, . . . ,Km)]i = [κ ◦ φ′(K1, . . . ,Km)]i for all 1 < i ≤ n is
small.

4. (κ,Φ) is last-key repeating: for any distinct φ, φ′ ∈ Φ the probability over a
random (K1, . . . ,Km) that [κ◦φ(K1, . . . ,Km)]n 6= [κ◦φ′(K1, . . . ,Km)]n
and [κ ◦ φ(K1, . . . ,Km)]i = [κ ◦ φ′(K1, . . . ,Km)]i for all 1 ≤ i < n is
small.

Then the Fρ[κ] construction is Φ-RKCCA secure in the ideal keyed function
model and hence, combined with Theorem 2, the FPRF[κ] construction is Φ-
RKCCA secure for a Ψ-RKCPA-secure PRF, for Ψ as in the statement of Theo-
rem 2.

We note that among the above restrictions claw-freeness is the only require-
ment which is not known to be necessary. Hence we obtain an “almost” char-
acterization. Note, however, that the RKA security of a deterministic cryptosys-
tems seems difficult to be established without assuming claw-freeness (never-
theless, cf. [5] for a weaker ICR notion). The conjecture strengthens and extends
some of the results presented in the previous sections.
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