
Multiple differential cryptanalysis of
round-reduced PRINCE ?

Anne Canteaut1, Thomas Fuhr2, Henri Gilbert2,
Maŕıa Naya-Plasencia1, and Jean-René Reinhard2

1 Inria, France
2 ANSSI, France

Abstract. PRINCE is a lightweight block cipher proposed by Borghoff
et al. at Asiacrypt 2012. Due to its originality, novel design and low num-
ber of rounds, it has already attracted the attention of a large number of
cryptanalysts. Several results on reduced versions have been published
to date; the best one is an attack on 8 rounds out of the total number
of 12. In this paper we improve this result by two rounds: we provide
an attack on 10 rounds of the cipher with a data complexity of 257.94

and a time complexity of 260.62, corresponding to 118.56 security bits,
instead of 126 for the generic attacks. Our attack uses multiple differen-
tials and exploits some properties of PRINCE for recovering the whole
key. PRINCE is defined as a member of a family of ciphers, differing
by the choice of an Sbox among a distinguished set. We also show that
the security offered by all the members of the family is not equivalent,
by identifying an Sbox for which our attack can be extended up to 11
rounds with a data complexity of 259.81 and a time complexity of 262.43.

Keywords. Differential cryptanalysis, PRINCE, multiple differentials,
key-recovery.

1 Introduction

The area of lightweight primitives has drawn considerable attention over the last
years, due to the need of low-cost cryptosystems for several emerging applications
like RFID tags and sensor networks. The strong demand from industry has
led to the design of a large number of lightweight block ciphers, with different
implementation features. Among the best studied proposals are the ISO/IEC
standards PRESENT [4] and CLEFIA [16], as well as LBlock [19], TWINE [18],
LED [12] and KLEIN [11]. In this context, the need for a significant cryptanalysis
effort is obvious. The demand from industry for clearly recommended lightweight
ciphers requires that the large number of these potential candidates be narrowed
down. Since the trade-off between the performance and the security is a major
issue for lightweight primitives, it is also very important to estimate the security

? Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

margin of these ciphers, to determine for instance if some rounds need to be
added, or if some can be omitted for achieving a given security level.

Recently, at Asiacrypt 2012, a new lightweight cipher named PRINCE has
been proposed by Borghoff et al. [5]. This block cipher, which aims at low-latency
encryption, has already received a lot of attention from the community, mainly
due to its simplicity, originality and low number of rounds. These results include
some small improvements upon the generic attack against the full cipher (that
implies a reduction from 2127 to 2126 of the claimed security bound on the prod-
uct Data×Time of the data and time complexities for any attack) [13, 1]. Against
round-reduced versions of PRINCE, the best attack published so far applies to
8 rounds (out of 12) [8] and an attack against 9 rounds has been described very
recently [14]. Also some analysis of the building block PRINCEcore and some
interesting results have been obtained on a variant of PRINCE using a chosen
weak constant α [17, 13]. However, this constant is not a parameter of the design
of PRINCE. An attack in the multi-user setting has also been presented in [9].

In this paper, we propose a differential-type attack on round-reduced PRINCE
that increases the number of analyzed rounds to 10 rounds, without modifying
the constants or building-blocks in the cipher. It is a multiple differential at-
tack, based on a principle similar to the one in [15], that we have combined
with a sophisticated key recovery method specific for PRINCE. The fact that
the linear layer in PRINCE is based on the same design strategy as the AES
aims at making it resistant to classical differential attacks. In particular, due to
the branch number of the linear transformation, any differential characteristic
over four consecutive rounds has at least 16 active Sboxes, implying that the
probability of any differential characteristic over the 12 rounds is at most 2−96.
Nevertheless, our attack exploits the following four properties coming from the
main features of PRINCE:

– there exist many differentials for the round function with 4 active Sboxes
and with an activity pattern having a particular shape (the active nibbles
are the corners of a square);

– several of the characteristics obtained by iterating these round differentials
have the same input and the same output differences, leading to some r-
round differentials whose probability is much higher than the probability of
a single characteristic;

– for a given pair of input and output activity patterns, we find several good
differentials, which can be exploited together in a multiple differential attack,
as proposed in [2, 3];

– because of the particular shape of the activity patterns, these differentials
can be extended by two rounds in each direction. Indeed, for some fixed
input and output activity patterns, the active nibbles only depend on half
of the bits of the plaintext and of the ciphertext, and on 66 of the 128 key
bits.

Altogether, these four properties enable us to describe the first attack on 10-
round PRINCE, which requires 257.94 chosen plaintexts, with time complexity
less that 260.61 encryptions, leading to a product Data× Time around 2118.56.

Another interesting issue is that, besides PRINCE, the designers have pro-
posed a whole family of ciphers, named the PRINCE-Family, which differ in their
4×4 Sbox only. Since the Sbox of any member in the PRINCE-Family guarantees
the same resistance to classical attacks, including differential attacks, all those
ciphers seem to offer a similar security. Here, we show that it is not the case since
all these Sboxes do not have the same behaviour regarding our attack. In par-
ticular, we exhibit a member of the PRINCE-Family for which up to 11 rounds
can be attacked with data and time complexity satisfying Data×Time = 2122.24.
The complexities of our attacks and a comparison with the previous results are
given in Table 1.

Part of PRINCE Source Rounds Data Time D×T Memory Attacks

PRINCE

[13] 6 216 264 280 216 integral

[8] 8 1 2123 2123 220 sieve-in-the-middle

[14] 9 257 264 2121 257.3 meet-in-the-middle

Sec. 6 9 246.89 251.21 298.10 252.21 multiple differential3

Sec. 6 10 257.94 260.62 2118.56 261.52 multiple differential3

PRINCE(chosen α) [13] 12 241 241 282 - boomerang

PRINCEcore
[13] 6 216 230 246 216 integral

[1] 12 240 262.72 2102.72 28 biclique

PRINCE-Family

(modified Sbox)

Sec. 6 10 250.42 253.61 2104.03 254.00 multiple differential3

Sec. 6 11 259.81 262.43 2122.24 263.39 multiple differential3

Table 1. Summary of all attacks on PRINCE in the single-key setting, including the
attacks presented in this paper.

The paper is organized as follows. After a description of PRINCE in Sec-
tion 2, Section 3 exhibits some differential paths with 4 active nibbles per round
only, and gives a lower bound on the probabilities of some related differen-
tials. Section 4 shows how these r-round differentials can be extended by two
rounds at the beginning and by two rounds at the end, in a way such that some
key bits can be recovered. Some experimental results supporting the previously
made assumptions are presented in Section 5. Section 6 discusses and presents
the results on 9 and 10 rounds of PRINCE and of some other element in the
PRINCE-Family.

3 Memory complexity figures can be slightly larger than time complexities due to the
relative cost between an encryption and a memory access.

2 The PRINCE block cipher

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit
elements, K0 and K1. Its structure is depicted on Figure 1.

⊕ R ⊕ · · · R S M ′ S−1⊕ R−1⊕ · · · ⊕ R−1 ⊕

K0⊕K1⊕RC0

K1⊕RC1 K1⊕RC5 K1⊕RC6 K1⊕RC10

K′0⊕K1⊕RC11
M ′S SR M ′ S−1SR−1

Fig. 1. Structure of PRINCE.

PRINCE is based on the so-called FX-construction: two whitening keys
Win = (K0 ⊕K1) and Wout = (K ′0 ⊕K1) are XORed respectively to the input
and to the output of a 12-round core cipher, named PRINCEcore, parametrized
by K1 only. The value of K ′0 involved in the post-whitening key is derived from
K0 by K ′0 = (K0 ≫ 1)⊕ (K0 � 63).

The internal state of the cipher is represented by a 4×16 binary matrix. The
lower right corner of this matrix is the least significant bit of the input, while
the upper left corner is the bit of index 63. This 4×16 binary matrix can also be
seen as a 4× 4 matrix of nibbles. In this case, the nibbles are numbered by their
positions in the matrix, where the rows (resp. the columns) are numbered from
top to bottom (resp. from left to right). The precise numbering of bit positions
and nibbles is depicted on Figure 2. We adopt the following notation. For a
64-bit state, plaintext or ciphertext value W , when W is seen as a matrix of
nibbles, W j designates column j of W , and W i,j designates the nibble at row i
and column j. Wi designates the bit at position i. For a 64-bit key value K, Ki

designates the bit of K at position i. For a general 64-bit value W and a set of
bit indexes E, WE designates the set of bits of W at bit positions in the set E.

60616263 44454647 28293031 12131415

56575859 40414243 24252627 891011

52535455 36373839 20212223 4567

48495051 32333435 16171819 0123

Row 0

Row 1

Row 2

Row 3

Column 0 Column 1 Column 2 Column 3

Bits numbering

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Nibbles numbering

Fig. 2. Numbering of nibbles and bits of the internal state.

The round function is then composed of:

– a non-linear layer S corresponding to 16 parallel applications of a 4×4 Sbox
σ, which operates on the 16 nibbles of the internal state.

– a linear layer SR ◦M ′, where M ′ is the parallel application of 4 involutive
MixColumn transformations, each operating on 16 bits. The same transfor-
mation is applied on first and last (resp. on second and third) columns of
the state. This transformation is then followed by a permutation SR of the
16 nibbles which is similar to the AES ShiftRows operation: in the 4×4 ma-
trix of nibbles, the row of index i is rotated by i positions to the left.

– the addition of a round constant RCi and of the subkey K1.

The first 5 rounds in PRINCE correspond to the previously described round
permutation R, while the last 5 rounds are defined by the inverse permutation
R−1. The middle round corresponds to the successive applications of S, M ′ and
S−1 (see Figure 1).

One of the main features of PRINCEcore is that decryption can be imple-
mented by the same circuit as encryption, but under another key. This comes
from the fact that the 12 round constants satisfy RCi ⊕ RC11−i = α for 0 ≤
i ≤ 11, where α is a fixed constant, implying that decryption under key K1

corresponds to encryption under key K1 ⊕ α.

Round-reduced versions of PRINCE. The number of rounds in PRINCE corre-
sponds to the number of nonlinear layers. There are 12 rounds for the full cipher.
Round-reduced versions are defined in a similar way: if the overall number of
rounds r is even, the numbers of rounds before and after the middle transforma-
tion are the same, while they differ by 1 when r is odd.

Some observations on the linear layer. We note that M ′ can be expressed as the
parallel application of 16 independent transformations operating on one column
of bits of the internal state. These 4-bit transformations have the following form:

x =

x1
x2
x3
x4

 7→

wt(x) mod 2
wt(x) mod 2
wt(x) mod 2
wt(x) mod 2

⊕ Rotni

x4
x3
x2
x1

 ,

where wt(x) is the Hamming weight of x and Rotni
denotes some rotation by

ni positions to the top. In other words, M ′ is the composition of three simple
columnwise operations: the inversion of the order of the four bits, followed by a
bitwise rotation, completed by the addition of the parity of the column to each
bit of the column. The whole linear layer when the weight of each column is even
is depicted in the appendix of [7].

3 Differentials with 4 active nibbles for PRINCEcore

We now study some differentials for PRINCEcore with particular activity pat-
terns, and we compute a lower bound on their probabilities.

In the following, we denote by R the permutation corresponding to S ◦ SR ◦
M ′. Evaluating the difference propagation through R enables to evaluate the dif-
ference propagation through one round R of PRINCEcore since key and round
constant additions do not alter the differences. To assess the probability of char-
acteristics over several rounds, we will consider that the transition probabilities
in different rounds are independent. Due to the absence of key addition around
the middle M ′ layer, we apply a specific analysis to the surrounding non-linear
layers. We denote by Ssbox the permutation S−1◦M ′◦S, which covers one Super
Sbox, as defined in [10]. Here, we study some differentials for the function

Fr1+r2+2 =
(
R−1

)r2 ◦M ′ ◦ SR−1 ◦ Ssbox ◦ SR ◦M ′ ◦Rr1 ,
which should also be good differentials for FK1

r1+r2+2, the function obtained by
considering (r1 + r2 + 2) rounds of PRINCEcore, with constants, key additions,
and an additional linear layer at the beginning and at the end.

In the following, the internal state is seen as a 4× 4 matrix of nibbles num-
bered according to Figure 2. Since any differential characteristic over four con-
secutive rounds has at least 16 active Sboxes [6, Theorem 2], we here focus on
differential characteristics with four active Sboxes in each round. We show that
several such characteristics can be built, and we additionally exhibit such charac-
teristics sharing their input and output differences. In other words, we are able to
find a lower bound on the probability of some differentials which include several
differential characteristics with the lowest possible number of active Sboxes.

The crucial observation is that the diffusion in the linear layer is ensured by
the addition of the parity in M ′. In order to build some characteristics with a
low number of active Sboxes, we focus on the differences with four active nibbles
located in two columns, such that the two active nibbles in the same column
are identical. This ensures that no diffusion of the differences takes place since
the corresponding parity bits are inactive. We further restrict the differences
considered to those whose active nibbles are the corners of a 3 × 3 square, i.e.,
the positions of the four active nibbles in the 4× 4 internal state are of the form
(i, c), (i+ 2, c), (i, c+ 2) and (i+ 2, c+ 2) for some i and c in {0, 1}. A difference
satisfying these properties will be called valid.

There are exactly four square activity patterns and each of them is denoted
by [i, c] with the minimal values of i and c. In the following, any valid difference is
then characterized by its activity pattern [i, c] and by the two differences (δ1, δ2)
where δ1 (resp. δ2) denotes the difference which appears in Column c (resp. in
Column (c+ 2)).

3.1 Computing the transition probabilities

There are exactly 152 = 225 valid differences for each activity pattern. We now
determine when a valid difference can be mapped into another valid difference
by R = S ◦ SR ◦M ′. Since S operates on the nibbles independently, it does not
affect the activity pattern. Then, we need to determine when a square activity
pattern can be transformed into another square activity pattern by the linear

layer SR ◦M ′. It can be easily checked that this situation occurs if and only if
the nibble differences (δ1, δ2) belong to the 18 pairs of the form

(δ1, δ2) ∈ (∆1 ×∆2) ∪ (∆2 ×∆1) with ∆1 = {1, 4, 5} and ∆2 = {2, 8, 10} .
Then, there are exactly 4 × 2 × 9 = 72 nonzero valid differences which are
mapped by SR◦M ′ to a difference with a square activity pattern. The resulting
differences have equal nibble differences on the square pattern diagonals. An
example of such a propagation is depicted on Figure 3. Therefore, a valid input

δ1

δ1

δ2

δ2

δ2

δ1

δ1

δ2

δ′1

δ′1

δ′2

δ′2

δ1

δ1

δ2

δ2
- - -

M ′ SR S

Fig. 3. Propagation of a valid input difference over one round R when (δ1, δ2) ∈ ∆1×∆2

(if (δ1, δ2) ∈ ∆2 × ∆1, the above sequence [0, 0] → [1, 0] → [1, 1] → [1, 1] of square
activity patterns would be replaced by [0, 0]→ [0, 0]→ [0, 0]→ [0, 0]).

difference with active nibbles (δ1, δ2) can be mapped by R to a valid difference
with active nibbles (δ′1, δ

′
2) if and only if the following four transitions for the

Sbox are valid: δ1 7→ δ′1, δ2 7→ δ′2, δ1 7→ δ′2 and δ2 7→ δ′1. Then, the probability
of the transition (δ1, δ2) 7→ (δ′1, δ

′
2) for R does not vary when the roles of δ1

and δ2 are inverted, or when the roles of δ′1 and δ′2 are inverted. This important
property will be exploited in the attack. Thus, we consider the 9× 9 transition
matrix µ whose entry at the intersection of Row (δ1, δ2) ∈ ∆1×∆2 and Column
(δ′1, δ

′
2) ∈ ∆1 ×∆2 is the product of the four probabilities:

p(δ1, δ
′
1)p(δ2, δ

′
1)p(δ1, δ

′
2)p(δ2, δ

′
2) ,

where
p(δ, δ′) = PrX [σ(X ⊕ δ)⊕ σ(X) = δ′]

and σ is the 4×4 Sbox used in PRINCE. Now, for a given input activity pattern,
all 9 (δ1, δ2) in ∆1 × ∆2 lead to the same output activity pattern, while all 9
(δ1, δ2) in ∆2×∆1 lead to another one. Then, the whole 72×72 transition matrix
can be written as the Kronecker product4 A⊗µ, where the 8×8 matrix A encodes
the transition between the 4 square activity patterns, together with the fact that
δ belongs either to ∆1 × ∆2 or to ∆2 × ∆1, and the 9 × 9 matrix µ encodes
transition between values of δ ∈ ∆1 ×∆2. The values of these two matrices are
given in [7]. Thus, the transition matrix corresponding to r iterations of R is
given by

(A⊗ µ)r = (Ar ⊗ µr) .
4 The Kronecker product of an m× n matrix A and a p× q matrix B is the mp× nq

block matrix whose block at Position (i, j) equals Ai,jB.

In the same way, we can define the matrices B and ν that correspond to the
middle round M ′ ◦SR−1 ◦Ssbox ◦SR ◦M ′ . Note that due to the involutivity of
Ssbox, ν is symmetric. Obviously, the transition matrix for R−1 is the transpose
of the transition matrix for R, i.e.,

(A⊗ µ)T = (AT ⊗ µT) .

It eventually follows that the transition matrix for Fr1+r2+2 is(
Ar1B(Ar2)T ⊗ µr1ν(µr2)T

)
.

It can be checked that AB = B(A)T = J , where J is the matrix with all
entries equal to 1. Since all rows and all columns of A have weight 2, we deduce
that AJ = 2J and JAT = 2J , implying that, for any r1 + r2 ≥ 1,

Ar1B(Ar2)T = 2r1+r2−1J .

It follows that, for any valid input difference defined by ∆in = (δ1, δ2) and
with any given input activity pattern, the probability that the output difference
is a valid difference ∆out = (δ′1, δ

′
2) with a given output activity pattern is

2r1+r2−1
(
µr1ν(µr2)T

)
i,j

where i and j are the row and column indices corresponding to ∆in and ∆out.
It is worth noticing that this probability depends on (∆in, ∆out) only, and is
independent from the input and output square activity patterns.

3.2 Results for the Sbox used in PRINCE

By computing µr1ν(µr2)T , we get the following results for the Sbox used in
PRINCE (the transition matrices are given in the appendix of [7]).

– For r1 = r2 = 2, i.e., for six rounds, the highest coefficient of the matrix
µ2ν(µ2)T is 2−70 × 1536. Then, the best differential has probability

2−70 × 1536× 23 ≈ 2−56.42 .

This probability is obtained for four differentials, namely (∆in, ∆out) ∈
{(1, 2), (2, 1)} × {(1, 2), (2, 1)}, and for any fixed input and output activity
patterns.

– For r1 = 1 and r2 = 2, the probability of the best differential is 2−47.42. For
r1 = 2 and r2 = 1, the transition matrix µ2ν(µ)T is obviously the transpose
of the previous one, leading to the same maximal transition probability.

3.3 Results for another Sbox used in the PRINCE-Family

The PRINCE-family consists of all ciphers defined as PRINCE but with an Sbox
σ which can be chosen among eight 4× 4 Sboxes and all the affinely equivalent

transformations (see Appendix B in [6]). All these Sboxes are expected to have
the same properties regarding classical differential attacks. However, when we
focus on the valid differentials with square activity patterns, these Sboxes do
not have the same behaviour. We have searched for some Sbox minimizing the
complexity of the attack described in the next section. An optimal Sbox in that
sense, linearly equivalent to Sbox S5 from [6], is

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

σ[x] 0 A 6 5 8 D 3 4 7 C 2 E 9 F B 1

For this Sbox, we get the following results (the corresponding transition ma-
trices are given in [7]).

– For r1 = r2 = 2, i.e., for six rounds, the highest probability is obtained for
four differentials, namely when (∆in, ∆out) ∈ {(5, 2), (2, 5)}×{(5, 2), (2, 5)}.
The corresponding probability is 2−50.

– For r1 = 2 and r2 = 3, i.e., for seven rounds, the probability of the best
differential is 2−58.

4 Key recovery on round reduced versions of PRINCE

In this section we show how the previously described differentials can be extended
by up to 4 full rounds, in order to recover the key of reduced variants of PRINCE,
in a chosen-plaintext scenario.

4.1 General principle

Our attack applies to r rounds of PRINCE with r > 4. We call reduced cipher, the
cipher derived from r rounds of PRINCEcore by removing, both at the beginning
and at the end of the cipher, one full round and an additional nonlinear layer.
Therefore, the reduced cipher corresponds to the (r− 4)-round function defined
in the previous section FK1

r1+r2+2 with r1 + r2 + 2 = r− 4 and |r1 − r2| ≤ 1. Our
attack exploits together several differentials with the same input and output
activity patterns for the reduced cipher, as proposed in [2, 3]. Indeed, there exist
several differentials with the same square activity pattern which have similar
probabilities. In particular, if (δ1, δ2) 7→ (δ′1, δ

′
2) holds with probability p, so do

(δ2, δ1) 7→ (δ′1, δ
′
2), (δ1, δ2) 7→ (δ′2, δ

′
1) and (δ2, δ1) 7→ (δ′2, δ

′
1).

These square differentials for (r − 4) rounds of the reduced cipher can be
exploited to perform a key-recovery attack on r rounds of PRINCE. Actually,
due to the very simple key schedule of PRINCE, the knowledge of 66 key bits
only (out of 128) allows to determine whether a given plaintext-ciphertext pair
corresponds to a pair of input and output of the reduced cipher which follows
one of the considered differentials. Moreover, there is an efficient procedure for
deriving, from each plaintext-ciphertext pair, the list of all partial key candidates
which lead to one of the expected differentials for the reduced cipher. Assuming
the considered differentials have good probabilities, the correct partial key is then

suggested with higher probability than the other ones. Our attack then follows
the general principle of statistical attacks on block ciphers: the first part is a
distillation phase which counts how many times the partial keys are suggested
by the available plaintext-ciphertext pairs. Then the analysis phase selects the
partial keys suggested by at least τ pairs, where the threshold τ is a parameter of
the attack. The search phase eventually consists in finding the key of the cipher
from the identified list of partial keys.

For the sake of clarity, we first focus on input and output differences cor-
responding to the [0, 0]-activity pattern. From now on, we denote by ∆ =
(∆in, ∆out) a differential with input and output having the [0, 0]-activity pattern,
and by ptrue(∆) its transition probability. We consider a set Σ of D such dif-
ferentials. Σin denotes the set of all input differences ∆in such that (∆in, ∆out)
belongs to Σ for some ∆out. Similarly, Σout is the set of all output differences
in Σ. The sizes of these sets are denoted by Din and Dout respectively.

4.2 Extension of the reduced cipher square differentials

Construction of structures. Our attack makes use of structures of plaintexts.
A structure SP 1,P 3 is a set of 232 pairs of plaintexts and ciphertexts, defined as
follows. Columns 1 and 3 of all the plaintexts in the structure share the same
values P 1 and P 3, while Columns 0 and 2 take all the (216)2 = 232 possible
values. Building such a structure requires 232 encryption queries.

Let us consider any differential ∆ = (∆in, ∆out) in Σ. For any plaintext
P in the structure, we denote by X the (unknown) value obtained during the
encryption of P after addition of the whitening key Win, and by U the (unknown)
value at the beginning of the reduced cipher. Similarly, with any ciphertext C
we associate the value Y before the addition of the whitening key Wout and the
value V at the end of the reduced cipher (see Figure 4).

Then, the plaintext P∆ corresponding to U ⊕ ∆in has the same value as
P on Columns 1 and 3. Indeed these columns do not depend on the active
nibbles of ∆in when computing backwards as shown on Figure 4. Therefore, P∆
lies in the same structure as P . The subset of all 231(232 − 1) pairs of distinct
plaintexts obtained from SP 1,P 3 can be partitioned into subsets of 231 pairs,
each corresponding to a given difference at the beginning of the reduced cipher.
As a consequence, there are exactly 231 pairs of distinct plaintexts from SP 1,P 3

which lead to any given input difference ∆in ∈ Σin for the reduced cipher. We
can build Ns such structures for a cost of N = 232Ns chosen plaintexts.

Right pairs and candidate pairs. When considering the target key, the pairs
that follow one of the differentials in Σ are called right pairs. Their number is
about

Ntrue = 231Ns
∑
∆∈Σ

ptrue(∆) =
N

2
ptrue where ptrue =

∑
∆∈Σ

ptrue(∆) , (1)

i.e., ptrue is the sum of the probabilities of all the differentials in Σ.

⊕ ⊕

K1,a

K1,b

⊕ ⊕

K1,a

K1,b

δ1

δ2δ1

δ2

δ′1

δ′2δ′1

δ′2

S(·⊕RC3−r1
) M ′ SR S

S−1(·)⊕RC8+r2 M ′ SR−1 S−1

FK1
r1+r2+2

K0 ⊕K1

K ′0 ⊕K1

K1 ⊕RC4−r1

K1 ⊕RC7+r2

P

C

X

Y

U

V

Fig. 4. Extension of the reduced cipher square differentials. The blue (resp. red) nibbles
correspond to plaintext/ciphertext column 0 (resp. 2). The colored nibbles of the states
can be recovered from the corresponding colored nibbles of the key material, plaintext
and ciphertext. In the cipher states, full colored nibbles indicate active nibbles, emptied
colored nibbles and empty nibbles indicate no difference.

For the right pairs, the difference at the end of the reduced cipher has the
[0, 0]-activity pattern. Then, it can be seen on Figure 4 that this difference can
propagate only to Columns 0 and 2 of the ciphertexts. Thus, our criterion to
detect potential right pairs is a collision on Columns 1 and 3 of the ciphertexts.
All pairs with ciphertexts colliding on Columns 1 and 3 are named candidate
pairs. Obviously, all right pairs belong to the set of candidate pairs. However,
about 263Ns possible pairs can be obtained from the Ns structures, and each
of those fulfills the criterion with probability 2−32. Therefore we have about
F = 231Ns candidate pairs.

Guessing key bits. For any given candidate pair (P, P ′, C, C ′), it can be easily
seen that the difference U ⊕ U ′ at the beginning of the reduced cipher can be
recovered from the plaintexts and from Columns 0 and 2 of the pre-whitening
key Win = K0⊕K1 and from four nibbles of K1 (the colored nibbles in Figure 4),

namely the bits K
[20;23]∪[28;31]∪[52;55]∪[60;63]
1 . Similarly, the difference at the end

of the reduced cipher depends on the ciphertexts, on the same four nibbles of K1

and also on Columns 0 and 2 of the post-whitening key Wout = K ′0 ⊕K1.

Since the two whitening keys are related by some simple formula deduced
from the fact that K ′0 = (K0 ≫ 1)⊕ (K0 � 63), the following property can be
easily proved by induction.

Property 1. Let j and ` be two indices with 0 ≤ j ≤ ` ≤ 63. From the knowledge

of K`
1 (or K`+1

0 , with K64
0 = K0

0) and W
[j;`]
in and W

[j;`]
out , one can derive linearly

the values of K
[j;`]
0 and K

[j;`]
1 (with a perturbation by K63

0 at bit position 0).

Using Property 1, it is easy to establish that the key material required to
ensure a candidate pair follows a differential corresponds to 66 information bits

of the key: bits K
[16;31]∪[48;63]
1 and bits K

0∪[16;32]∪[48;63]
0 .

Distillation phase overview. Taking into account the structure used by the
attack, the distillation phase basic principle is given in Algorithm 1.

Algorithm 1 Distillation phase of the attack.

for all Ns structures of plaintexts
for all pairs (P, P ′) in the structure such that (C1 ⊕ C′1 = C3 ⊕ C′3) = 0

for all 66-bit partial keys k which lead to (U ⊕ U ′, V ⊕ V ′) ∈ Σ
Increment the counter Nk

We show in the following subsections how the partial keys corresponding
to candidate pairs can be identified efficiently during the distillation phase. We
remark that a second distillation phase can be performed by considering another
input-output activity pattern for the differentials of the reduced cipher, and we
study the distribution of the counters Nk as a function of the data complexity
and a threshold parameter τ .

4.3 Identification of key candidates in the distillation phase

Overview. The attack described above can be performed only if, for each can-
didate pair, the partial keys which lead to a differential in Σ for the reduced
cipher can be efficiently determined. Finding these key candidates is not a triv-
ial task in the general case. In the following, we describe a method to achieve it
with a time complexity close to D encryptions per candidate pair, where D is
the number of differentials considered in the attack.

First, let us remark that the first (resp. last) two rounds of the cipher, before
the beginning (resp. the end) of the reduced cipher FK1

r1+r2+2, act independently
on the different columns (or diagonals) of the state, as depicted on Figure 4.
Thus, for every differential ∆ ∈ Σ, for column i ∈ {0, 2} and for every partial
values of K1 (K1,a or K1,b), one can precompute all compatible input-output
column pairs (Xi, Xi ⊕∆Xi, Y i, Y i ⊕∆Y i) for the cipher without its pre- and
post-whitening, as detailed in the precomputation step paragraph below.

Then, the processing step successively examines all candidate pairs of plaintext-
ciphertext for all considered differentials of the reduced cipher. Since the whiten-
ing keys satisfy Win = P ⊕X and Wout = C⊕Y , the precomputed tables enable
us to determine all partial values of the whitening keys which can lead to a

differential in Σ for the reduced cipher. Among these whitening keys, further
filtering is required to ensure constraints stemming from the key schedule are
satisfied.

Now, we describe in details how lists can be precomputed and carefully
merged in order to reduce the complexity of the attack. The list elements are
tuples of values. We will assume that the lists are sorted lexicographically after
being generated.

Precomputation step. At the input of the reduced cipher, the four active
nibbles can be divided into two pairs. Indeed, referring to Figure 4, column X0

(resp. X2) of X can be computed from the two blue (resp. red) active nibbles
of U , the two blue (resp. red) nibbles of K1 and two additional inactive nibbles
in the blue (resp. red) column after the M ′ layer. Therefore, we precompute
the following lists: for all ∆in = (δ1, δ2) ∈ Σin, Lin,a∆in

is composed of triples

(K1,a, ∆X
0, X0) where X0 and ∆X0 are two 16-bit elements and K1,a is an 8-

bit part of K1 corresponding to its two blue nibbles on Figure 4. The values X0

and (X0 ⊕∆X0) are the values on Column 0 of some internal states X and X ′

which lead to ∆in on the blue nibbles at the input of the reduced cipher given
K1,a. Similarly, Lin,b∆in

contains triples (K1,b, ∆X
2, X2) where K1,b corresponds to

the two red nibbles of K1, and X2 and (X2⊕∆X2) are the values on Column 2 of
some X and X ′ which lead to ∆in on the red nibbles at the input of the reduced
cipher. The detailed algorithm for computing Lin,a∆in

is given in Algorithm 2.

Algorithm 2 Precomputation step of the distillation phase

L ← {(z0, z2, z′0, z′2) ∈ (F4
2)4 : σ(z0)⊕ σ(z′0) = δ1 and σ(z2)⊕ σ(z′2) = δ2 with

(δ1, δ2) = ∆in}
for all (z, z′) in L

for all K1,a = (k0,0, k2,2) corresponding to the two blue nibbles of K1

for all pairs of nibbles (z1, z3)
X0 ← S−1(M ′(z0 ⊕ k0,0 ⊕RC0,0

4−r1 , z1, z2 ⊕ k2,2 ⊕RC
2,2
4−r1 , z3))⊕RC0

3−r1
∆X0 ← X0⊕S−1(M ′(z′0⊕k0,0⊕RC0,0

4−r1 , z1, z
′
2⊕k2,2⊕RC2,2

4−r1 , z3))⊕RC0
3−r1

Add (K1,a,∆X
0, X0) to Lin,a∆in

The first list L has size exactly 28. Then, each list Lin,a∆in
contains 224 elements,

as well as the lists Lin,b∆in
. Similarly, we compute the 2Dout lists Lout,a∆out

and Lout,b∆out
,

each of size 224 elements, which correspond to the possible pairs of values for Y
and Y ′ on Column 0 and Column 2, respectively.

For a PRINCE computation, the eight bits of K1 involved in Lout,a∆out
(resp.

in Lout,b∆out
) are the same as the ones involved in Lin,a∆in

(resp. in Lin,b∆in
). Therefore,

the lists sharing the same key bits can be merged. For any ∆ = (∆in, ∆out), the
two lists Lin,a∆in

and Lout,a∆out
then lead to a list La∆ of size 240 composed of tuples

(∆X0, ∆Y 0, T,K1,a, X
0, Y 0). T is a 3-bit linear tag appended to each element

of the list, whose role will be explained later. The overall time complexity of this
merging process is proportional to 240D. The memory required for storing the
D lists La∆ corresponds to 240D elements of 75 bits. Similarly, the lists Lin,b∆in

and

Lout,b∆out
are merged into D lists Lb∆ of size 240.

Processing step. We now explain how, for each candidate pair, (P, P ′, C, C ′),
we compute all partial keys which lead to a differential in Σ for the reduced
cipher. Since all possible values for Columns 0 and 2 of (X,X ′, Y, Y ′) have been
precomputed and P ⊕ P ′ = X ⊕ X ′, C ⊕ C ′ = Y ⊕ Y ′, the precomputed lists
provide us with the list of all possible values for the whitening keys Win =
K0 ⊕K1 and Wout = K ′0 ⊕K1 on Columns 0 and 2, along with co-determined
values of some bits of Columns 0 and 2 of K1.

Moreover, since for all i 6= 0 we have Xi ⊕ Pi = Ki
0 ⊕ Ki

1 and Yi ⊕ Ci =
Ki+1

0 ⊕Ki
1, we also deduce the following relation between P,C,X, Y and K1:

Pi ⊕ Ci−1 = Xi ⊕ Yi−1 ⊕Ki
1 ⊕Ki−1

1 . (2)

For each element in one of the lists La∆, the right-hand term in the previous
relation is known for 61 ≤ i ≤ 63 since the nibble in Position (0, 0) of K1

belongs to K1,a. This is the 3-bit value, denoted by T , included in the tuples
in La∆. Then, for each candidate pair examined in the attack, the corresponding
value of (Pi⊕Ci−1), 61 ≤ i ≤ 63 is compared with T . The number of candidates
for the value of W 0

in is then divided by a factor 8, on average. Similarly, the 3-bit
value corresponding to the right-hand side of (2) for 28 ≤ i ≤ 31 is included
in each element of Lb∆. The 66-bit keys corresponding to a given candidate
pair are then computed through Algorithm 3. The principle of this algorithm
is to generate lists Li, i ∈ {0, 2} containing partial key values affecting mainly
Column i and compatible with Column i of the considered candidate pair, to
compute the key bits shared by elements in both lists, and finally to merge the
two lists according to the shared bit values.

For ∆ ∈ Σ, the number of elements in lists La∆ and Lb∆, which take a given
value on the first 3 values (∆X,∆Y and T) of their tuple, amounting to 35 bits,
is 25 on average. For each of these elements, we need to compute 4 bits by a
simple linear relation. The final merging step between L0 and L2 leads to 22 key
candidates on average. It requires to sort the two lists according to their first
two values, which can be done in linear time, for a cost of 26.

Thus the average complexity of Algorithm 3 is 26D elementary operations
and the average number of partial key candidates found for each candidate pair
is 2−8 × (25)2D = 4D.

4.4 Iterating the distillation phase for recovering the whole key

We have shown how to perform a distillation phase leveraging differentials with
input and output [0, 0]-activity patterns. It extracts information about the num-
ber of values taken by 66 key bits from structures of plaintext-ciphertext pairs.

Algorithm 3 Processing step of the distillation phase

Input: a candidate pair (P, P ′, C, C′)
B ← (Pi ⊕ Ci−1, 61 ≤ i ≤ 63); B′ ← (Pi ⊕ Ci−1, 29 ≤ i ≤ 31).
for all ∆ ∈ Σ
L0 = ∅,L2 = ∅
for all elements in La∆ of the form (P 0 ⊕ P ′0, C0 ⊕ C′0, B,K1,a, X

0, Y 0)
W 0
in ← X0 ⊕ P 0; W 0

out ← Y 0 ⊕ C0.
Compute K

[52;55]
1 with Property 1 starting from K60

1 ∈ K1,a.

Add (K
[52;55]
1 ,K

[20;23]
1 ,W 0

in,W
0
out,K

63
1) to L0 (K

[20;23]
1 is a nibble of K1,a).

for all elements in Lb∆ of the form (P 2 ⊕ P ′2, C2 ⊕ C′2, B′,K1,b, X
2, Y 2)

W 2
in ← X2 ⊕ P 2; W 2

out ← Y 2 ⊕ C2.
Compute K

[20;23]
1 with Property 1 starting from K28

1 ∈ K1,b.

Add (K
[52;55]
1 ,K

[20;23]
1 ,W 2

in,W
2
out,K

31
1) to L2 (K

[52;55]
1 is a nibble of K1,b).

for all pairs of elements in L0,L2 matching on their first two entries
Increment the counter Nk, with k = (W 0

in,W
2
in,W

0
out,W

2
out, K

63
1 ,K31

1)

We now remark that a second distillation phase can be performed, by adapt-
ing the procedure described in previous subsections to the case of [0, 1]-activity
pattern instead of the [0, 0]-activity pattern. Then, the bits of the key involved
in the computation of the active nibbles cover mainly Columns 1 and 3 (instead
of 0 and 2).

In this second distillation phase, the conformity of a plaintext-ciphertext pair
to one of the differentials in Σ can also be checked by guessing key nibbles and
whitening keys columns. They can be shown to be equivalent to 66 bits of key

information: bits K
[1;15]∪[32;47]
1 , K

[1;16]∪[32;48]
0 , K0

0 ⊕K63
0 , and K0

1 ⊕K63
0 .

Then, each of the 128 key bits is involved in at least one of the distillation
phases. Each distillation phase restricts the value taken by about half of the key.

4.5 Complexity analysis

Distillation phase complexity. For reasons of symmetry, the number of dif-
ferentials D that we take into account and the corresponding probabilities ptrue
are the same in both parts. We also take in both cases the same value for the
number of structures Ns. In each distillation step, Algorithm 3 is applied once
for each candidate pair. Since the time complexity of the distillation phases is
assessed in elementary operations (xor on 4 bits), the comparison with the com-
plexity of the generic attack is not easy. We argue that the search for all partial
key candidates for each candidate pair and each differential, which has been
estimated to be 26 operations, is less costly than one full encryption. Indeed,
each of the 11 applications of the linear layer M ′ required by a single encryption
consists of four linear transformations on 16 bits. This obviously corresponds to
more than 28 binary xors. Then, the time complexity of the distillation phase
satisfies

Time1 = 2× 231Ns × 26D elementary operations ≤ 2Ntrue
ptrue

D encryptions.

Since each distillation phase requires specific structures, we have

Data = 2× 232Ns =
4Ntrue
ptrue

.

The memory complexity of our attack comes essentially from the storage of
partial key candidates counters during the distillation phase. It is worth noticing
that the total number of partial key candidates considered during the distillation
is bounded by 4D × 231Ns. Using an appropriate data structure to access the
counters, the memory required is then bounded by

Memory ≤ 4D × Ntrue
ptrue

.

Search phase complexity. We now want to determine to what extent the
statistic on the keys resulting from the distillation phases reduces the size of the
search space.

All countersNk correspond to the sum of some basic countersNk(P, P ′, C, C ′),
one for each candidate pair. These basic counters are defined as

Nk(P, P ′, C, C ′) =

{
1 if (U ⊕ U ′, V ⊕ V ′) ∈ Σ
0 otherwise.

The basic counters for wrong keys follow a Bernoulli distribution. Indeed, let us
consider any wrong key k. For each candidate pair, columns P 1, P ′1, P 3 and P ′3

are chosen according to the structure and C1 = C ′1 and C3 = C ′3. The values of
columns 0 and 2 of P , P ′, C and C ′ are distributed uniformly among pairs that
fulfill P 6= P ′ and C 6= C ′. The values of active diagonals at the beginning and
at the end of the reduced cipher when encrypting P, P ′ and decrypting C,C ′

under key k follow the same distribution. The counter Nk is incremented if one
of the D differences in Σ occurs at the beginning and at the end of the reduced
cipher, which happens with probability (232 − 1)−2D ≈ 2−64D = pfalse.

For the right key guess, the average value of Nk is Ntrue. Let us choose
a threshold τ = Ntrue/η. If τ decreases, the success probability of the at-
tack increases, but so does the number of wrong keys reaching the thresh-
old. Theorem 3 of [2] gives an estimation of the probability that a wrong key
reaches this threshold, using accurate bounds for the tail distribution of the
counter values for wrong keys. Using our notation, this estimation leads to
Pr[Nk ≥ τ] ≈ G(ptrue/ηDin, pfalse/Din, τ), where

G(x, y, t) = e
−tD(x||y)

x

[
x(1− y)

(x− y)
√

2πt(1− x)
+

1√
8πt

]
,

and D(x||y) = x log
(
x
y

)
+ (1− x) log

(
1−x
1−y

)
is the Kullback-Leibler divergence.

Taking into account that ptrue � 1 and pfalse � 1, and denoting by ρ the
ratio pfalse/ptrue, it can be shown that

Pr[Nk ≥ Ntrue] ≈ (ηρ)τeτ(1−ηρ)
1√
2πτ

(
1

2
+

1

1− ηρ

)
≈ 3(e · ηρ)τ√

8πτ
,

as in most cases, pfalse � ptrue/η.
After the two distillation phases, the whole key is eventually recovered by a

search phase which only examines the keys having their two 66-bit restrictions
above the threshold. These keys can be easily found by merging the two lists of
partial keys which share the same value on the following 4 bits: K48

0 ,K32
0 ,K16

0

and (K0
0 ⊕K63

0).
The complexity, Time2, of the search phase corresponds to one encryption

under each key whose score reaches the threshold in both distillation phases.
There are approximately 2 × 262 wrong keys that collide with the right key on
all the 66 key bits involved in one of the distillation phases, therefore

Time2 ≈ 2128
(

3(e · ηρ)τ√
8πτ

)2

+ 263
3(e · ηρ)τ√

8πτ
≈ 2125

9(e · ηρ)2τ

πτ
.

Overall complexity. Taking into account the complexity of distillation and
search phases, we get

Data× (Time1 + Time2) =
8N2

trueD

p2true
+

9× 2127Ntrue
π · ptrue · τ

(
e · pfalse ·Ntrue

ptrue · τ

)2τ

.

Memory. The distillation phase is the only phase having a large memory re-
quirement, thus the memory complexity is

Memory = 4D
Ntrue
ptrue

= D · Data .

4.6 Success probability of the attack

We now estimate the success probability of our attack. For each distillation
phase, there are t = 263ptrue right pairs, that might follow one of the differentials
in Σ. Provided t does not exceed 216, these pairs all belong to different structures
with a high probability. Therefore, t is a good estimation of the number of
structures (out of the 232 possible choices) that contain at least one valid pair
for each of the distillation phases.

During the attack, the adversary chooses Ns structures out of 232 in both
phases, and succeeds if each set of Ns structures contains at least τ right pairs.
The probability that a set of Ns structures contains exactly u right pairs can
be approximated by the probability that it contains exactly u structures chosen
among those containing a right pair. By summing for u ≥ τ , and assuming
independence of the two phases, this leads to the following estimation of the
probability of success:

P (Ns, τ) =

∑
u≥τ

(
t
u

)(
232−t
Ns−u

)(
232

Ns

)
2

=

∑
u≥τ

(
Ns

u

)(
232−Ns

t−u
)(

232

t

)
2

. (3)

5 Experimental estimation of ptrue

In this section we display some experimental results that validate our attack
strategy. Indeed, the complexity evaluation of our attack heavily relies on the
estimation of the value of ptrue. However, this estimation highly relies on the
assumption that the differential transitions between the rounds are independent.
In the case of PRINCE, as the round keys are all identical, this assumption is
questionable. Therefore we have validated our approach by the following exper-
iments.

In the next section, we show that, based on theoretical estimations of ptrue
and of the time and memory complexities, the best choice of parameters for
attacking 10 rounds of PRINCE are Ntrue = 6 and D = 12. This attack then
makes use of 24 differentials over 6 rounds, 12 in each distillation phase. Each of
these differentials have been determined by aggregating several differential paths
with a high probability over 6 rounds.

We have implemented an algorithm that computes exhaustively the pairs of
messages which follow one of these differential paths, given one value of the key.
As a result, we obtain a lower bound on the number of pairs that follow one of
the 12 differentials for each distillation phase.

We ran our program on 1000 randomly chosen keys. The results are de-
picted on Figure 5, where the x-coordinate (resp. the y-coordinate) represents
the number of pairs following one of the differentials involved in the first (resp.
the second) distillation phase. Following our theoretical estimation, the average
number of pairs should be

∑
263ptrue(∆) = ptrue2

63 = 800 for each phase. In
our experiments we observe an average value of 869 pairs for the first phase and
861 pairs for the second phase. This tends to show that the differentials we have
identified are followed with probabilities slightly higher than estimated.

400 1,200 1,600 2,000
400

1,200

1,600

800

800

distillation on columns 0-2

d
is
ti
ll
at
io
n
on

co
lu
m
n
s
1
-3

Fig. 5. Number of message pairs following one of the 16 differentials for both distillation
phases for the 1000 keys tested

6 Results

In this section we apply the previously described attack to several variants of
PRINCE. Using the study of the differential properties of PRINCE displayed
in Section 3, we still have to select some parameters for our attack, namely D
(the number of differentials we take into account), τ (the threshold score for
key candidates), and Ntrue (the estimated score of the right keys). By choosing
τ = Ntrue, the right key reaches τ in each distillation phase with probability
close to 0.5, leading to an almost constant success probability of 0.25.

Then, our goal is to find the values of D and Ntrue that minimize the product
Comp = Data× (Time1 + Time2).

The following table summarizes our most significant results. We focus on
9-round and 10-round versions of PRINCE with the original Sbox. We also em-
phasize that some members of the PRINCE-family are more vulnerable by pre-
senting results obtained with the modified Sbox defined in Section 3. It is worth
noticing that, in all cases, ptrue is much higher than the false alarm probability
pfalse = 2−64D.

Cipher rounds D ptrue Ntrue Data Time1 Time2 Comp

PRINCE original Sbox 9 40 2−43.30 3 246.89 251.21 241.34 298.10

PRINCE original Sbox 10 12 2−53.36 6 257.94 260.53 256.54 2118.56

PRINCE modified Sbox 10 12 2−46.83 3 250.42 253 252.08 2104.03

PRINCE modified Sbox 11 12 2−54.81 8 259.81 262.40 256.92 2122.24

Our choice of parameters has been optimized for τ = Ntrue. If we increase
the amount of data, keeping the same threshold value would highly increase the
complexity of the search phase. A better strategy may then consist in increasing
the threshold but keeping it less than Ntrue. In this case, we increase the success
probability of the attack. For example, with the previous parameters, if the
amount of available data is Data = 259.7 (instead of 257.94),Ntrue increases from 6
to 20. Then, choosing τ = 7 leads to an overall complexity of Comp = 2120, and
a success probability of 0.85 as given by Equation (3).

References

1. Farzaneh Abed, Eik List, and Stefan Lucks. On the Security of the Core of PRINCE
Against Biclique and Differential Cryptanalysis. IACR Cryptology ePrint Archive,
Report 2012/712, 2012. http://eprint.iacr.org/2012/712.

2. Céline Blondeau and Benôıt Gérard. Multiple differential cryptanalysis: Theory
and practice. In FSE 2011, volume 6733 of LNCS, pages 35–54. Springer, 2011.

3. Céline Blondeau, Benôıt Gérard, and Kaisa Nyberg. Multiple Differential Crypt-
analysis Using LLR and χ2 Statistics. In SCN 2012, volume 7485 of LNCS, pages
343–360. Springer, 2012.

4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, volume 4727
of LNCS. Springer, 2007.

5. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
Low-Latency Block Cipher for Pervasive Computing Applications. In ASIACRYPT
2012, volume 7658 of LNCS, pages 208–225. Springer, 2012.

6. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - a
low-latency block cipher for pervasive computing applications (full version). IACR
Cryptology ePrint Archive, Report 2012/529, 2012. http://eprint.iacr.org/

2012/529.
7. Anne Canteaut, Thomas Fuhr, Henri Gilbert, Maŕıa Naya-Plasencia, and Jean-

René Reinhard. Multiple differential cryptanalysis of round-reduced PRINCE
(Full version). IACR Cryptology ePrint Archive, Report 2014/089, 2014. http:

//eprint.iacr.org/2014/089.
8. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-Middle:

Improved MITM techniques. In CRYPTO 2013 (I), volume 8042 of LNCS, pages
222–240. Springer, 2013.

9. Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user colli-
sions: Applications to Discrete Logs, Even-Mansour and Prince. IACR Cryptology
ePrint Archive, Report 2013/761, 2013. http://eprint.iacr.org/2013/761.

10. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks
for AES-Like Permutations. In FSE 2010, volume 6147 of LNCS, pages 365–383.
Springer, 2010.

11. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In RFIDSec, volume 7055 of LNCS, pages 1–18.
Springer, 2011.

12. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J.B. Robshaw. The
LED Block Cipher. In CHES 2011, volume 6917 of LNCS, pages 326–341. Springer,
2011.

13. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and Shuang Wu. Security
Analysis of PRINCE. In FSE 2013, LNCS. Springer, 2013. To appear.

14. Leibo Li, Keting Jia, and Xiaoyun Wang. Improved meet-in-the-middle attacks on
AES-192 and PRINCE. IACR Cryptology ePrint Archive, Report 2013/573, 2013.

15. Marine Minier and Henri Gilbert. Stochastic cryptanalysis of Crypton. In FSE
2000, volume 1978 of LNCS, pages 121–133. Springer, 2000.

16. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher CLEFIA. In FSE 2007, volume 4593 of LNCS, pages 181–195.
Springer, 2007.

17. Hadi Soleimany, Céline Blondeau, Xiaoli Yu, Wenling Wu, Kaisa Nyberg, Huiling
Zhang, Lei Zhang, and Yanfeng Wang. Reflection Cryptanalysis of PRINCE-like
Ciphers. In FSE 2013, LNCS. Springer, 2013. To appear.

18. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In SAC 2012,
volume 7707 of LNCS, pages 339–354. Springer, 2012.

19. Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In ACNS 2011,
volume 6715 of LNCS, pages 327–344. Springer, 2011.

