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Abstract. We define and analyze the security of a blockcipher mode of
operation, CLOC, for provably secure authenticated encryption with as-
sociated data. The design of CLOC aims at optimizing previous schemes,
CCM, EAX, and EAX-prime, in terms of the implementation overhead
beyond the blockcipher, the precomputation complexity, and the mem-
ory requirement. With these features, CLOC is suitable for handling
short input data, say 16 bytes, without needing precomputation nor large
memory. This property is especially beneficial to small microprocessors,
where the word size is typically 8 bits or 16 bits, and there are significant
restrictions in the size and the number of registers. CLOC uses a variant
of CFB mode in its encryption part and a variant of CBC MAC in the
authentication part. We introduce various design techniques in order to
achieve the above mentioned design goals. We prove CLOC secure, in a
reduction-based provable security paradigm, under the assumption that
the blockcipher is a pseudorandom permutation. We also present our
preliminary implementation results.

Keywords: CLOC, blockcipher, authenticated encryption with associ-
ated data, security analysis, efficiency analysis.

1 Introduction

Background. An authenticated encryption with associated data scheme (AEAD)
is a symmetric key cryptographic primitive that provides both confidentiality and
integrity of plaintexts, and integrity of associated data. There are several ways
of designing AEADs, and we focus on a design based on a blockcipher. CCM [39]
was proposed by Whiting, Housley, and Ferguson for use within the IEEE 802.11
standard for Wireless LANs. It is adopted as NIST recommendation [16], and
is broadly used in practice [20,21,9]. The mode is 2-pass, meaning that we run
two algorithms, one for encryption and one for authentication. It is provably
secure [25], but CCM suffers from a number of limitations, most notably it is not
on-line; the encryption process cannot be started until knowing the whole input
data. There are other issues in CCM [35], and EAX was proposed by Bellare,
Rogaway, and Wagner to overcome these limitations [13]. EAX is included in ISO



19772 [9], and it has a number of attractive features; it is simple as it uses CMAC
and CTR mode in a black-box manner, and it was designed by taking provable
security into consideration. However, it has several implementation costs, and
EAX-prime was designed by Moise, Beroset, Phinney, and Burns [31] to reduce
the costs. It was designed to reduce the number of blockcipher calls both in
precomputation and in processing the input data, to eliminate the key dependent
constants, also called masks, to reduce memory requirement to store them, and
to unify the associated data and the nonce, which contributes to reduce the
memory requirement and the number of blockcipher calls as well. However, a
practical attack was pointed out against EAX-prime [30], showing that it is not
a secure AEAD. Later, Minematsu, Lucks, and Iwata proposed a variant of EAX
called EAX+, which has similar complexity as EAX-prime and is provably secure
as EAX [29].

Presumably, though not clearly stated in the document [31], the most sig-
nificant advantage of EAX-prime over original EAX (and CCM) is its efficient
handling of short input data with small memory. As EAX-prime needs only one
blockcipher call in precomputation whereas EAX needs three calls, EAX-prime
gains the performance for short (say 16 bytes) input data, in particular if pre-
computation is difficult due to a limited amount of memory, or frequent key
changes, or both. The performance for short input data is important for many
practical applications, most notably for low-power wireless sensor networks, since
messages are typically short to suppress the energy consumption of sensor nodes,
which are usually battery-powered. For example, Zigbee [8] limits the maximum
message length to be 127 bytes, and Bluetooth low energy limits the length to
47 bytes [4]. Another example is Electronic Product Code (EPC), which is a
replacement of bar-code using RFID tags, and it typically has 96 bits [5].

Our Contributions. In this paper, we present a mode of operation, CLOC (which
stands for Compact Low-Overhead CFB, and is pronounced as “clock”), to
meet the demand. The design of CLOC aims at optimizing previous schemes,
CCM, EAX, and EAX-prime, in terms of the implementation overhead beyond
the blockcipher, the precomputation complexity, and the memory requirement.
CLOC is sequential and its asymptotic performance (i.e. for long input data)
is comparable to CCM, EAX, and EAX-prime. However, CLOC has a unique
feature in its low overhead computation. CLOC works without any precomputa-
tion beyond the key scheduling of the blockcipher. Specifically, we do not need
any blockcipher calls nor generating a key dependent table. This contributes to
the improvement of the performance for short input data. For example, when
the input data consists of 1-block nonce, 1-block associated data, and 1-block
plaintext, CLOC needs 4 blockcipher calls, while we need 5 or 6 calls in CCM,
7 calls (where 3 out of 7 can be precomputed) in EAX, and 5 calls (where 1 out
of 5 can be precomputed) in EAX-prime. We focus on provably secure schemes,
but for comparison, there are lightweight AE schemes including ALE [15] and
Fides [14], where ALE needs 44 AES rounds which amount to 4.4 AES calls (10
out of 44 AES rounds can be precomputed), and Fides needs 33 round function
calls, where the round function is similar to that of AES but has larger state.



This property of CLOC is particularly beneficial for embedded devices since the
internal blockcipher is relatively slow due to limited computing power. More-
over, CLOC can be implemented using only two state blocks, i.e. the working
memory of 2n bits with an n-bit blockcipher, except those needed for interfacing
and blockcipher invocations. We do not aware of any provably secure AE mode
with on-line capability to work with such a small amount of memory, and this
property makes CLOC even suitable for small processors.

Important properties of CLOC can be summarized as follows.

1. It is a nonce-based authenticated encryption with associated data (AEAD).
2. It uses only the encryption of the blockcipher both for encryption and de-

cryption.
3. It makes ⌈|N |/n⌉ + ⌈|A|/n⌉ + 2⌈|M |/n⌉ blockcipher calls for a nonce N ,

associated data A, and a plaintext M , when |A| ≥ 1, where |X| is the
length of X in bits and n is the block length in bits of the blockcipher.
No precomputation is needed. We note that in CLOC, 1 ≤ |N | ≤ n − 1
holds (hence we always have ⌈|N |/n⌉ = 1), and when |A| = 0, it needs
⌈|N |/n⌉+ 1 + 2⌈|M |/n⌉ blockcipher calls.

4. It works with two state blocks (i.e. 2n bits).

We introduce various design techniques in order to achieve the above mentioned
design goals. We introduce tweak functions which are used to update the internal
state at several points in the encryption and the decryption. While bit-wise
operations, such as a constant multiplication over GF(2n), are often employed
in majority of previous schemes, considering the performance for small devices,
we completely eliminate bit-wise operations. Instead, our tweak functions consist
of word-wise permutations and xor’s. As a result, each tweak function can be
described by using a 4× 4 binary matrix.

The use of word-wise permutations and xor’s to update a mask or a key
dependent constant was discussed in [22,29], and the approach was applied on
CMAC and EAX. Here we use them directly to update the internal state, in-
stead of updating a key dependent constant and xoring it to the state. This was
employed for example in designs of MACs [32,40] using bit shift operations. The
techniques introduced here seem to be worth for other areas, e.g., in designing
MACs, and thus it may be of independent interest.

We also introduce bit-fixing functions. CFB mode leaks input and output
pairs of the underlying blockcipher, which may result in the loss of security. We
use the functions to logically separate the encryption part and the authentication
part of CLOC.

With these techniques, we prove CLOC secure, in a reduction-based provable
security paradigm, under the assumption that the blockcipher is a pseudorandom
permutation. For security notions, CLOC fulfills the standard security notions
for nonce-based AEADs, i.e., the privacy and the authenticity under nonce-
respecting adversaries [34]. Furthermore, we prove that the authenticity notion
holds even for nonce-reusing adversaries, where only a small number of schemes
achieve this goal, and most of known modes do fail to provide [18]. See Table 1
for a brief comparison of CLOC to other AEADs.



Table 1. Comparison of AE modes, for a-block associated data and m-block plain-
text with one-block nonce, where a ≥ 1

Property◦ CCM [16] GCM [17] EAX [13] EAX-prime [31] OCB3 [26] CLOC
Calls a + 2m + 2† m + 1‡ a + 2m + 1 a + 2m + 1§ a + m + 1† a + 2m + 1
Setup 0 1 3 1 1 0

On-line No Yes Yes Yes Yes Yes
Static AD No Yes Yes Yes Yes Yes

Parallel No Yes No No Yes No
Primitive E E, GHASH E E E, D E

PRIV/AUTH⋆ O(2n/2)[25] O(2n/2)[24] O(2n/2)[13] O(1)[30] O(2n/2)[26] O(2n/2)

N-AUTH⋄ ≪ 2n/2[19,18] O(1)[18] O(1)[18] O(1)[30] O(1)[18] O(2n/2)

◦ “Setup” shows the number of blockcipher calls for setup, “Static AD” shows if efficient han-
dling of static associated data is possible, “Parallel” shows if the blockcipher calls are par-
allelizable, and “Primitive” shows the components of the mode. E is the encryption of the
blockcipher and D is the decryption.

† May have additional one call
‡ Plus a + m multiplications over GF(2n) for GHASH
§ Nonce and associated data are concatenated to form a 2-block “cleartext”
⋆ Attack workload of nonce-respecting adversaries to break the privacy notion or the authen-
ticity notion

⋄ Attack workload of nonce-reusing adversaries to break the authenticity notion

2 Preliminaries

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an
integer ℓ ≥ 0, let {0, 1}ℓ be the set of all bit strings of ℓ bits. For X,Y ∈ {0, 1}∗,
we write X ∥Y , (X,Y ), or simply XY to denote their concatenation. For ℓ ≥ 0,
we write 0ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ zeros, and
1ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ ones. For X ∈ {0, 1}∗,
|X| is its length in bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit
blocks. For X ∈ {0, 1}∗ and ℓ ≥ 0 such that |X| ≥ ℓ, msbℓ(X) is the most
significant (the leftmost) ℓ bits of X. For instance we have msb1(1100) = 1 and
msb3(1100) = 110. For X ∈ {0, 1}∗ and ℓ ≥ 1, we write its partition into ℓ-bit

blocks as (X[1], . . . , X[x])
ℓ← X, which is defined as follows. If X = ε, then x = 1

and X[1]
ℓ← X, where X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique

bit strings such that X[1] ∥ · · · ∥X[x] = X, |X[1]| = · · · = |X[x − 1]| = ℓ, and

1 ≤ |X[x]| ≤ ℓ. For a finite set X , X $← X means that X is chosen uniformly
random from X .

In what follows, we fix a block length n and a blockcipher E : KE×{0, 1}n →
{0, 1}n, where KE is a non-empty set of keys. Let Perm(n) be the set of all
permutations over {0, 1}n. We write EK ∈ Perm(n) for the permutation specified
by K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n under
key K ∈ KE .

3 Specification of CLOC

CLOC takes three parameters, a blockcipher E : KE×{0, 1}n → {0, 1}n, a nonce
length ℓN , and a tag length τ . We require 1 ≤ ℓN ≤ n − 1 and 1 ≤ τ ≤ n. We



also require that n/4 is an integer. We write CLOC[E, ℓN , τ ] for CLOC that is
parameterized by E, ℓN , and τ , and we often omit the parameters if they are irrel-
evant or they are clear from the context. CLOC[E, ℓN , τ ] = (CLOC-E ,CLOC-D)
consists of the encryption algorithm CLOC-E and the decryption algorithm
CLOC-D.

CLOC-E and CLOC-D have the following syntax.{
CLOC-E : KCLOC ×NCLOC ×ACLOC ×MCLOC → CT CLOC

CLOC-D : KCLOC ×NCLOC ×ACLOC × CT CLOC →MCLOC ∪ {⊥}

KCLOC = KE is the key space, which is identical to the key space of the un-
derlying blockcipher, NCLOC = {0, 1}ℓN is the nonce space, ACLOC = {0, 1}∗ is
the associated data space,MCLOC = {0, 1}∗ is the plaintext space, CT CLOC =
CCLOC × TCLOC is the ciphertext space, where CCLOC = {0, 1}∗ and TCLOC =
{0, 1}τ is the tag space, and ⊥ ̸∈ MCLOC is the distinguished reject symbol.
We write (C, T ) ← CLOC-EK(N,A,M) and M ← CLOC-DK(N,A,C, T ) or
⊥ ← CLOC-DK(N,A,C, T ), where (C, T ) ∈ CT CLOC is a ciphertext, and we
also call C ∈ CCLOC a ciphertext.

CLOC-E and CLOC-D are defined in Fig. 1. In these algorithms, we use four
subroutines, HASH, PRF, ENC, and DEC. They have the following syntax.

HASH : KCLOC ×NCLOC ×ACLOC → {0, 1}n

PRF : KCLOC × {0, 1}n × CCLOC → TCLOC

ENC : KCLOC × {0, 1}n ×MCLOC → CCLOC

DEC : KCLOC × {0, 1}n × CCLOC →MCLOC

These subroutines are defined in Fig. 2, and illustrated in Fig. 3, Fig. 4, and
Fig. 5. In the figures, i is the identity function, and i(X) = X for all X ∈ {0, 1}n.
In the subroutines, we use the one-zero padding function ozp : {0, 1}∗ → {0, 1}∗,
the bit-fixing functions fix0, fix1 : {0, 1}∗ → {0, 1}∗, and five tweak functions f1,
f2, g1, g2, and h, which are functions over {0, 1}n.

The one-zero padding function ozp is used to adjust the length of an input
string so that the total length becomes a positive multiple of n bits. For X ∈
{0, 1}∗, ozp(X) is defined as ozp(X) = X if |X| = ℓn for some ℓ ≥ 1, and
ozp(X) = X ∥ 10n−1−(|X| mod n) otherwise. We note that ozp(ε) = 10n−1, and
we also note that, in general, the function is not invertible.

The bit-fixing functions fix0 and fix1 are used to fix the most significant bit of
an input string to zero and one, respectively. For X ∈ {0, 1}∗, fix0(X) is defined
as fix0(X) = X ∧ 01|X|−1, and fix1(X) is defined as fix1(X) = X ∨ 10|X|−1,
where ∧ and ∨ are the bit-wise AND operation, and the bit-wise OR operation,
respectively.

The tweak function h is used in HASH if the most significant bit of ozp(A[1])
is zero. We use f1 and f2 in HASH and PRF, where f1 is used if the last input
block is full (i.e., if |A[a]| = n or |C[m]| = n) and f2 is used otherwise. We use
g1 and g2 in PRF, where we use g1 if the second argument of the input is the



Algorithm CLOC-EK(N,A,M)

1. V ← HASHK(N,A)
2. C ← ENCK(V,M)
3. T ← PRFK(V,C)
4. return (C, T )

Algorithm CLOC-DK(N,A,C, T )

1. V ← HASHK(N,A)
2. T ∗ ← PRFK(V,C)
3. if T ̸= T ∗ then return ⊥
4. M ← DECK(V,C)
5. return M

Fig. 1. Pseudocode of the encryption and the decryption algorithms of CLOC

empty string (i.e., |C| = 0), and otherwise we use g2. Now for X ∈ {0, 1}n, let
(X[1], X[2], X[3], X[4])

n/4← X. Then f1, f2, g1, g2, and h are defined as follows.

f1(X) = (X[1, 3], X[2, 4], X[1, 2, 3], X[2, 3, 4])

f2(X) = (X[2], X[3], X[4], X[1, 2])

g1(X) = (X[3], X[4], X[1, 2], X[2, 3])

g2(X) = (X[2], X[3], X[4], X[1, 2])

h(X) = (X[1, 2], X[2, 3], X[3, 4], X[1, 2, 4])

Here X[a, b] stands for X[a]⊕X[b] and X[a, b, c] stands for X[a]⊕X[b]⊕X[c].
Alternatively the tweak functions can be specified by a matrix. Let

M =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 (1)

be a 4× 4 binary matrix, and let Mi for i ≥ 0 be exponentiations of M, where
M0 denotes the identity matrix. Then we have f1(X) = X · M8, f2(X) =
X ·M, g1(X) = X ·M2, g2(X) = X ·M, and h(X) = X ·M4, where X =
(X[1], X[2], X[3], X[4]) is interpreted as a vector.

The design rationale for the tweak functions is explained in Sect. 4.

4 Design Rationale

Overall Structure. At abstract level CLOC is a straightforward combination of
CFB mode and CBC MAC, where CBC MAC is called twice for processing
associated data and a ciphertext, and CFB mode is called once to generate a
ciphertext. However, when we want to achieve low-overhead computation and
small memory consumption, we found that any other combination of a basic
encryption mode and a MAC mode did not work. For instance, we could not
use CTR mode or OFB mode, as they require one state block in processing a
plaintext to hold a counter value or a blockcipher output. We then realized that
combining CFB mode and CBC MAC was not an easy task. Since we avoid



Algorithm HASHK(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← EK(fix0(ozp(A[1])))
3. if msb1(ozp(A[1])) = 1 then
4. SH[1]← h(SH[1])
5. if a ≥ 2 then
6. for i← 2 to a− 1 do
7. SH[i]← EK(SH[i− 1]⊕A[i])
8. SH[a]← EK(SH[a−1]⊕ozp(A[a]))
9. if |A[a]| = n then

10. V ← f1(SH[a]⊕ ozp(N))
11. else // 0 ≤ |A[a]| ≤ n− 1
12. V ← f2(SH[a]⊕ ozp(N))
13. return V

Algorithm PRFK(V,C)

1. if |C| = 0 then
2. T ← msbτ (EK(g1(V )))
3. return T
4. (C[1], . . . , C[m])

n← C
5. SP[0]← EK(g2(V ))
6. for i← 1 to m− 1 do
7. SP[i]← EK(SP[i− 1]⊕ C[i])
8. if |C[m]| = n then
9. SP[m]← EK(f1(SP[m− 1]⊕ C[m]))

10. else // 1 ≤ |C[m]| ≤ n− 1
11. SP[m]← EK(f2(SP[m−1]⊕ozp(C[m])))
12. T ← msbτ (SP[m])
13. return T

Algorithm ENCK(V,M)

1. if |M | = 0 then
2. C ← ε
3. return C
4. (M [1], . . . ,M [m])

n←M
5. SE[1]← EK(V )
6. for i← 1 to m− 1 do
7. C[i]← SE[i]⊕M [i]
8. SE[i+ 1]← EK(fix1(C[i]))
9. C[m]← msb|M [m]|(SE[m])⊕M [m]

10. C ← (C[1], . . . , C[m])
11. return C

Algorithm DECK(V,C)

1. if |C| = 0 then
2. M ← ε
3. return M
4. (C[1], . . . , C[m])

n← C
5. SD[1]← EK(V )
6. for i← 1 to m− 1 do
7. M [i]← SD[i]⊕ C[i]
8. SD[i+ 1]← EK(fix1(C[i]))
9. M [m]← msb|C[m]|(SD[m])⊕ C[m]

10. M ← (M [1], . . . ,M [m])
11. return M

Fig. 2. Subroutines used in the encryption and decryption algorithms of CLOC

using two keys or using blockcipher pre-calls, such as L = EK(0n) used in EAX,
we could not computationally separate CFB mode and CBC MAC via input
masking, such as Galois-field doubling (2iL for the i-th block, where 2L denotes
the multiplication of 2 and L in GF(2n)) [13,33]. This implies that CFB mode
leaks input and output pairs of the blockcipher calls, which can be freely used
to guess or fake the internal chaining value of CBC MAC, leading to a break of
the scheme. Lucks [28] proposed an AEAD scheme based on CFB mode, called
CCFB. However, the problem is not relevant to CCFB due to the difference in
the global structure. To overcome this obstacle in composition, we introduced
the bit-fixing functions. Their role is to absolutely separate the input blocks
of the blockcipher in CFB mode and the first input block of CBC MAC. This
imposes the most significant one bit of the input of CBC MAC being fixed to
0, implying one-bit input loss. The set of five tweak functions, which is another
tool we introduced in this paper, is used to compensate for this information loss.
It also works to compensate the information loss caused by padding functions
applied to the last input block to CBC MAC. A similar technique can be found



A[1]

V

N

EK

i/h

fix0

ozpozp

f1/f2

A[2] A[a]

EK

· · · A[a− 1]

ozp

· · ·

A[1]

EK

i/h

fix0

EK EK

V

N

ozp

f1/f2

if |A[1]| = n, then f1, else f2

if msb1(ozp(A[1])) = 1, then h, else i

if |A[a]| = n, then f1, else f2

if msb1(A[1]) = 1, then h, else i

Fig. 3. V ← HASHK(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n+ 1 (right)
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i⊕ f1
i⊕ g1f1
i⊕ g1f1h
i⊕ g2f1
i⊕ g2f1h
i⊕ f1h
i⊕ f2
i⊕ g1f2
i⊕ g1f2h
i⊕ g2f2
i⊕ g2f2h

i⊕ f2h
i⊕ h
i⊕ g1
i⊕ g2
f1 ⊕ g1f1h
f1 ⊕ g2f1h
f1 ⊕ f2
f1 ⊕ g1f2
f1 ⊕ g1f2h
f1 ⊕ g2f2
f1 ⊕ g2f2h

f1 ⊕ f2h
f2 ⊕ g1f1
f2 ⊕ g1f1h
f2 ⊕ g2f1
f2 ⊕ g2f1h
f2 ⊕ f1h
f2 ⊕ g1f2h
f2 ⊕ g2f2h
g1 ⊕ g2
h⊕ f1
h⊕ g1f1

h⊕ g2f1
h⊕ f2
h⊕ g1f2
h⊕ g2f2
g1f1 ⊕ f1h
g1f1 ⊕ g2f1h
g1f1 ⊕ g2f2
g1f1 ⊕ g2f2h
g1f1 ⊕ f2h
g2f1 ⊕ g1f1h
g2f1 ⊕ f1h

g2f1 ⊕ g1f2h
g2f1 ⊕ f2h
g1f2 ⊕ g2f1
g1f2 ⊕ g2f1h
g1f2 ⊕ f1h
g1f2 ⊕ g2f2h
g1f2 ⊕ f2h
g2f2 ⊕ g1f1h
g2f2 ⊕ f1h
g2f2 ⊕ g1f2h
g2f2 ⊕ f2h

Fig. 6. Differential probability constraints of f1, f2, g1, g2, and h

in literature [32,40], however, the previous works only considered MACs and the
tweak functions required bit operations.

In the following we explain the specific requirements for the tweak functions.

Definition of f1, f2, g1, g2, and h. These functions are defined to meet the
following properties. First, they have the additive property. That is, for any
z ∈ {f1, f2, g1, g2, h}, we have z(X ⊕X ′) = z(X)⊕ z(X ′) for all X,X ′ ∈ {0, 1}n.
Next, these functions are invertible over {0, 1}n. For any z ∈ {f1, f2, g1, g2, h}, we
have z ∈ Perm(n). Finally, they satisfy the differential probability constraints
specified in Fig. 6. Let z be a function in Fig. 6. Then we require that, for any

Y ∈ {0, 1}n, Pr[z(K) = Y ] = 1/2n, where the probability is taken over K
$←

{0, 1}n. When z is of the form z = z′ ⊕ z′′, then z(K) stands for z′(K)⊕ z′′(K).
When z is of the form z = z′z′′, then z(K) stands for z′(z′′(K)). Recall that we
define i as i(K) = K.

Choosing Tweak Functions. Finding simple and word-wise tweak functions ful-
filling all properties is not a trivial task. We start with matrix M of (1), which
is invertible and has order 15 (i.e. M15 = M0), and test all combinations of
the form (f1, f2, g1, g2, h) = (i1, . . . , i5) ∈ {1, . . . , 14}5, where i1 = 2 means
f1(X) = X ·M2, using a computer. There are 864 candidates out of 537,824
fulfilling the differential probability constraints of Fig. 6. The complexity in-
creases as the index of M grows, when we implement the tweak function by
iterating M, which seems suitable for hardware. For software we would directly
implement Mi using a word-wise permutation and xor, and in this case we ob-
serve slight irregular, but similar phenomena (e.g. M1 needs one xor while M3

needs three xor’s). Fig. 7 shows Mi and the Feistel-like implementations using a
word-wise permutation and xor. It shows that, except for M5 and M10, we have
a simple implementation using at most four xor’s. Based on these observations,
we simply define the cost of computing Mi as i for 1 ≤ i ≤ 7 and 15 − i for
8 ≤ i ≤ 14, and define fcost(i1, . . . , i5) as(

i1 ×
1

16
+ i2 ×

15

16

)
× 2 + i4 + i5 ×

1

2
.
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Fig. 7. Matrix exponentiations for the tweak functions

This corresponds to the expected total cost for given (i1, . . . , i5), where associ-
ated data and a plaintext are assumed to be non-empty byte strings of random
lengths (as we expect the standard use of CLOC is AEAD, not MAC), and we
also assume that the most significant bit of the associated data is random. Then
there remains only two candidates giving the minimum value of fcost, which are
(i1, . . . , i5) = (8, 1, 2, 1, 4) and (8, 1, 6, 1, 4). As smaller i3 is better, we choose the
former as the sole winner. We also tested other matrices, say the one replacing
the forth column of M by the transposition of (1, 0, 1, 0), but no better solution
was found.

We note that M8 = M2 ⊕M0 and M4 = M1 ⊕M0 hold, implying that we
have f1(X) = g1(X) ⊕X and h(X) = f2(X) ⊕X = g2(X) ⊕X, which may be
useful in some implementations.

5 Security of CLOC

In this section, we define the security notions of a blockcipher and CLOC, and
present our security theorems.



PRP Notion. We assume that the blockcipher E : KE × {0, 1}n → {0, 1}n
is a pseudo-random permutation, or a PRP [27]. We say that P is a random

permutation if P
$← Perm(n), and define

Advprp
E (A) def

= Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

where the first probability is taken over K
$← KE and the randomness of A, and

the last is over P
$← Perm(n) and A. We write CLOC[Perm(n), ℓN , τ ] for CLOC

that uses P as EK , and the encryption and decryption algorithms are written as
CLOC-EP and CLOC-DP . We also consider CLOC that uses a random function
as EK , which is naturally defined as the invertibility of EK is irrelevant in the
definition of CLOC. Let Rand(n) be the set of all functions from {0, 1}n to

{0, 1}n, and we say that R is a random function if R
$← Rand(n). We write

CLOC[Rand(n), ℓN , τ ] for CLOC that uses R as EK , and its encryption and
decryption algorithms are written as CLOC-ER and CLOC-DR.

Privacy Notion. We define the privacy notion for CLOC[E, ℓN , τ ] = (CLOC-E ,
CLOC-D). This notion captures the indistinguishably of a nonce-respecting ad-
versary in a chosen plaintext attack setting [34]. We consider an adversary A
that has access to the CLOC encryption oracle, or a random-bits oracle. The
encryption oracle takes (N,A,M) ∈ NCLOC × ACLOC ×MCLOC as input and
returns (C, T ) ← CLOC-EK(N,A,M). The random-bits oracle, $-oracle, takes
(N,A,M) ∈ NCLOC × ACLOC ×MCLOC as input and returns a random string

(C, T )
$← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is taken over K
$← KCLOC and the randomness of

A, and the last is over the random-bits oracle and A. We assume that A in the
privacy game is nonce-respecting, that is, A does not make two queries with the
same nonce.

Privacy Theorem. Let A be an adversary that makes q queries, and suppose
that the queries are (N1, A1,M1), . . . , (Nq, Aq,Mq). Then we define the total
associated data length as a1 + · · · + aq, and the total plaintext length as m1 +
· · ·+mq, where (Ai[1], . . . , Ai[ai])

n← Ai and (Mi[1], . . . ,Mi[mi])
n←Mi. We have

the following information theoretic result.

Theorem 1. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be
an adversary that makes at most q queries, where the total associated data
length is at most σA, and the total plaintext length is at most σM . Then we
have Advpriv

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
priv/2

n, where σpriv = q + σA + 2σM .

A proof overview is given in Sect. 6, and a complete proof is presented in [23,
Appendix A]. If we use a blockcipher E, which is secure in the sense of the PRP
notion, instead of Perm(n), then the corresponding complexity theoretic result
can be shown by a standard argument. See e.g. [11]. We note that the privacy
of CLOC is broken if the nonce is reused.



Authenticity Notion. We next define the authenticity notion, which captures
the unforgeability of an adversary in a chosen ciphertext attack setting [34].
We consider a strong adversary that can repeat the same nonce multiple times.
Let A be an adversary that has access to the CLOC encryption oracle and
the CLOC decryption oracle. The encryption oracle is defined as above. The
decryption oracle takes (N,A,C, T ) ∈ NCLOC × ACLOC × CCLOC × TCLOC as
input and returns M ← CLOC-DK(N,A,C, T ) or ⊥ ← CLOC-DK(N,A,C, T ).
The authenticity advantage is defined as

Advauth
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·),CLOC-DK(·,·,·,·) forges

]
,

where the probability is taken over K
$← KCLOC and the randomness of A,

and the adversary forges if the decryption oracle returns a bit string (other
than ⊥) for a query (N,A,C, T ), but (C, T ) was not previously returned to
A from the encryption oracle for a query (N,A,M). The adversary A in the
authenticity game is not necessarily nonce-respecting, and A can make two or
more queries with the same nonce. Specifically, A can repeat using the same
nonce for encryption queries, a nonce used for encryption queries can be used
for decryption queries and vice-versa, and the same nonce can be repeated for
decryption queries. Without loss of generality, we assume that A does not make
trivial queries, i.e., if the encryption oracle returns (C, T ) for a query (N,A,M),
then A does not make a query (N,A,C, T ) to the decryption oracle, and A does
not repeat a query.

Authenticity Theorem. Let A be an adversary that makes q encryption queries
and q′ decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption
queries, and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′) be the decryption queries.

Then we define the total associated data length in encryption queries as a1 +
· · · + aq, the total plaintext length as m1 + · · · +mq, the total associated data
length in decryption queries as a′1 + · · · + a′q′ , and the total ciphertext length

as m′
1 + · · · + m′

q′ , where (Ai[1], . . . , Ai[ai])
n← Ai, (Mi[1], . . . ,Mi[mi])

n← Mi,

(A′
i[1], . . . , A

′
i[a

′
i])

n← A′
i, and (C ′

i[1], . . . , C
′
i[m

′
i])

n← C ′
i. We have the following

information theoretic result.

Theorem 2. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be an
adversary that makes at most q encryption queries and at most q′ decryption
queries, where the total associated data length in encryption queries is at most
σA, the total plaintext length is at most σM , the total associated data length in
decryption queries is at most σA′ , and the total ciphertext length is at most σC′ .
Then we have Advauth

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
auth/2

n + q′/2τ , where σauth =
q + σA + 2σM + q′ + σA′ + σC′ .

A proof overview is given in Sect. 6, and a complete proof is presented in [23,
Appendix A]. As in the privacy case, if we use a blockcipher E secure in the
sense of the PRP notion, then we obtain the corresponding complexity theoretic
result by a standard argument in, e.g., [11].



6 Overview of Security Proofs

PRP/PRF Switching. The first step is to replace the random permutation P
in CLOC[Perm(n), ℓN , τ ] with a random function R, and use the PRP/PRF
switching lemma [12] to obtain the following differences.{

Advpriv
CLOC[Perm(n),ℓN ,τ ](A)−Advpriv

CLOC[Rand(n),ℓN ,τ ](A)
Advauth

CLOC[Perm(n),ℓN ,τ ](A)−Advauth
CLOC[Rand(n),ℓN ,τ ](A)

Defining Q1, . . . , Q26 and CLOC2. We define twenty six functions Q1, . . . , Q26 :

{0, 1}n → {0, 1}n based on R, K1, K2, and K3, where K1,K2,K3
$← {0, 1}n

are three independent random n-bit strings. We also define a modified version
of CLOC[Rand(n), ℓN , τ ] called CLOC2[ℓN , τ ], which uses Q = (Q1, . . . , Q26)
as oracles. Q and CLOC2 are designed so that CLOC-ER and CLOC2-EQ are
the same algorithms, CLOC-DR and CLOC2-DQ are the same algorithms (ex-
cept that CLOC2-DQ is used for the verification only, and it does not output a
plaintext even if the verification succeeds), and Q1, . . . , Q26 are indistinguishable
from F1, . . . , F26, which are independent random functions. We then have{

Advpriv
CLOC[Rand(n),ℓN ,τ ](A) = Advpriv

CLOC2[ℓN ,τ ](A),
Advauth

CLOC[Rand(n),ℓN ,τ ](A) = Advauth
CLOC2[ℓN ,τ ](A),

and we show the distinguishing probability of Q = (Q1, . . . , Q26) and F =
(F1, . . . , F26) in [23, Lemma 1]. However, the indistinguishability does not hold
for arbitrary adversaries. We formalize an input-respecting adversary, and our
indistinguishability result in [23, Lemma 1] holds only for these adversaries.

The three random strings, K1,K2, and K3, are secret keys from the adver-
sary’s perspective, and we introduce them to show the indistinguishability be-
tween Q and F . For instance we know that the input fix0(ozp(A[1])) to produce
SH[1] in HASHK(N,A) (The 2nd line of HASHK(N,A) in Fig. 2) never collides
with the input fix1(C[i]) to produce SE[i + 1] in ENCK(V,M) (The 8th line of
ENCK(V,M) in Fig. 2), and hence we can safely assume that they are indepen-
dent. Likewise, we show that the collision probability between fix0(ozp(A[1]))
and, say, SH[i − 1] ⊕ A[i] in HASHK(N,A) (The 7th line of HASHK(N,A) in
Fig. 2) is low, and the three random strings are introduced to help this argu-
ment.

Defining CLOC3. We define another version of CLOC[Rand(n), ℓN , τ ] called
CLOC3[ℓN , τ ]. It uses F = (F1, . . . , F26) as oracles, and the encryption algo-
rithm CLOC3-EF and the decryption algorithm CLOC3-DF are obtained from
CLOC2-EQ and CLOC2-DQ by replacing Q1, . . . , Q26 with F1, . . . , F26, respec-
tively. We use [23, Lemma 1] to obtain the following differences.{

Advpriv
CLOC2[ℓN ,τ ](A)−Advpriv

CLOC3[ℓN ,τ ](A)
Advauth

CLOC2[ℓN ,τ ](A)−Advauth
CLOC3[ℓN ,τ ](A)

The simulations work with input-respecting adversaries, and hence [23, Lemma 1]
is sufficient for our purpose.



Indistinguishability of (HASH3,HASH3′,HASH3′′). We then consider three sub-
routines HASH3, HASH3′, and HASH3′′ in CLOC3[ℓN , τ ]. HASH3 roughly cor-
responds to a function that computes SE[1] from (N,A) in CLOC[E, ℓN , τ ], i.e.,
EK(HASHK(N,A)). HASH3′ computes the tag T when |C| = 0, i.e., this func-
tion roughly corresponds to msbτ (EK(g1(HASHK(N,A)))). HASH3′′ computes
SP[0] from (N,A), which is used when |C| ≥ 1, i.e., EK(g2(HASHK(N,A))).
Then in [23, Lemma 2], we show that these functions are indistinguishable from
three independent random functions HASH4, HASH4′, and HASH4′′.

Defining CLOC4. We define another version of CLOC[Rand(n), ℓN , τ ], called
CLOC4[ℓN , τ ]. This is obtained by replacing HASH3, HASH3′, and HASH3′′ in
CLOC3 with HASH4, HASH4′, and HASH4′′, respectively. We use [23, Lemma 2]
to obtain the following differences.{

Advpriv
CLOC3[ℓN ,τ ](A)−Advpriv

CLOC4[ℓN ,τ ](A)
Advauth

CLOC3[ℓN ,τ ](A)−Advauth
CLOC4[ℓN ,τ ](A)

Indistinguishability of PRF4. We then consider a subroutine called PRF4 in
CLOC4. This function outputs a tag T from (N,A,C), and internally uses
HASH4′, HASH4′′, F24, F25, and F26. We show in [23, Lemma 3] that this func-
tion is indistinguishable from a random function PRF5.

Defining CLOC5. We define our final version of CLOC[Rand(n), ℓN , τ ], called
CLOC5[ℓN , τ ], which is obtained from CLOC4 by replacing PRF4 with PRF5.
This function is used in both encryption and decryption, and we obtain the
following differences from [23, Lemma 3].{

Advpriv
CLOC4[ℓN ,τ ](A)−Advpriv

CLOC5[ℓN ,τ ](A)
Advauth

CLOC4[ℓN ,τ ](A)−Advauth
CLOC5[ℓN ,τ ](A)

Privacy and Authenticity of CLOC5. Finally, we analyze the privacy and the
authenticity of CLOC5 in [23, Lemma 4]. The privacy result shows the up-

per bound on Advpriv
CLOC5[ℓN ,τ ](A), and the proof is reduced to bounding the

collision probability among the input values of the random function which is
used to encrypt plaintexts. The authenticity result shows the upper bound on
Advauth

CLOC5[ℓN ,τ ](A), and its proof is simple and the result is obtained from the
fact that the adversary, even if the nonce is reused, has to guess the output of a
random function PRF5 for the input that was not queried before.

We finally obtain the proofs of Theorem 1 and Theorem 2 by combining the
above differences between advantage functions.

7 Software Implementation

We first tested CLOC on a general-purpose CPU. It is interesting to note that
the encryption process and tag generation can be done in parallel, which could



speed up the overall computation by a factor close to 2 for long plaintexts, then
the final speed could be close to that of encryption only in serial mode. To
show that, we implemented CLOC instantiated with AES-128 using the AES
new instruction set, and tested against Intel processor, Core i5-3427U 1.80GHz
(Ivy Bridge) [6]. It is known that Intel’s AES instruction allows fast parallel
processing (up to 4 or 8 blocks), and we used this technique for two parallel
inputs to AES. The tested speed for long plaintexts (more than 220 blocks) is
around 4.9 cycles per byte (cpb), while AES-128 encrypts at a speed of 4.3 cpb
in serial mode. In Table 2, we provide the test vectors.

We then tested CLOC on embedded software. We used an 8-bit micro-
processor, Atmel AVR ATmega128 [2]. For comparison we also implemented
EAX [13], EAX-prime [31], and OCB3 [26]. For OCB3 we used a byte-oriented
code from [7]. OCB3 needs relatively large precomputation for GF doublings,
but we modify the code so that the doublings are on-line, since large precompu-
tation may not be suitable to handle short input data for microprocessors. We
also considered GCM for comparison, however, recent studies show that GCM
does not perform well on constrained devices (see e.g. [10,38]), hence we decided
not to include it. All modes are written in C and combined with AES-128. Our
AES code is taken from [3], which is written in assembler. AES runs at 156.7
cpb for encryption, 196.8 cpb for decryption, both without key scheduling, and
the key scheduling runs at 1,979 cycles. Our codes are complied with Atmel Stu-
dio 6 available from [2]. Cycles counts are measured on the simulator of Atmel
Studio 6. Table 3 shows the implementation result. ROM denotes the object size
in bytes. The speed is measured based on the scenario of non-static associated
data, i.e., we excluded key setup and other computations before processing asso-
ciated data and a nonce, defined as “Init”, and figures for Data b denote cycles
per byte to process a b-byte plaintext. In EAX, “Init” includes the computa-
tion of EK(0n), EK(0n−11), and EK(0n−210). The length of associated data is
fixed to 16 bytes except for EAX-prime, and for EAX-prime, we use 32-byte
“cleartext,” which can be regarded as the combination of associated data and
a nonce [31]. For OCB3 we also measured the decryption performance, whereas
those of CLOC, EAX, and EAX-prime are almost the same as encryption, since
CLOC, EAX and EAX-prime require only forward direction of the underlying
blockcipher. The result shows a superior performance of CLOC for short input
data, up to around 128 bytes, which would be sufficiently long for low-power
wireless networks, as we mentioned in Sect. 1. We also measure the RAM usage
of the AVR implementations, using a public tool [41], based on data of 16 bytes.
It is clear to see that CLOC requires much less RAM than OCB3.

8 Hardware Implementation

Although the primary focus of CLOC is embedded software, we also imple-
mented CLOC on hardware to see basic performance figures. We used Altera
FPGA, Cyclone IV GX (EP4CGX110DF31C7) [1], and implemented CLOC us-
ing AES-128. AES implementation is round-based, and the S-box of AES is based



Table 2. Test vector of CLOC instantiated with AES-128

length (bytes) value (in hex)

Key 16 00102030405060708090a0b0c0d0e0f0

Associated data 14 ff0102030405060708090a0b0c0d

Nonce 12 00112233445566778899aabb

Plaintext 30 86012204ccebf09ad5305ea8967aebd0

0dd9c05cbde9407ff1ef52f043a2

Ciphertext 30 ebd908c23eac555dee406434fb2cffd4

e1bee4401002063e2d13cdf9df3b

Tag 16 6621dae27674aa6fbc303426824b2c05

Table 3. Software implementation on ATmega128

ROM RAM Init Speed (cycles/byte)
(bytes) (bytes) (cycles) Data 16 32 64 96 128 256

CLOC 2980 362 1999 750.1 549.0 448.4 414.9 398.2 373.0
EAX 2772 402 12996 913.6 632.5 490.8 443.6 419.9 384.5

EAX-prime 2588 421 5102 908.7 638.7 496.6 449.3 425.6 390.1
OCB-E 5010 971 4956 1217.5 736.1 495.5 412.2 375.1 315.0
OCB-D 5010 971 4955 1252.2 773.4 534.0 451.2 414.3 354.4

on a composite field [37]. For reference we also wrote EAX for the same device,
using the same AES. Both CLOC and EAX use one AES core for encryption
and authentication. In EAX implementation, all input masks are stored to reg-
isters. Table 4 shows the results. The size is measured by the number of logic
elements (LEs). Our implementation is not optimized. Still, these figures show
that CLOC has slightly smaller size and faster speed than EAX. Table 4 lacks
other important modes, in particular OCB. A more comprehensive comparison
and optimized implementation for short input data are interesting future topics.

9 Conclusions

We presented a blockcipher mode of operation called CLOC for authenticated
encryption with associated data. It uses a variant of CFB mode in its encryp-
tion part and a variant of CBC MAC in the authentication part. The scheme
efficiently handles short input data without heavy precomputation nor large
memory, and it is suitable for use in microprocessors. We proved CLOC secure,
in a reduction-based provable security paradigm, under the assumption that the
blockcipher is a pseudorandom permutation. We also presented our preliminary
implementation results.

It would be interesting to see improved implementation results using possibly
lightweight blockciphers.



Table 4. Hardware implementation. Throughput figures of CLOC and EAX are mea-
sured for 8-block plaintexts with one-block associated data.

Size (LE) Max. Freq. (MHz) Throughput (Mbit/sec)

CLOC 5628 82.1 400.7
EAX 6453 61.3 342.2

AES Enc. 3175 98.7 971.7
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