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Abstract. In this paper, we investigate the properties of iterative non-
injective functions and the security of primitives where they are used.
First, we introduce the Collision Probability Spectrum (cps) parameter
to quantify how far from a permutation a function is. In particular, we
show that the output size decreases linearly with the number of iterations
whereas the collision trees grow quadratically.
Secondly, we investigate the t-sponge construction and show how cer-
tain cps and rate values lead to an improved preimage attack on long
messages. As an example, we �nd collisions for the gluon-64 internal
function, approximate its cps, and show an attack that violates the se-
curity claims. For instance, if a message ends with a sequence of 1 Mb
(respectively 1 Gb) of zeros, then our preimage search takes time 2115.3

(respectively 2105.3) instead of 2128.
Keywords: random function, Collision Probability Spectrum, collision
tree, T-sponge, GLUON, collision search

1 Introduction

Consider a function g : S → S where S is some �nite space of size 2N

and suppose that it is not a permutation, i.e. that it has collisions. It is
well known that for a random g the complexity of a collision search is of
2N/2 calls to g. However, not only the collision search complexity but also
some related problems are not well studied when collisions have a certain
structure, which is the case in several designs [1,2]. It might be clear that
iterating such a function may lead to an entropy loss, but again, the scale
of this loss and its implications on the security of stream ciphers and hash
functions is not well known or underestimated. In this paper we introduce
a particular parameter called the Collision Probability Spectrum (cps),
which is based on the number of solutions for the following equation

g(a+ y) = g(a). (1)
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We study the cps for several designs and show, as an illustration of our
methodology, a preimage attack on the sponge-based lightweight hash
function gluon-64.

Related work. Bellare and Kohno [3] studied how the number of preimages
to g(a) a�ects the complexity of the collision search with the notion of
balance of a function. In [4], Flajolet and Odlyzko studied several charac-
teristics of random mappings, in particular the distribution of preimage
sizes, the cycle size and the size of the iterated image. Their result was
applied by Hong and Kim [5] to the mickey [1] cipher. Indeed, they
found experimentally that the size of the iterated images of this function
was essentially the size of the space divided by the number of iterations,
a behavior which they showed experimentally to correspond to the pre-
diction of Flajolet et al.. However, the resulting attacks were found to
be less e�cient than the simple collision search [6], though they allow a
time/memory trade-o�.

Overview of our results. We introduce the Collision Probability Spectrum

parameter which quanti�es how many solutions Equation (1) has on aver-
age and investigate its consequences over the iterated images and preim-
ages of S by g. We assume that the composition of two such functions
has certain properties, which is formalized as an independence assump-
tion. For a large class of mappings two important facts are proved in
Theorem 2 (a reader may refer to Figure 1):

� First, the size of the iterated image of g is inversely proportional with
the number i of iterations:

|gi(S)| ∼ |S|κ
2 · i

,

where κ depends on the cps and where i has to be smaller than
√
|S|

� otherwise, the result does not hold because of the cycles in the
functionnal graph.

� Second, an element y ∈ gi(S) is the root of a collision tree consisting
in elements xl such that any of g(xl), g

2(xl), . . . , g
i(xl) is equal to y.

The average size of this tree is νi:

νi ∼
κ

4
· i2,

with the same restriction on i: i <
√
|S|.



Then we discuss the security of the t-sponge construction provided
the cps of the update function. We amend the collision search bound in
the �at sponge claim [7]:

P =
Q2

2c+1
·
(
1 +

κ− 1

2r

)
,

where c is the capacity and r is the rate of the sponge.

Next, in Theorem 6 , we show for small r an improved preimage attack
with complexity

2c · 2r+2/(κz),

where z is the number of zero bytes in the end of the hashed message
(actually, any constant su�ces).

Finally, we construct an attack on gluon-64. Aided with a SAT-solver,
we �nd collisions for the update function and demonstrate a preimage
attack of complexity 2105 for a message ending with 1 GByte of zeros,
which violate the claimed preimage resistance level of 128 bits.

Structure. This paper is organized as follows. We introduce our theoretical
framework in Section 2 and discuss its application to existing primitives.
We investigate the security of t-sponge against collision and preimage
search in Section 3. Finally, in Section 4, we obtain inner-collisions of the
update function of gluon-64 with the help of a SAT-solver and show
a preimage attack. For the sake of concision, the proofs are moved to
Appendix A.

Notations We denote by |E| and #E the size of a set E, by P[ω] the
probability of an event ω and by a

$← E the fact that a is drawn uniformly
at random from a set E.

2 Theoretical Framework

In this section we introduce a model of random functions and highlight
its di�erence with the usual approach. We then give several properties of
the (iterated) images and preimages of an element by such functions.

2.1 Collision Probability Spectrum and Function Model

De�nition 1 (Collision Probability Spectrum). Let S be a �nite

space and let g : S → S be a function. We denote ck the probability that
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Fig. 1. Collision trees and output shrinkage of iterative non-injective functions. The
dots represent elements of S and there is an edge from x to y if g(x) = y. Here,
g(a+ x) = g(a) always has exactly 3 solutions.

the following equation has exactly k solutions for a ∈ S picked uniformly

at random in S:
g(a+ x) = g(a), (2)

so that

ck = P[#{x ∈ S, g(a+ x) = g(a)} = k | a $← S] (3)

The solutions x of this equation are called vanishing di�erences. The set

of all the elements a of S such that Equation (2) has exactly k solutions

is denoted Vk. Finally, the set C = {ck}k≥1 is the Collision Probability
Spectrum (cps) of g.

An equivalent de�nition of the cps is that it is the probability distribution
of the number of solutions of Eq. 2. We now make some remarks regarding
these de�nitions:

� Since 0 is always a solution of Equation (2), we have that c0 = 0.
� If g is a permutation, then C(g) = {c1 = 1, ck = 0 for k > 1}.
� The input space can be partitioned in the following way: S =

⋃∞
k=1 Vk.

Furthermore, the output space can be partitioned as g(S) =
⋃∞
k=1 g(Vk).

This is also a disjoint union. Indeed, y ∈ g(Vk) has exactly k preim-
ages, by de�nition.

� The size of g(Vk) is |g(Vk)| = |S| · ck/k because to each element in
g(Vk) correspond k elements in Vk (see Figure 2). As a consequence,

|g(S)| = |S| ·
∞∑
k=1

ck
k
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Fig. 2. The e�ect of g with cps {c1 = c2 = 1/2} on S.

2.2 Composition of functions with known cps

The most interesting application of our theory is the properties of iterative
constructions where the iterated function has some known cps. However,
to make meaningful and correct statements about composition of such
functions, some independency must be assumed.

Assumption 1 (Independence Assumption). Let g be a function with

cps C. Then there is no correlation between the events x ∈ Vj and g(x) ∈
Vk for any j, k.

This assumption, as we will see, holds for a few (but not for all) real
primitives. For the rest of the paper, we implicitly assume that it holds
unless stated otherwise.

De�nition 2. Suppose g is a function on S. Then `i de�ned as

`i =
|S|
|gi(S)|

is called the shrinking ratio of g.

Our �rst theorem allows to compute the shrinking ratio of the com-
position of two functions with given cps.

Theorem 1. Let g and g′ be functions with cps C = {ck}k≥1 and C′ =
{c′k}k≥1, respectively. Then the shrinking ratio of the composition g ◦ g′ is
computed as follows:

`1(g ◦ g′) =
( 1

`1
−
∞∑
k=1

ck
k

(
1− 1

`′1

)k)−1
.

In particular, when g′ = gi:

`i+1 =
( 1

`1
−
∞∑
k=1

ck
k

(
1− 1

`i

)k)−1
.



A detailed proof is given in Appendix A.1 but we provide a high level
view of its structure.

Proof Sketch 1. We consider an element x0 ∈ g′(S) such that there exists
{x0, ..., xk} with g(xl) = g(x0), i.e. x0 ∈ Vk+1. The number of solutions
of g(x0 + x) = g(x0) in g′(S) for x0 drawn at random in g′(S) ∩ Vk+1

follows a binomial distribution (m, k, 1/`′1) as xl ∈ g′(S) with probability
|g′(S)|/|S| = 1/`′1.

Using this observation, we can compute the probability that g(x0 +
x) = g(x0) hasm solutions in g′(S) for allm: if it hasm+1 solutions, then
it must be that x0 ∈ Vk+1 and that only m of the k non zero solutions
�made it� to g′(S). Then, we deduce the size of the image of g′(S) by g,
i.e. we give an expression of `1(g ◦ g′).

Using this theorem, we can give the asymptotic behavior of `i and of
the size of the collision trees as i increases while remaining small enough
so that g(x) is not on a cycle. The results stated below have been checked
experimentally on the functions for which the independence assumption
presumably holds. We need two more de�nitions.

De�nition 3. Suppose g is a function on S with cps C. Then

� κ(C) is the collision average of g � the average number of non-zero

solutions of Equation (2): κ =
∑

k≥1 ck · k − 1.

� νi(g) is the average tree size of g � the average number of elements

in a collision tree rooted in gi(S). Formally, it is the average number

of pairs (xl, kl) ∈ S × [1, i] such that gkl(xl) = y for y ∈ gi(S).

Theorem 2. Let g be a function with cps C, then for i <
√
|S| the

shrinking ratio and the average tree size are approximated as follows for

large enough i:

`i ∼
κ

2
· i, νi ∼

κ

4
· i2.

Proof Sketch 2. The asymptotic behaviour of `i can be deduced by using
Theorem 1 with g′ = gi and then using the �nite expansion of (1− 1/`i)

k

to see that `i+1 = `i + κ/2. For νi, we simply note that νi =
∑i

k=1 `k.
More details are given in Appendix A.2

Finally, we de�ne the following quantities in the same way as Flajolet
et al.[4].



De�nition 4. We call cycle length and tail length, denoted respectively

µ and λ, the average smallest values such that

gλ(x) = gλ+µ(x)

for x drawn uniformly at random in S.
Experiments (see Appendix A.3) lead us to the following conjecture.

Conjecture 1. Let g be a function of S with cps C. Experimentally, we
found the following values for the tail length λ and the cycle length µ:

λ ∼
√

π

8 · κ
|S|, µ ∼

√
π

8 · κ
|S|.

2.3 Independence assumption in practice

In this Section, we investigate some results from the literature about par-
ticular functions and see how relevant our model is. A summary of this
Section is given in Tab. 1.

Table 1. Characteristics derived from the cps of some functions.

Function κ `1 `i/i νi/i
2 Reference for the cps

mickey's update function 0.625 1.407 2−1.7 2−2.7 [8]

Random mapping 1 1.582 2−1 2−2 [4]

gluon-64's update function 6.982 3.578 21.8 20.8 Section 4.2

Random mappings The authors of [4] study random mappings and give
the probability that some x ∈ S has r preimages by a random mapping
g. From this we deduce that the cps of a random function is given by the
Poisson distribution with λ = 1:

C = {e−1/(k − 1)!}k≥1.

Our framework implies

κ = 1 and `1 = 1/(1− e−1) and `i+1 = 1/
(
1− exp(−1/`i)

)
which �ts the results of [4](see also Appendix A.1). The authors of [5]
observed that

log2(`i) ≈ log2(i)− 1,

which also corresponds to κ = 1 . Finally, the trail and cycle length given
in Conj. 1 match those predicted by [4] if we replace κ by 1.



A5/1 The update function of A5/1 does not satisfy the independence
assumption. The author of [2] computed its cps and established that

`1 = 1.6, κ = 1.25,

If the assumption held, then the probability for an element in S to be
in g100(S) would be about 2−6, which is very di�erent from the 2−2.5

actually observed by Biryukov et al. [9]. The reason is that the update
function A5/1 may keep one of its three LFSR's untouched, which means
that x ∈ Vj and g(x) ∈ Vk are not independent events in its case.

mickey The update function of the mickey [1] stream-ciphers (v1 and
v2) �ts our model. Hong and Kim [5] performed some experiments on the

�rst version of mickey and, in particular, estimated the size of g2
k
(S)

for several values of k. Their results are coherent with our model. For
instance, they observed that log2(`i) (which they denote by EL(f i)) is
approximated as

log2(`i) ≈ log2(i)− 1.8

The constant term 1.8 implies

κ/2 ≈ 2−1.8.

In turn, from the cps values computed in [8](actually, the values ck/k)
we obtain the theoretical value

κ = 0.625,

which corresponds to a di�erence of about 7% with the experiments in [5].

3 Improved Collision and Preimage Search

In this section we explore generic collision and preimage search methods
in their application to functions with �xed collision spectrum.

3.1 Basic Collision Search

First, we reformulate the result from Bellare and Kohno [3] with our no-
tation.



Theorem 3 ([3]). Let g be a function with CPS C, and let κ be its col-

lision average. Then the birthday collision attack on g requires about

Q =

√
|S|
κ+ 1

. (4)

queries to g.

The original paper [3] used the parameter balance of g, denoted µ(g),
which is computed as

µ(g) = log|g(S)|

( |S|2∑
y∈S |g−1(y)|2

)
(5)

If we know the cps of g, the balance can be expressed as follows:

µ(g) ≈ 1−
log2

(∑∞
k=1 k · ck

)
+ log2

(∑∞
k=1 ck/k

)
log2

(
|S|
) . (6)

If Conjecture 1 holds, then the memory-less collision search based on
Floyd's cycle �nding algorithm should be

√
κ as fast as in the case of a

random function.

3.2 Collision attacks on t-sponge

Now we demonstrate that the entropy loss because of collisions in the t-
sponge construction, though observable, can be mitigated by a large rate
parameter.

Sponge construction The sponge construction [7] is characterised by its
rate r, its capacity c and its update function g. It is based on an internal
state of size r + c where, at each round, r bits of the message are xor-ed.
Then the sponge alternates the application of g function with the message
injection until the message has been entirely absorbed. The digest is then
squeezed by extracting r bits of the internal state and applying the update
function to the internal state again. This is repeated as many times as
necessary to obtain a digest of desired length. A representation of a sponge
is given in Figure 3. The sponge-based hash function is indi�erentiable
from a random oracle in the random-function model up to 2c/2 queries
to g [10]. If g is not a permutation, the sponge is called transformative

sponge or t-sponge.
We denote a sponge-based hash function by H : F∗2 → Frj2 , the internal

state space by S = Fr+c2 , and the update function by g : S → S.
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Fig. 3. Principle of a sponge construction. The message m is sliced into k blocks of r
bits and "absorbed" during the �rst phase. Then, the j blocks of size r constituting
the digest h are "squeezed".

Collision Search in t-sponge The following theorem shows that to
get a signi�cant speed-up in the collision search, the collision average κ
should be at least of the same magnitude as 2r.

Theorem 4. Let g be a random mapping from Fr+c2 with cps C. Let H
be a t-sponge of capacity c and rate r updated with g. Then the probability

of success of a brute-force collision attack on H is

P =
Q2

2c+1
·
(
1 +

κ− 1

2r

)
where Q is the number of queries to g.

The proof of Theorem 4 is in Appendix A.4. For a completely random
mapping we have κ = 1, so that the theorem has the same form as in [7].

Nevertheless, since in practice the functions are not drawn at random
from the set of all functions, it is of interest to be able to predict the e�ect
of their properties over the security they provide. In particular, we see that
a function with κ > 1 does not exactly provide c/2 bits of security against
birthday attacks. Such functions can be found in real cryptographic prim-
itives, see Section 4. However, we also immediately see that this e�ect is
small since typical value of κ are of order of magnitude 1, 10 being al-
ready rather bad, while 2r is at least in the hundreds. The designers of
a t-sponge need not really worry about the number of collisions in the
update function if the rate is high enough.



3.3 Improved Preimage Attack

x0 ... xk

d

gi1 gik

gα

gα
gαgαgα

g−zα (d)

Collision tree

Fig. 4. The two targets of the iterated preimage attacks on d where d is in gzα(S) and
z = 5. Di�erent colors correspond to di�erent function calls.

Principle of the Iterated Preimage Attacks Consider a set {gk}k∈K
of random functions of S with cps's {Ck}k∈K and a �xed starting point
x0 ∈ S and let {k1, ..., kl} be a set of l elements of K. We call keyed walk

the sequence(
x1 = gk1(x0), x2 = gk2(x1), ..., xl = gkl(xl−1) = d

)
.

and it can for instance correspond to the successive values of the internal
state of a t-sponge or of a Davies-Meyer based Merkle-Damgård hash
function as we discuss in the next sections. Consider a keyed walk directed
by a sequence {k1, k2, ..., α, α, ..., α} ending with z copies of the same
symbol α. Then, intuitively, much entropy will have been lost because of
the z iterations of gα so that it should be easier to �nd a second sequence
of keys leading to the same �nal value. This is formalized by the next
theorem and a graphical representation of the phenomena we use is given
in Figure 4.

Theorem 5. Let {gk}k∈K be a set of random mappings of S with cps's

{Ck}k∈K and consider a sequence {k1, k2, ..., α, ..., α} of l keys from K
ending with z identical keys α. Given the �nal value d of the corresponding
keyed walk, the value of α and the number z, it is possible to �nd, for large

enough z:

1. a keyed walk ending in d in time |S| · 4/(κz),



2. a keyed walk ending in d after precisely z calls to gα in time |S| · 2/κ.

where κ is the collision average of Cα.

Proof. Let d be the �nal element in the walk. From the structure of the
walk, we know that d ∈ gzα(S). Using Theorem 2, we know that there
are (κ/2) · z elements in g−zα (d) and that the collision tree rooted at d
contains (κ/4) ·z2 elements. Therefore, such an element of g−zα (d) is found
with probability κ · z/(|S| · 2) and an element in the collision tree with
probability κ · z2/(|S| · 4).

However, in both cases, we need to call gα z times to know if the
element we picked at random is mapped to d after exactly z iterations
of gα (�rst case) or at most z iterations (second case). Therefore, �nding
an element in the collision tree (�rst case) requires |S| · z/(κ · z2/4) =
|S| ·4/(κz) calls to gα and �nding an element in g−zα (d) requires |S| ·z/(κ ·
z/2) = |S| · 2/κ. ut

Note that these attacks can be generalized to the case where the end
of the message is periodic instead of constant, i.e. if it ends with z copies
of (α1, α2, ..., αp). We simply need to replace gα by g′ = gα1 ◦ ...◦ gαp . The
κ involved in the complexity computations is then that of g′, i.e.

∑p
i=1 κi

where κi is the collision average of gαi (see Lemma 2 in Section 5). The
constraint on z being large is only such that we can assume that z has
the asymptotical behaviours described in Theorem 2.

Application to a t-sponge Hashing a message with a t-sponge can be
seen as performing a keyed walk where the keys are the message blocks of
length r and the initial value x0 is the all-zero vector. The function gk is
gk(x) = g(x ⊕ k) where k is set to zero after its r �rst bits and g is the
update function of the t-sponge. Clearly, gk has the same cps as g.

While the �at sponge claim provides a good description of the security
o�ered by a sponge (be it a t-sponge or a p-sponge) against collision
search and, for p-sponge, against second preimage search, there is a gap
between the number of queries it allows and the best algorithm known for
preimage search. In particular, there is to the best of our knowledge no
algorithm allowing a preimage search with complexity below 2c calls to
the sponge function.1 Theorem 6 bridges the gap between the 2c/2 bound

1 This case corresponds to the case where the attacker inverts the squeezing operations
in time 2c to retrieve the last internal state of the sponge before the squeezing and
then uses a meet-in-the middle approach to �nd a valid message leading to this
internal state in time 2c/2 (see [11]). Furthermore, this second step cannot be carried
out in the case of a t-sponge since the update function cannot be inverted.



of the �at sponge claim and the 2c bound for preimage search by applying
Theorem 5 to the t-sponge structure.

Theorem 6. Let H be a t-sponge with update function g, and let κ be the

collision average of g. Let M be a message such that its last z injections

to the sponge are identical. Then a preimage to H(M) can be found with

complexity

2c · 2r+2/(κz)

Such messages can be quite common. For instance, the last z calls of
g can be blank calls for the sole purpose to slow down the hashing as
suggested by NIST [12].2 Such an attack can be prevented by setting an
upper-bound of about 2r+2/κ for the length of the message which in turn
means that r has to be high in a t-sponge.

Similarity to the Herding Attack This attack was introduced in [13]
and is also refered to as the Nostradamus attack. In a herding attack, an
attacker commits to a digest d and, when given a challenge P , has to �nd
a su�x S such that H(P ||S) = d. To achieve this she builds, during an
o�ine phase, a so-called diamond structure which is essentially a binary
collision tree with 2` nodes and rooted at d. The nodes of the tree contain
the value of the internal state as well as the message block which needs
to be absorbed to go to its child. During the online phase, she uses the
diamond to �nd e�ciently the su�x S: all she has to do is �nd a way to
reach any of the 2`+1 − 1 nodes in the diamond from the given starting
point.

Application to a Merkle-Damgård Construction When a block ci-
pher is used in Davies-Meyer mode to build a Merkle-Damgård-based hash
function, the successive chaining values hi ∈ S are obtained from the pre-
vious one and the i-th message block: hi = Emi(hi−1)⊕hi−1 = gmi(hi−1).
Because of the feedback of hi−1, we do not expect gk to be a permutation
and, therefore, expect such a construction to be vulnerable to iterated
preimage attacks. The padding used for Merkle-Damgård constructions
usually takes into account the length of the message so that we need a
message of the same length. Therefore, it is not enough to aim at an el-
ement in the collision tree, we need to �nd an element which is precisely

2 Here, we consider that the message hashed is of a length equal to a multiple of r
to begin with, so that the padding consisting in appending a one to the end of the
message can be seen as part of the squeezing.



in g−zα (d) so that a preimage search requires 2N+1/κ: if the cps of gk is
such that κ > 2 then the iterated preimage attack is more e�cient than
brute-force. Furthermore, if there is an e�cient way around the padding
(e.g., with expandable messages [14]), the e�ciency becomes 2N+2/(κz)
where N is the size of the internal state of the hash function.

4 Preimage Attack on gluon-64

4.1 The gluon family of hash functions

Introduced in [15], the gluon family of hash functions consists of three
members corresponding to di�erent security levels: gluon-64, gluon-80
and gluon-112. They have a t-sponge structure and have characteristics
summarized in Table 2.

Table 2. Characteristics of the hash functions of the gluon family.

name rate r capacity c collision search preimage search

gluon-64 8 128 264 2128

gluon-80 16 160 280 2160

gluon-112 32 224 2112 2224

The function g used to update the internal state has the same struc-
ture in the three cases. It can be seen as a stream-cipher based on a Feed-
back with Carry Shift Register (fcsr). The concept of fcsr has evolved
through time as the �rst stream-cipher [16] based on a component bearing
this name got broken [17]. When we talk about fcsr in this paper, we re-
fer to the last version of this structure, i.e. the one used in X-FCSR v2 [18]
and, of course, gluon. For example, the algebraic representation of the
fcsr used by gluon-64 is given in Fig. 5.

A fcsr is made of w cells of r bits. Each cell may be on the receiving
end of a feedback. If the cell i receives no feed-backs, then its content at
time t + 1 is the content of the cell of index i + 1 at time t. Consider
now that the cell i receives a feedback. This cell contains an additional
memory to store the value of the carry from one clock to the next. The
content of the cell at time t is denoted mt

i and that of the carry register
cti. Since it receives a feedback there are a cell of index j and a value of
shift s (possibly equal to zero) such that:

mt+1
i = mt

i+1 +
(
mt
j � s

)
+ cti

ct+1
i = mt

i+1 ·
(
mt
j � s

)
+ mt

i+1 · cti +
(
mt
j � s

)
· cti



where �� s� is a C-style notation for the shift of the content of a cell
by s bits to the left (or |s| bits to the right if s ≤ 0) and + and · are
respectively the bitwise addition and multiplication in Fr2.

0 1 2 3 4 5

6

7

8

91011121314

15

16

17

+ + +

+

+

+

+++

+

+

+

5

3

5

1

6
3

Fig. 5. Algebraic representation of the fcsr used in gluon-64. Blue arrows correspond
to feed-backs shifted to the right and red ones to the left. The value of the shift is given
by the label of the arrow.

The update function of every member of the gluon family is made of
three steps: padding of the input and loading in a fcsr (pad), clocking of
the fcsr (ρ) and �ltering Φ. We describe these steps separately.

pad The internal state of the sponge is of size r(w−1), so that r(w−1) =
r + c. The padding consists simply in appending a block of r bits all
equal to one to the end of the internal state. The rw bits thus obtained
are then loaded in a fcsr with an internal state made of w cells of
size r. All the carries of the fcsr are set to zero. This operation is
denoted pad : Fr+c2 → Frw2 × Frw2 as the output is made of the main
register and the carry register of the fcsr.

ρd+4 The fcsr is clocked d+ 4 times. One clocking is denoted ρ : Frw2 ×
Frw2 → Frw2 × Frw2 .



Φ The output of g is extracted r bits by r bits using the following method:
�xed words of the main register are rotated and then xor-ed to obtain
r bits and then the fcsr is clocked. This operation is repeated w − 1
times so as to have r(w − 1) = r + c bits of output. The action of
clocking the fcsr w−1 times while �ltering r bits each time is denoted
Φ : Frw2 × Frw2 → Fr+c2 .

Overall, g is equal to Φ ◦ ρd+4 ◦ pad. The function pad is a bijection
and we shall consider that the restriction of Φ over the set of the pairs
main register/carry register reachable after d+4 calls to ρ starting in the
image of pad is collision-free. The designers of gluon claim:

After a few iterations from an initial state, the automaton is in
a periodic sequence of states of length P . The average number of
required iterations to be in such a state is experimentally less than
log2(n), where n is the size of the main register [...] This leads to
consider a function [g] which is really close to a permutation from
{0, 1}b into itself because the surjective part of the construction is
really limited once the function [g] acts on the main cycle.

However, what happens during these �rst rounds, before the main cycle
is reached? It is possible to encode the equation

(ρk ◦ pad)(a+ x) = (ρk ◦ pad)(x) (7)

for a �xed a into a CNF-formula solvable by a SAT-solver as long as k is
not too big, say 10. The encoding is fairly straight-forward and we shall
not go into the details for the sake of concision. Note that solving the
equation (ρk ◦ pad)(x) = y using a SAT-solver is fast, meaning that it is
possible to run a fcsr backward. However, we tried encoding the �ltering
so as to solve (Φ ◦ ρk ◦ pad)(x) = y but no SAT-solver was able to handle
the corresponding CNF-formula � we killed the process after 1 week of
running time for gluon-112 (simplest �ltering of the three), and for k = 1
instead of k = d+ 4 = 46.

We solved (7) for many values of a and for k = 10 for each member of
the gluon family. While no non-zero solutions were found for any a for
gluon-80 and gluon-112, it turns out that (7) has many solutions for
gluon-64. We used Algorithm 1 to �nd to which Vk any element a ∈ S
belongs by enumerating all the values of x such that (7) holds. It works
by solving (7) for x, thus (possibly) �nding a solution x1; then solving
(7) with the constraint that the solution must be di�erent from x1, thus
(possibly) �nding x2, etc. until no more solutions can be found. If there
are k such x 6= 0, then a is in Vk+1.



4.2 cps and Preimage Attack on gluon-64

We ran Algorithm 1 for gluon-64 on 24,000 di�erent elements chosen
uniformly at random in S = Fr+c2 . This allowed us to approximate the
cps of the update function. Our results are Figure 6.

Fig. 6. Approximation of the cps of the function used by gluon-64 to update its
internal state over 24,000 random elements of F136

2 . Note that non-zero ck were observed
well after k = 20.

We deduce that c1 = 0.065, `1 = 3.578 and κ = 6.982 which are
much worse than what one should expect from a random function, namely
c1 = e−1 ≈ 0.368, `1 = 1/(1 − e−1) ≈ 1.582 and κ = 1. This means
that �nding a preimage in a scheme equivalent to appending z identical
words at the end of the message has a complexity of 2136+2/(6.982 · z) =
2128 · (146.7/z). For z > 147, this is more e�cient than classical brute-
force. The complexities for some values of z < 2(r+c)/2 = 268 are given in
Table 3.

5 Other properties of cps

The cps of a function is preserved by some transformation as shown in
Lemma 1. The collision average of g1 ◦ g2 has a simple expression given in
Lemma 2.

Lemma 1. Let g be a function with cps C, P : S → S be a permutation

and J : S → S be injective over g(S). Then g′ = J ◦ g ◦ P has cps C as

well.



Table 3. Complexity C of a preimage search for d = H(m) where H is gluon-64 and
m is unkown except for the z identical bytes in its end.

z log2(C)
147 b 127.99

500 b 126.23

1 kb 125.23

1 Mb 115.27

1 Gb 105.30

109 Gb 75.19

Fig. 7. Evolution of the number of possible values for the internal state of gluon-64
when a message block is absorbed (thick vertical arrow) or when it absorbs a constant
several times (thin vertical arrow) z = 3 times.

Proof. Since J is injective over g(S), we have g′(y) = g′(a) if and only if
g(P (y)) = g(P (a)). Since the events �g′(y) = g′(a) has k solutions� and
�g(x) = g(P (a)) has k solutions� have the same probability, namely ck,
we see that g and g′ have the same cps. ut

Lemma 2. Let g1 have collision average κ1 and g2 have collision average

κ2. Then g1 ◦ g2 has collision average κ1 + κ2.

Proof. Suppose that (g2 ◦ g1)(x) = (g2 ◦ g1)(y) with x 6= y. There are two
distinct ways this could happen:

� if g1(x) = g1(y), which happens in κ1 cases on average,
� or if g1(x) 6= g1(y) but g2

(
g1(x)

)
= g2

(
g1(y)

)
. There are on average

κ2/`1 solutions for g2(X) = g2(Y ) in g1(S) where `1 is the shrinking
ratio of g1. However, each of these solutions is the image of `1 elements
of S by g1.

Overall, the equation has κ1+ `1 ·κ2/`1 = κ1+κ2 solutions, which proves
the lemma. ut



Note that Lemma 2 had to hold at least for g1 = g2 because otherwise
we would have had a contradiction with the asymptotic behaviour of `i
described in Theorem 2.

6 Conclusion

We introduced the notion of cps and of the collision average κ, which
is computed from the cps. The collision average value determines the
shrinking ratio and the collision tree size of an iterative construction, and
hence directly a�ects their security, in particular preimage and collision
resistance.

We have showed that the t-sponge is a fragile object when the rate
parameter is small. For instance, preimages to long messages of speci�c
structure become much easier to �nd. We gave speci�c recommendations
for the designers of such constructions. Hopefully, our framework might
become a useful tool in the design.

Finally, we demonstrated a practical application of our methodology.
Aided with a SAT-solver, we found collisions for the gluon-64 update
function and then approximated its cps and the collision average κ. We
showed that for not so long messages of 1 Gigabyte a preimage can be
found with complexity 2105 compared to the security claim of 2128, and
shortcut attacks are possible for messages of only a kilobyte long.
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A Proofs and Experiments

A.1 Proof of the Iterated Values of `i

Let us prove Theorem 1.

Proof. We shall look at the e�ect multiple iterations of g have over sets
{x0, ..., xk} where g(xj) = g(xj′) for all j, j

′.

http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf


Let x0 be in g
′(S) and such that there are k other elements {x1, ..., xk}

such that g(x0) = g(xj), i.e. x ∈ Vk+1.

As every element in S is in g′(S) with probability only 1/`′1, the
number of elements colliding with x in g′(S) follows a binomial distri-
bution with parameters (m, k, 1/`′1) (we consider that the output of g′

are uniformly distributed over S and that they are independent from
one another). Thus, there are m elements colliding with x ∈ g′(S) with
probability

(
k
m

)
(1/`′1)

m(1 − 1/`′1)
k−m. Let Cm+1 be the probability that

g(x0 + x) = g(x0) has m non-zero solutions in g′(S) knowing that x0 ∈
g′(S):

Cm+1 =
∞∑
k=m

ck+1

(
k

m

)( 1

`′1

)m(
1− 1

`′1

)k−m
. (8)

Furthermore, we have:

`′1
`1(g ◦ g′)

=
|(g ◦ g′)(S)|
|g′(S)|

=
∞∑
m=1

Cm
m
,

and so:

`′1
`1(g ◦ g′)

=
∞∑
m=1

1

m

∞∑
k=m−1

ck+1

(
k

m− 1

)( 1

`′1

)m−1(
1− 1

`′1

)k−m+1

=

∞∑
k=0

k∑
m=0

ck+1

m+ 1

(
k

m

)( 1

`′1

)m(
1− 1

`′1

)k−m
.

This expression can be simpli�ed because
(
k
m

)
/(m+ 1) =

(
k+1
m+1

)
/(k + 1),

so that:

`′1
`1(g ◦ g′)

=

∞∑
k=0

ck+1

k + 1

k∑
m=0

(
k + 1

m+ 1

)( 1

`′1

)m(
1− 1

`′1

)k−m
=
∞∑
k=0

ck+1

k + 1

k+1∑
m=1

(
k + 1

m

)( 1

`′1

)m−1(
1− 1

`′1

)k−(m−1)
=

∞∑
k=0

ck+1 · `′1
k + 1

( k+1∑
m=0

(
k + 1

m

)( 1

`′1

)m(
1− 1

`′1

)k+1−m
−
(
1− 1

`′1

)k+1
)
.



Note that
∑k+1

m=0

(
k+1
m

)(
1
`′1

)m(
1 − 1

`′1

)k+1−m
= 1 (binomial theorem), so

in the end we obtain:

1

`1(g ◦ g′)
=
∞∑
k=0

ck+1

k + 1

(
1−

(
1− 1

`′1

)k+1
)

=
∞∑
k=1

ck
k

(
1−

(
1− 1

`′1

)k)
=

1

`1
−
∞∑
k=1

ck
k

(
1− 1

`′1

)k
which proves the Theorem. ut

Note that this result is coherent with the one found by [4] in the case
of random functions, i.e. when {ck}k≥1 = {e−1/

(
(k − 1)!

)
}k≥1. Indeed,

they prove that
1

`i+1
= 1− exp

(−1
`i

)
,

which is the same as the one we found:

1

`i+1
=

∞∑
k=1

ck
k

(
1−

(
1− 1

`i

)k)
= e−1

∞∑
k=1

1

k!

(
1−

(
1− 1

`i

)k)
= 1− exp

(−1
`i

)
.

A.2 Proof of the Asymptotic Behaviors

Theorem 1 gives the recurrence relation `i satis�es so we can prove its
asymptotic behavior.

Proof. Since `i is obviously increasing (the output space keeps shrinking
and we keep i < 2n/2 to remain away from the main cycle) we have, for
large enough i:

1

`i+1
=
∞∑
k=1

ck
k

(
1−

(
1− k

`i
+
k(k − 1)

2 · `2i
+ o(`−2i )

))
=

1

`i

∞∑
k=1

ck
(
1− k − 1

2 · `i
+ o(`−1i )

)
,

so that we have:

`i
`i+1

=

∞∑
k=1

ck −
∞∑
k=1

ck · (k − 1)

2 · `i
+ o(`−1i )

= 1− κ/2

`i
+ o(`−1i )



which in turns implies

`i+1 =
`i

1− κ/2
`i

+ o(`−1i )

= `i +
κ

2
+ o(1),

so that `i = κ
2 · i + o(i). This observation concludes the proof of the

behavior of `i.
Let us now look at νi. There are on average `w elements reaching

y ∈ gw(S) in exactly w iterations. Since gi(S) ⊆ gw(S) for all w ≤ i, we
have that y ∈ gi(S) is reached, on average, by:

� `1 elements in exactly 1 iteration,
� `2 elements in exactly 2 iterations,
...

� `i elements in exactly i iterations.

Overall, there are on average
∑i

w=1 `w ≈
∑i

w=1(κ/2)w ≈ (κ/4)i2 ele-
ments reaching y ∈ gi(S) after at most i iterations of g. ut

A.3 Experimental Justi�cation of Conjecture 1

For every N between 12 and 17 included, we generated 100 functions with
a given cps and, for each of them, we picked 40 elements at random in FN2
and computed λ/2N/2 and µ/2N/2 for each of them (24,000 data points for
each cps). The average of these values for cps's corresponding to di�erent
values of κ are given in Fig. 8. As we can see, both λ/2N/2 and µ/2N/2 are
almost equal to

√
π/(8κ), which is equivalent to Conj. 1 being correct.

Fig. 8. Average value of λ/2N/2 and µ/2N/2 for di�erent κ.



A.4 Proof of the E�ect of the cps on a t-sponge

Proof. Our proof is a modi�ed version of the one used by Bertoni et al. in
the paper where they introduced the sponge construction [7]. In particular,
we use the same terminology: we call the elements of Fc+r2 �nodes� and
we partition the space according to the value of the bits in the capacity
to obtain 2c �super-nodes�, each containing 2r nodes. There is an oriented
edge from node x to node y if and only if y = g(x). Finding a collision in
H boils down to �nding two di�erent paths in this graph starting from
points in the super-node with capacity zero to an identical super-node.

We shall study the fan-in and the fan-out of these super-nodes, the
fan-in of a super-node being the number of edges going to it and the fan-
out the number of edges going out of it. In this framework, the fan-out
of each super-node is 2r. However, the number of edges going in each
super-node is not constant. Consider some super-node Y made of nodes
y1, ..., y2r . Each yi has a fan-in F (yi) so that the F (yi)'s are independent
and identically distributed random variables with the distribution

P[F (yi) = k] =
ck
k

if k ≥ 1 , P[F (yi) = 0] = 1− 1

`1

which has a mean equal to 1 and a variance equal to κ.

The value of the fan-in of the super-node Y is the sum of the fan-in's
of its nodes:

F (Y ) =

2r∑
i=1

F (yi).

We consider that 2r is large enough to apply the central limit theorem
so that F (Y ) is normally distributed with mean equal to 2r and variance
equal to κ · 2r.

Consider now the set Nk of all the super-nodes with fan-in equal to
k; in other words the set of the super-nodes with exactly k preimages. It
has a size equal to |Nk| = 2cG(k) where

G(k) =
1√

2π · κ · 2r
· exp

(
− 1

2
· (k − 2r)2

κ · 2r
)

and the Nk's form a partition of the space of the super-nodes. Consider
some node x1: the probability that its image by g is in a super-node of
Nk is

P[g(x1) ∈ Nk] =
k

2c+r
· |Nk| =

k

2r
·G(k)



Let V be the super-node g(x1) is in. The probability that a second element
x2 6= x1 is such that g(x2) is in the same super-node as g(x1) is the
probability that x2 is at the beginning of one of the k − 1 edges going to
V which are not the one starting at x1. Therefore, the probability that
g(x1) and g(x2) are in the same super-node V knowing that V ∈ Nk is

P[g(x1), g(x2) ∈ V | V ∈ Nk] =
k − 1

2c+r
· k
2r
·G(k)

so that the probability that g(x1) and g(x2) have the same capacity bits
for x1 and x2 chosen uniformly at random is

P[g(x1), g(x2) ∈ V ] =
∞∑
k=0

k(k − 1)

2c+2r
·G(k) ≈ (2r)2 + κ · 2r − 2r

2c+2r
.

Therefore, the probability of success of a collision search performed by
absorbing Q messages at random until two internal states with the same
capacity bits are observed is

P[success of collision search] ≈
(
Q

2

)
22r + 2r(κ− 1)

2c+2r
≈ Q2

2c+1
·
(
1+

κ− 1

2r
)
.

ut

B Algorithms

Algorithm 1 Enumerating all the solutions of g(a+ δ) = g(a).
D = empty list
b = 0
while b < rw − 1 do

F = CNF(ρ1k) + CNF(ρ2k) + CNF(ρ1k(x) = ρ2k(y))
F = F + CNF(x = a) + CNF(xb + yb = 1)
for δ in D do

F = F + CNF(x+ y 6= δ)
end for

if SAT-solver concludes that F is satis�able then
Retrieve y from the assignment and append x+ y to D

else

b = b+ 1 . We move on only when this bit is exhaustively used
end if

end while

Return D
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