
Impact of ANSI X9.24-1:2009 Key Check Value
on ISO/IEC 9797-1:2011 MACs

Tetsu Iwata1 and Lei Wang2

1 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp
2 Nanyang Technological University, Singapore, wang.lei@ntu.edu.sg

Abstract. ANSI X9.24-1:2009 specifies the key check value, which is
used to verify the integrity of the blockcipher key. This value is defined
as the most significant bits of the ciphertext of the zero block, and is
assumed to be publicly known data for verification. ISO/IEC 9797-1:2011
illustrates a total of ten CBC MACs, where one of these MACs, the basic
CBC MAC, is widely known to be insecure. In this paper, we consider the
remaining nine CBC MACs and derive the quantitative security impact
of using the key check value. We first show attacks against five MACs
by taking advantage of the knowledge of the key check value. We then
prove that the analysis is tight, in a concrete security paradigm. For the
remaining four MACs, we prove that the standard birthday bound still
holds even with the presence of the key check value. As a result, we
obtain a complete characterization of the impact of using ANSI X9.24-1
key check value with the ISO/IEC 9797-1 MACs.

Keywords: ANSI X9.24-1:2009, key check value, ISO/IEC 9797-1:2011,
CBC MAC, proof of security.

1 Introduction

Background. A Message Authentication Code, or a MAC, is a fundamental cryp-
tographic primitive to ensure the authenticity of messages. A MAC is a keyed
function that takes a message as its input and produces a fixed length string
called a tag. The tag is then used to verify the integrity of the message, i.e., the
message is indeed originated from the intended party who shares the key.

There are several ways of constructing MACs, and CBCMAC is a widely used
MAC based on a blockcipher. While the basic CBC MAC has a proof of security
when it is used for messages of one fixed length [4,6], it is known that it allows the
so called length-extension attack when the message length can vary. To avoid
the weakness, several variants of CBC MAC were proposed. ISO/IEC 9797-
1:2011 [14] specifies six different versions of CBC MACs, where each MAC is
defined by specifying the final iteration and the output transformation. The six
MACs are further classified by specifying the key derivation method and the
padding method, and Annex C in [14] illustrates a total of ten different CBC
MACs depending on the choice of these methods.

ANSI X9.24-1:2009 [2] specifies the manual and automated management of
keying material used for financial services. The services include point-of-sale
(POS) transactions (debit and credit), automated teller machine (ATM) trans-
actions, messages among terminals and financial institutions, and interchange
messages among acquirers, switches, and card issuers [2]. Annex C in [2] sug-
gests the use of the key check value for the integrity verification of the blockcipher
key. Let EK : {0, 1}n → {0, 1}n be a blockcipher with a key K. ANSI X9.24-1
suggests to use the most significant s bits of EK(0n), a ciphertext of the zero
block, as the key check value for the key K, where E is DES or TDES [3] and s is
16 or 24. That is, the key check value, KCV, is defined as KCV = msbs(EK(0n)).
The value KCV is then used to verify the integrity of K, or as the ID for K.
Therefore, KCV is treated as a public value and it can be transmitted, sent, or
stored in clear. This implies that an adversary has chance to learn this value.

In some MACs and other blockcipher modes of operation, the value EK(0n)
is used to derive the “sub-key.” For example, MAC5 in [14], also known as
CMAC [11], uses this value as a sub-key that has to be kept secret from the
adversaries. Other examples that use EK(0n) as a sub-key include GCM [22,12],
PMAC [7,28], and OCB [30,28]. MAC5 has the proof of security [15,16], while
disclosing a part of EK(0n) is not taken into account in the proof, and it is
anticipated that there is some security loss when it is used with the key check
value. Indeed, [2,11] give an explicit warning that the value EK(0n) has to be kept
secret, but there is no prior work that derives the security loss in a quantitative
way, which is the main question solved in the present paper.

Contributions. We consider the security of ten MACs, CBC MAC and its vari-
ants, specified in [14], in the presence of the key check value. We first consider
MAC2.1, which is also known as EMAC [9]. Petrank and Rackoff showed that it is
a secure MAC [25]. The security bound without the use of the key check value is
O(σ2/2n) [25] assuming that the underlying blockcipher satisfies an appropriate
security notion, where σ is the total length of queries in blocks made by the ad-
versary, and n is the block size of the underlying blockcipher in bits. This implies
that the adversary needs to make Ω(2n/2) queries in order to make a forgery.
In its specification, the value EK(0n) does not appear as in the case for MAC5.
However, based on a similar technique to the one in [18], we present attacks with
O(2(n−s)/2) queries when it is used with the s-bit key check value. For MAC5,
the security bound without the use of the key check value is O(σ2/2n) [15,16].
We show that almost the same attacks against MAC2.1 can be used to attack
MAC5 with O(2(n−s)/2) queries when it is used with the s-bit key check value.
We point out that similar attacks can be used against MAC2.2 (EMAC [9]),
MAC3 (ANSI retail MAC [1]), and MAC6.2 (FCBC [8]).

We then formalize a security notion of a variant of a pseudorandom function
that captures the key check value, and for these five MACs, we prove that the
analysis is tight. That is, under the appropriate assumption about the underlying
blockcipher, we show that the adversary actually needs to make Ω(2(n−s)/2)
queries in order to mount the attacks. For the remaining four MACs, MAC1.2,
MAC4.1 (MacDES [19]), MAC4.2 (MacDES [19]), and MAC6.1 (FCBC [8]), the

situation is quite different. Even if the key check value consists of the entire n
bits of EK(0n), we show that the standard birthday bound still holds, and there
is almost no security loss for these MACs. As a result, we obtain a complete
characterization of the impact of using ANSI X9.24-1 key check value with the
ISO/IEC 9797-1 MACs. See Table 1 for the summary of this paper. In the table,
the block size of the underlying blockcpher is n bits, s is the bit length of the key
check value, and σ is the total length of queries in blocks made by the adversary.
All results for MAC1.1 are widely known. Results on existential forgeries for
MAC1.2, MAC4.1, MAC4.2, and MAC6.1 follow from [27,14]. The attacks are
possible without using the key check value. We note that there are other attacks
for all these MACs, e.g., a key recovery attack. See [14] and [29] for more details.

We also discuss several generic ways to avoid the security loss in the presence
of the key check value.

Remarks. We argue that our security bounds, both O(σ2/2n−s) and O(σ2/2n),
are non-trivial, in the sense that there are blockcipher modes of operation that
become completely insecure if the key check value is used. For instance consider
the CTR encryption mode where the initial counter value starts with 0n. It is not
hard to see that the adversary succeeds in distinguishing between a ciphertext
and a random string of the same length as the ciphertext even if the key check
value consists of one bit.

We remark that the presence of the key check value can be considered as a
special case of leakage of the internal state. Leakage resilient MACs are proposed,
e.g., in [10,21]. In contrast to designing new schemes, the purpose of this paper
is to analyze the security of widely standardized and deployed MACs when used
with the key check value, a common practice in financial applications.

We also remark that this paper does not show the analysis of MACs in the
older version of ISO/IEC 9797-1 that was published in 1999 [13]. Specifically,
MAC5 and MAC6 in the 2011 version are different from those in the 1999 version.
We leave the analyses of these MACs as open questions.

2 Preliminaries

For a finite set X , X $← X means that an element X is chosen from X uniformly
at random. Let {0, 1}∗ be the set of all finite bit strings including the empty
string. IfX,Y ∈ {0, 1}∗ are equal-length strings thenX⊕Y is their bitwise xor. If
X,Y ∈ {0, 1}∗ are strings thenX ∥Y , or simplyXY , denote their concatenation.
If X ∈ {0, 1}∗ is a string then |X| denotes its length in bits. Throughout the
paper we fix the block size n. Typical values of n are 64 and 128. We let {0, 1}n be
a set of all bit strings of n bits. For a string X ∈ {0, 1}nℓ with ℓ ≥ 1, the partition
X[1] · · ·X[ℓ] of X are defined as the unique strings satisfying the conditions
X[1] ∥ · · · ∥X[ℓ] = X and |X[1]| = · · · = |X[ℓ]| = n. We writeX[1] · · ·X[ℓ]

n← X.
For an n-bit string X = Xn · · ·X2X1 ∈ {0, 1}n, X ≪ 1 = Xn−1 · · ·X2X10 is the
left shift of X by 1 bit. For a positive integer ℓ and a string X such that ℓ ≤ |X|,
msbℓ(X) is the leftmost ℓ bits of the string X, and lsbℓ(X) is the rightmost ℓ

Table 1. Summary of the results. All results are in the presence of the key check value.
The figures in the “known” column indicate the required number of known message
and tag pairs, and “chosen” indicates the number of chosen message and tag pairs.

MAC
Existential forgery Selective forgery Security bound

known chosen reference known chosen reference [Sect. 6]

MAC1.1 1 0 folklore 1 1 folklore —

MAC1.2 O(2n/2) 1 [27,14] — — O(σ2/2n)

MAC2.1 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC2.2 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC3 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC4.1 O(2n/2) 1 [27,14] — — O(σ2/2n)

MAC4.2 O(2n/2) 1 [27,14] — — O(σ2/2n)

MAC5 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC6.1 O(2n/2) 1 [27,14] — — O(σ2/2n)

MAC6.2 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

bits of X. For non-negative integers ℓ and n such that ℓ < 2n, binn(ℓ) is an n-bit
binary representation of ℓ.

A blockcipher is a family of permutations. We write E : {0, 1}k × {0, 1}n →
{0, 1}n for a blockcipher, where K ∈ {0, 1}k is a key and EK(·) = E(K, ·) is
the permutation over {0, 1}n specified by K. We write Perm(n) for the set of all
permutations over {0, 1}n, and Rand(n) for the set of all functions from {0, 1}n
to {0, 1}n.

A MAC is a keyed functionMK . It takes an input message M ∈ {0, 1}∗ and
outputs a tag T ∈ {0, 1}τ . The value τ is called a tag length, and we consider the
case τ = n. An adversary A against the MAC is an algorithm that has access to
the MAC oracle,MK , and outputs a forgery, which is a pair of a message and a
tag, (M∗, T ∗). A can be a probabilistic algorithm or a deterministic algorithm.
We say A forges if T ∗ was not previously returned from the MAC oracle in a
response to a query M∗.

3 ISO/IEC 9797-1:2011 MACs

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. The basic CBC MAC
is defined in Fig. 1. It takes a message M as input, where |M | is a positive
multiple of n, and returns an n-bit tag T . We write T ← CBCK(M). The
specification of the MACs defined in ISO/IEC 9797-1:2011 [14] is in Fig. 2,
and illustrated in Fig. 3. The subroutines KD, double, pad1, pad2, and pad3
are specified in Fig. 1. KD is a key derivation function and is used in MAC6.1.
double is a doubling operation in GF(2n) and is used in MAC5. We note that
L is defined as double(EK(0n)). pad1, pad2, and pad3 are functions for padding.
Our description may seem to be different from the ones in [14] in appearance,
but they are carefully distilled for simpler presentation, and they are the same
algorithms as specified in [14].

Algorithm CBCK(M)

1. Y [0]← 0n

2. M [1] · · ·M [m]
n←M

3. for i← 1 to m do
4. X[i]← Y [i− 1]⊕M [i]
5. Y [i]← EK(X[i])
6. T ← Y [m]
7. return T

Subroutine KD(K)

1. ℓ← ⌈k/n⌉
2. for i← 1 to ℓ do
3. K′[i]← EK(binn(i))
4. K′′[i]← EK(binn(ℓ+ i))
5. K′ ← msbk(K

′[1] · · ·K′[ℓ])
6. K′′ ← msbk(K

′′[1] · · ·K′′[ℓ])
7. return (K′,K′′)

Subroutine double(L)

1. if msb1(L) = 0 then
2. L← L≪ 1
3. else
4. L← (L≪ 1)⊕ constantn
5. return L

Subroutine pad1(M)

1. M ←M ∥ 1 ∥ 0n−1−(|M| mod n)

2. return M

Subroutine pad2(M)

1. if (|M | > 0) ∧ (|M | mod n = 0) then
2. M ← binn(|M |)∥M
3. else
4. M ← binn(|M |)∥M∥0n−(|M| mod n)

5. return M

Subroutine pad3(L,M)

1. if (|M | = 0) ∨ (|M | mod n > 0) then
2. M ← pad1(M)
3. L← double(L)
4. M [1] · · ·M [m]

n←M
5. M [m]←M [m]⊕ L
6. return M [1] · · ·M [m]

Fig. 1. Pseudocode of the basic CBC MAC, and the subroutines used in the defini-
tion of MACs in ISO/IEC 9797-1. In KD(K), ℓ + i is the arithmetic addition of ℓ
and i. In double(L), constantn is an n-bit constant that depends on n. For example,
constant64 = 0x0 · · · 01b and constant128 = 0x0 · · · 087. When M is the empty string,
we have pad2(M) = 02n.

A total of six MACs are specified in [14]. The ten MACs in Fig. 2 are taken
from [14, Annex C, Table C.1], which are specified as the concrete choices of
the final iteration, the output transformation, and the padding method. For all
MACs except for MAC4.1, they take a message M ∈ {0, 1}∗ as their input,
while MAC4.1 takes a message M such that |M | ≥ n as input. All these ten
MACs return an n-bit tag T (we only consider the case where the tag con-
sists of a full n-bit string). The key derivation method is not specified in [14,
Annex C, Table C.1]. In MAC2.1, following the examples in [14, Annex B.3],
we let K ′ ← K ⊕ (0xf0f0 · · · f0). We also have a similar key derivation in
MAC4.1 and MAC4.2, and in these algorithms, k = |K| is assumed to be a
multiple of 8. In MAC6.1, following [14, Annex B.7, NOTE 2 in Sect. 7.7], we
let (K ′,K ′′)← KD(K).

4 ANSI X9.24:2009 Key Check Value

In [2], the key check value is defined as follows.

Algorithm MAC1.1K(M)

1. M ← pad1(M)
2. T ← CBCK(M)
3. return T

Algorithm MAC1.2K(M)

1. M ← pad2(M)
2. T ← CBCK(M)
3. return T

Algorithm MAC2.1K(M)

1. K′ ← K ⊕ (0xf0f0 · · · f0)
2. M ← pad1(M)
3. S ← CBCK(M)
4. T ← EK′(S)
5. return T

Algorithm MAC2.2K,K′(M)

1. M ← pad1(M)
2. S ← CBCK(M)
3. T ← EK′(S)
4. return T

Algorithm MAC3K,K′(M)

1. M ← pad1(M)
2. S ← CBCK(M)
3. T ← EK(E−1

K′ (S))
4. return T

Algorithm MAC4.1K,K′(M)

1. K′′ ← K′ ⊕ (0xf0f0 · · · f0)
2. M [1] · · ·M [m]

n← pad1(M)
3. M [2]← EK′′(EK(M [1]))⊕M [2]
4. S ← CBCK(M [2] · · ·M [m])
5. T ← EK′(S)
6. return T

Algorithm MAC4.2K,K′(M)

1. K′′ ← K′ ⊕ (0xf0f0 · · · f0)
2. M [1] · · ·M [m]

n← pad2(M)
3. M [2]← EK′′(EK(M [1]))⊕M [2]
4. S ← CBCK(M [2] · · ·M [m])
5. T ← EK′(S)
6. return T

Algorithm MAC5K(M)

1. L← double(EK(0n))
2. M ← pad3(L,M)
3. T ← CBCK(M)
4. return T

Algorithm MAC6.1K(M)

1. (K′,K′′)← KD(K)
2. M [1] · · ·M [m]

n← pad1(M)
3. S ← 0n

4. if m ≥ 2 then
5. S ← CBCK′(M [1] · · ·M [m− 1])
6. T ← EK′′(S ⊕M [m])
7. return T

Algorithm MAC6.2K,K′(M)

1. M [1] · · ·M [m]
n← pad1(M)

2. S ← 0n

3. if m ≥ 2 then
4. S ← CBCK(M [1] · · ·M [m− 1])
5. T ← EK′(S ⊕M [m])
6. return T

Fig. 2. Pseudocode of the ISO/IEC 9797-1 MACs

“The optional check values, as mentioned in notes 2 and 3 above, are the
left-most six hexadecimal digits from the ciphertext produced by using
the DEA in ECB mode to encrypt to 64-bit binary zero value with the
subject key or key component. The check value process may be simplified
operationally, while still retaining reliability, by limiting the check value
to the left-most four or six hexadecimal digits of the ciphertext. (Using
the truncated check value may provide additional security in that the
ciphertext which could be used for exhaustive key determination would
be unavailable.)”

M [1]

EK EKEK

M [2] M [3]10∗

T

EK

M [1]

EK EKEK

M [2]

T

M [3]0∗

M [1]

EK EKEK

M [2] M [3]10∗

T

EK EK

EK

M [1]

EK EKEK

M [2]

T

EK EK

M [3]0∗

M [1]

EK EKEK

M [2] M [3]10∗

T

EK

M [1]

EK EK

M [2] M [3]10∗

T

EK

M [1]

EK EKEK

M [2] M [3]10∗

L

M [1]

EK EKEK

M [2] M [3]10∗

T

E
−1

K

EK

T

binn(|M |)

binn(|M |)

double(L)

MAC6.1K(M)/MAC6.2K,K (M)MAC5K(M)

MAC4.1K,K (M) MAC4.2K,K (M)

MAC3K,K (M)MAC2.1K(M)/MAC2.2K,K (M)

MAC1.2K(M)MAC1.1K(M)

Fig. 3. Illustrations of the ISO/IEC 9797-1 MACs for M = M [1]M [2]M [3], where
|M [1]| = |M [2]| = n and 1 ≤ |M [3]| ≤ n − 1. In MAC6.1, (EK , EK′) is replaced with
(EK′ , EK′′).

The key check value for the 56-bit key K is thus msb24(DESK(064)) or
msb16(DESK(064)). The key check value is used to verify the integrity of K
or as the ID for K in financial services including banking systems. The value
is inherently a public value for verification, and it may be transmitted, sent or
stored in clear, which implies that an adversary can learn this value.

In [2], the key check value is defined for DES or TDES, 64-bit blockciphers.
However, other documents do not limit the block size being 64 bits. For example,
the key check value of AES, a 128-bit blockcipher, is mentioned in [23]. MACs
in [14] can be used with AES, and the document gives a warning about the use
of the key check value. A similar warning can be found in [11,12], where AES
can be used. Although it is not clear how the key check value is defined for
AES in these documents, in this paper, for generality, we naturally extend the
definition to any blockcipher E and allow other lengths of the key check value.
For a blockcipher EK : {0, 1}n → {0, 1}n with key K ∈ {0, 1}k and an integer s
such that 0 ≤ s ≤ n, we define the key check value, KCV, as

KCV = msbs(EK(0n)).

We leave s as a parameter that can be defined by a user of the blockcipher.
Now suppose that a MAC internally uses the blockcipher E and the key

space of the MAC is ({0, 1}k)w for some integer w ≥ 1. That is, a total of w
blockcipher keys K1, . . . ,Kw ∈ {0, 1}k are used in the MAC, and it is built from
EK1 , . . . , EKw . Then we define the key check value of the MAC as

KCV = (msbs(EK1(0
n)), . . . ,msbs(EKw(0

n))).

Specifically, if the MAC uses single blockcipher key K, which corresponds to
MAC1.1, MAC1.2, MAC2.1, MAC5, and MAC6.1, then the adversary is given
KCV = msbs(EK(0n)). For the remaining MACs that use two blockcipher keysK
and K ′, i.e., for MAC2.2, MAC3, MAC4.1, MAC4.2, and MAC6.2, the adversary
is given KCV = (msbs(EK(0n)),msbs(EK′(0n))).

5 Security Analysis

5.1 Security Analysis for Case s = n

We first consider the most extreme case s = n to illustrate the impact.

Existential Forgery against MAC2.1. Let KCV = msbs(EK(0n)) be the key check
value given to the adversary A, where s = n. Let M be any message, and
T = MAC2.1K(M) be the corresponding tag. A is given the known message and
tag pair (M,T). If |M | ≥ n, then A defines M∗ as

M∗ = 0n ∥KCV ∥ · · · ∥KCV ∥KCV ⊕msbn(M) ∥ lsb|M |−n(M).

We see that all these messages, regardless of the number of the intermediate
KCV blocks, share the same tag T , and therefore, (M∗, T) is a valid forgery.

We next consider the case 0 ≤ |M | < n. We assume that pad1(M) ̸= KCV.
Then there exists some M ′ such that 0 ≤ |M ′| < n and pad1(M ′) = pad1(M)⊕
KCV. We then define M∗ as

M∗ = 0n ∥KCV ∥ · · · ∥KCV ∥M ′, (1)

and it can be easily verified that (M∗, T) is a valid forgery. If pad1(M) = KCV,
then M ′ in (1), and hence M∗, cannot be defined and the attack does not work.
However, there is at most one such M , and thus A can simply ask for the second
known message and tag pair to mount the attack.

Therefore, MAC2.1 allows existential forgeries if the adversary knows any
message and tag pair (M,T), where pad1(M) ̸= KCV.

Selective Forgery against MAC2.1. Almost the same idea can be used for a
selective forgery against MAC2.1. Let M∗ be a message that A tries to forge.
We show that A is able to obtain the correct tag for M∗ with one chosen message
and tag pair, provided that pad1(M∗) ̸= KCV. Now A defines M as

M =

{
0n ∥KCV ⊕msbn(M

∗) ∥ lsb|M∗|−n(M
∗) if |M∗| ≥ n,

0n ∥M ′ else,

where M ′ is a string that satisfies 0 ≤ |M ′| < n and pad1(M ′) = pad1(M∗) ⊕
KCV. Then A asks M to its MAC oracle and obtains T = MAC2.1K(M). We
see that (M∗, T) is a valid forgery.

We remark that if pad1(M∗) = KCV, then this particular M∗ does not seem
to allow attacks.

Existential/Selective Forgeries against MAC5. As in the case for MAC2.1, A
is given KCV = EK(0n). We see that existential and selective forgeries against
MAC2.1 are irrelevant to the operations on the last message block, and almost
the same attacks can be applied against MAC5.

Besides these attacks, there are other trivial attacks on MAC5. Recall that
KCV = EK(0n) is used to compute the value of L. With KCV, A can compute
both L = double(EK(0n)) and double(double(EK(0n))). This implies that, from
A’s view point, MAC5 is essentially reduced to MAC1.1, and therefore almost
the same attacks against MAC1.1 in Appendix A work for MAC5.

There are subtle differences due to the padding rule of MAC5, but the mod-
ification is rather straightforward and we thus omit the details.

Existential/Selective Forgeries against Other MACs. We point out that very
similar attacks against MAC2.1 can be applied on MAC2.2, MAC3, and MAC6.2.
For MAC2.2, A is given KCV = (EK(0n), EK′(0n)), but the attacks are possible
by using only EK(0n). For MAC3, we see that the attacks against MAC2.1
are irrelevant to the operations on the last message block, and thus the same
attacks can be applied. With the same reasoning these attacks can be applied
on MAC6.2.

5.2 Security Analysis for Case s < n

We next consider the case s < n.

Existential/Selective Forgeries against MAC2.1. The adversary A has access to
the MAC2.1K(·) oracle. Let KCV = msbs(EK(0n)) be the key check value given
to A. We first derive the value of EK(0n).

Let r = 2(n−s)/2. A first chooses r random strings rand1, . . . , randr, where
|randi| = n − s for all 1 ≤ i ≤ r and randi ̸= randj for all 1 ≤ i < j ≤ r.
Similarly, A chooses r random strings rand′1, . . . , rand

′
r, where |rand

′
i| = n− s for

all 1 ≤ i ≤ r and rand′i ̸= rand′j for all 1 ≤ i < j ≤ r. Let Mi = 0n ∥ (0s ∥ randi)
and M ′

i = (KCV ∥ rand′i). A then makes 2r queries, M1, . . . ,Mr,M
′
1, . . . ,M

′
r,

to its oracle and obtains T1, . . . , Tr, T
′
1, . . . , T

′
r, where Ti = MAC2.1K(Mi) and

T ′
i = MAC2.1K(M ′

i).
Then it is easy to see that we have pad1(Mi) = 0n ∥ (0s ∥ randi) ∥ 10n−1 and

pad1(M ′
i) = (KCV ∥ rand′i) ∥ 10n−1. Let (Xi[1], Xi[2], Xi[3]) be the input sequence

of EK in the computation of MAC2.1K(Mi), and (Yi[1], Yi[2], Yi[3]) be the cor-
responding output sequence. Similarly, let (X ′

i[1], X
′
i[2]) and (Y ′

i [1], Y
′
i [2]) be the

input and output sequences of EK in the computation of MAC2.1K(M ′
i). We

have {
Xi[1] = 0n, Xi[2] = Yi[1]⊕ (0s ∥ randi), Xi[3] = Yi[2]⊕ 10n−1,

Yi[1] = EK(Xi[1]), Yi[2] = EK(Xi[2]), Yi[3] = EK(Xi[3]).

Similarly, we have{
X ′

i[1] = (KCV ∥ rand′i), X ′
i[2] = Y ′

i [1]⊕ 10n−1,

Y ′
i [1] = EK(X ′

i[1]), Y
′
i [2] = EK(X ′

i[2]).

Note that Yi[3] = EK(Xi[3]) = Si and Y ′
i [2] = EK(X ′

i[2]) = S′
i. We also note

that EK′(Si) = Ti and EK′(S′
i) = T ′

i hold.
We claim that, with a high probability, there exists a pair of indices (j, j′)

such that Tj = T ′
j′ . To see this, we have Tj = T ′

j′ if and only if Xj [3] = X ′
j′ [2]

since EK and EK′ are permutations. Now Xj [3] = X ′
j′ [2] holds if and only if

Yj [2] = Y ′
j′ [1] since the same value, 10n−1, is xor-ed. Then Yj [2] = Y ′

j′ [1] holds
if and only if Xj [2] = X ′

j′ [1] from the invertibility of EK , and this is equivalent

to EK(0n) ⊕ (0s ∥ randj) = (KCV ∥ rand′j′). Now the last condition is equivalent

to lsbn−s(EK(0n)) ⊕ randj = rand′j′ , since KCV = msbs(EK(0n)), and from the
standard birthday paradox, we have the claim.

Let (j, j′) be the pair of indices such that Tj = T ′
j′ . Observe that A can now

retrieve the value of EK(0n) since we have EK(0n) = (KCV ∥ randj ⊕ rand′j′).
With the knowledge of EK(0n), A can produce arbitrarily number of existen-
tial forgeries with one known message and tag pair, and can produce a selective
forgery with one chosen message and tag pair, as described in Sect. 5.1. There-
fore, MAC2.1 allows existential forgeries with 2 · 2(n−s)/2 chosen messages and
one known message, and it allows selective forgery with 1 + 2 · 2(n−s)/2 chosen
messages.

Existential/Selective Forgeries against MAC5. As in the case for MAC2.1, A is
given KCV = msbs(EK(0n)). We see that exactly the same procedure can be
used to retrieve the value of EK(0n), which is also used to compute a value of L.
Therefore, MAC5 allows existential forgeries with 2 · 2(n−s)/2 chosen messages
and one known message, and it allows selective forgery with 1+2·2(n−s)/2 chosen
messages.

Besides these attacks, since L is now known to the adversary, the standard
length-extension attack in Appendix A can be used to attack MAC5.

Existential/Selective Forgeries against Other MACs. We remark that similar
attacks can be used against MAC2.2, MAC3, and MAC6.2. These MACs allow
existential forgeries with 2 · 2(n−s)/2 chosen messages and one known message,
and they allow selective forgeries with 1 + 2 · 2(n−s)/2 chosen messages.

We note that the attacks presented in this section cannot be used against
MAC1.2, MAC4.1, MAC4.2, and MAC6.1 even if s = n.

6 Provable Security Results

We present the provable security results for the nine ISO/IEC 9797-1 MACs.

Security Definition for MACs. Let MK1,...,Kw
: {0, 1}∗ → {0, 1}n be a MAC

with key space ({0, 1}k)w for some w ≥ 1. An adversary A is an algorithm that
outputs a bit. We consider the following game. First, A is given the key check
value KCV = (msbs(EK1(0

n)), . . . ,msbs(EKw(0
n))). Then A is given access to an

oracle, which is either the MAC oracle or the ideal random oracle. The MAC ora-
cleMK1,...,Kw takes a message M as the input and returns T =MK1,...,Kw(M).
The random oracle R takes a message M to return a random string T . We define

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK1,...,Kw (·) ⇒ 1

]
− Pr

[
A ← KCV,AR(·) ⇒ 1

]
,

where the first probability is taken over the choices of K1, . . . ,Kw and A’s coin,
and the last is over the choices of K1, . . . ,Kw used for KCV, the random oracle,
and A’s coin.

Specifically, if M uses single blockcipher key K, i.e., if M ∈ {MAC1.1,
MAC1.2,MAC2.1,MAC5,MAC6.1}, then A is given KCV = msbs(EK(0n)), and
we consider

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK(·) ⇒ 1

]
− Pr

[
A ← KCV,AR(·) ⇒ 1

]
.

For M with two blockcipher keys K and K ′, i.e., for M ∈ {MAC2.2,MAC3,
MAC4.1,MAC4.2,MAC6.2}, then KCV = (msbs(EK(0n)),msbs(EK′(0n))) and
we consider

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK,K′ (·) ⇒ 1

]
− Pr

[
A ← KCV,AR(·) ⇒ 1

]
.

We write Advprf-kcv
M (t, q, σ) = maxA Advprf-kcv

M (A), where the maximum is
taken over adversaries A whose time complexity, number of queries, and query
complexity are at most t, q, and σ, respectively. For the time complexity, we fix
a model of computation and a choice of encoding, and it includes the running
time and the code size. The query complexity is the total length in blocks of the
padded queries made to the oracle. For instance if we consider an adversary A
attacking MAC1.2 and if A makes queries M1, . . . ,Mq, then the query complex-
ity is

∑
1≤i≤q |pad2(Mi)|/n. Without loss of generality, we exclude the trivial

queries, and we apply this convention to all adversaries in this paper.
We note that the above definitions capture the security of a MAC as a pseu-

dorandom function, or a PRF, in the presence of KCV. It is well known that
PRFs are secure MACs, see e.g. [4].

Security Definition for Blockciphers. We consider three security notions for the
underlying blockcipher [20,5]. Let EK : {0, 1}n → {0, 1}n be a blockcipher, E−1

K

be its inverse, P, P ′ : {0, 1}n → {0, 1}n be two independent random permuta-
tions, and P−1 be the inverse of P . An adversary A is an algorithm that outputs
a bit. For A, we define

Advprp
E (A) = Pr

[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

Advsprp
E (A) = Pr

[
AEK(·),E−1

K (·) ⇒ 1
]
− Pr

[
AP (·),P−1(·) ⇒ 1

]
,

Advprp-rka
E (A) = Pr

[
AEK(·),EK′ (·) ⇒ 1

]
− Pr

[
AP (·),P ′(·) ⇒ 1

]
,

where K ′ = K ⊕ (0xf0f0 · · · f0). The last one is a particular form of related
key attacks [5]. We fix a model of computation and a choice of encoding, and
write Advprp

E (t, σ) = maxA Advprp
E (A), Advsprp

E (t, σ) = maxA Advsprp
E (A),

and Advprp-rka
E (t, σ) = maxA Advprp-rka

E (A), where the maximum is taken over
adversaries A whose time complexity is at most t and whose query complexity
is at most σ. The query complexity is the total number of queries made to the
oracles.

Theorem Statement. Let M[E] be a MAC M, where E : {0, 1}k × {0, 1}n →
{0, 1}n is used as the underlying blockcipher. We have the following result.

Theorem 1. Fix t, q, and σ, where q, σ ≥ 1. Then the following bounds hold.

Advprf-kcv
MAC1.2[E](t, q, σ) ≤ Advprp

E (t′, σ + 1) + n/2n/2 + 7.5σ2/2n, (2)

Advprf-kcv
MAC2.1[E](t, q, σ) ≤ Advprp-rka

E (t′, q + σ + 1) + 3.5σ2/2n−s, (3)

Advprf-kcv
MAC2.2[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) + 8σ2/2n−s, (4)

Advprf-kcv
MAC3[E](t, q, σ) ≤ 2Advsprp

E (t′, q + σ + 1) + 23.5σ2/2n−s, (5)

Advprf-kcv
MAC4.1[E](t, q, σ) ≤ 2Advprp-rka

E (t′, 2σ + 1) + 11.5σ2/2n, (6)

Advprf-kcv
MAC4.2[E](t, q, σ) ≤ 2Advprp-rka

E (t′, 2σ + 1) + 11.5σ2/2n, (7)

Advprf-kcv
MAC5[E](t, q, σ) ≤ Advprp

E (t′, σ + 1) + 5σ2/2n−s, (8)

Advprf-kcv
MAC6.1[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) +Advprp
E (t′′, 2ℓ+ 1)

+ 8σ2/2n + 4.5ℓ2/2n, (9)

Advprf-kcv
MAC6.2[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) + 8σ2/2n−s, (10)

where t′ = t+O(σ), t′′ = t+O(ℓ+ σ), and ℓ = ⌈k/n⌉.

A proof overview is presented in Sect. 7, and the proof is presented in [17].

Discussions. For the assumption about the underlying blockcipher, we require
the security against related key attacks for MAC2.1, MAC4.1, and MAC4.2.
These are the MACs that use K ′ = K⊕(0xf0f0 · · · f0). MAC3 is the only MAC
that requires the strong pseudorandomness assumption, as it uses the inverse of
the blockcipher. The remaining MACs, MAC1.2, MAC2.2, MAC5, MAC6.1, and
MAC6.2, need the standard pseudorandomness assumption.

For the security bound, we see that MAC1.2, MAC4.1, MAC4.2, and MAC6.1
have the standard birthday bound that does not depend on s. This implies that
the security bounds for these MACs remain unchanged even if the key check
value consists of the entire n bits. Other MACs, MAC2.1, MAC2.2, MAC3,
MAC5, and MAC6.2, have the security loss by s/2 bits. With respect to the
term n/2n/2 in MAC1.2, we do not know if it can be removed, but there is an
attack with the suggested success probability with two queries and the birthday
query complexity. See Appendix B. We also note that the use of ℓ in MAC6.1
comes from the use of the key derivation function.

We argue that, if s stays relatively small as specified in [2], depending on ap-
plications, these MACs can still be used in practice. See Table 2 for the expected
number of blocks of queries to attack these MACs.

7 Proof Overview of Theorem 1

Although nine MACs in Theorem 1 share the same basic structure of CBC
MAC, the security proofs are different in details. Our proof of Theorem 1 can
be divided into five cases, MAC1.2, MAC2.1, MAC3, MAC4.1, and MAC5. The
proofs for MAC2.2, MAC6.1, and MAC6.2 are similar to that of MAC2.1. The
proof for MAC4.2 follows from that of MAC4.1. The first step is to replace
the blockcipher with a random permutation. This will introduce Advprp

E (t′, σ′),

Table 2. Required number of blocks of queries to mount attacks against MAC 2.1,
MAC2.2, MAC3, MAC5, and MAC6.2

n = 64 n = 128
s = 0 s = 16 s = 24 s = 0 s = 16 s = 24 s = 32 s = 48

232 224 220 264 256 252 248 240

Advprp-rka
E (t′, σ′), or Advsprp

E (t′, σ′) depending on the usage of the underlying
blockcipher. We then replace the random permutation with a random function.
This will introduce a term O(σ2/2n). The rest of the proofs are different de-
pending on the MACs.

Case MAC1.2. The analysis of MAC1.2 is quite involved. We define a number
of oracles. Let M be an ℓ-bit message. After applying the padding, we have
M [1] · · ·M [m]

n← pad2(M), where m = ⌈ℓ/n⌉+1. Then we define an oracle that
is only used to encrypt the j-th blockM [j]. That is, our oracles are parameterized
by ℓ and j, and a specific oracle is used only for encrypting the j-th block of an
ℓ-bit message M . By doing so, we eliminate the interaction between KCV and the
MAC computation part, except for a rare case of computing a tag for the empty
string. We proceed by showing that MAC1.2, instantiated with such oracles, is
indistinguishable from the MAC1.2 that is based on a single random function.
We then show that CBC MAC that uses independent random functions for every
block is indistinguishable from a random function.

Case MAC2.1, MAC2.2, MAC6.1, and MAC6.2. For MAC2.1, we make use of
the following lemma, where CBCF (M) is the CBC MAC value of M where a
random function F : {0, 1}n → {0, 1}n is used as the underlying blockcipher.

Lemma 1. For any KCV ∈ {0, 1}s, M ∈ {0, 1}mn, and M ′ ∈ {0, 1}m′n, where
m,m′ ≥ 1 and M ̸= M ′, we have

Pr[CBCF (M) = CBCF (M
′) | msbs(F (0n)) = KCV] ≤ mm′ +max{m,m′}

2n−s
.

Proof. To simplify the notation, let E1 be the event CBCF (M) = CBCF (M
′).

Similarly, let E2 be the event msbs(F (0n)) = KCV. Now [8, Lemma 3] shows
that Pr[E1] ≤ (mm′ + max{m,m′})/2n. We also have Pr[E2] = 1/2s. We have
the claimed bound from the two probabilities and the Bayes’ theorem as

Pr[E1 | E2] =
Pr[E1 ∧ E2]

Pr[E2]
≤ Pr[E1]

Pr[E2]
≤ mm′ +max{m,m′}

2n−s
,

and this completes the proof. ⊓⊔

The proof of MAC2.1 is obtained by bounding the probability that we have a
collision at the input of the last random function, which can be derived by using
Lemma 1. We use the following lemma in the proof of MAC2.2.

Lemma 2. For any KCV ∈ {0, 1}s, constant ∈ {0, 1}n, and M ∈ {0, 1}mn,
where m ≥ 1, we have

Pr[CBCF (M) = constant | msbs(F (0n)) = KCV] ≤ 2(m+ 1)

2n−s
.

Proof. Let M̃ ← M ∥ constant and M̃ ′ ← 0n. We see that if CBCF (M) =
constant holds, then we have CBCF (M̃) = CBCF (M̃ ′). By applying Lemma 1 to
M̃ and M̃ ′, the upper bound of Pr[CBCF (M) = constant | msbs(F (0n)) = KCV]
is obtained as

Pr[CBCF (M̃) = CBCF (M̃ ′) | msbs(F (0n)) = KCV] ≤ 2(m+ 1)

2n−s
,

which completes the proof. ⊓⊔

The proof of MAC2.2 closely follows that of MAC2.1, and we consider the ad-
ditional event that we have 0n at the input of the last random function. We use
Lemma 2 to derive a bound on the probability. The proof for MAC6.2 is similar
to that of MAC2.2, and the proof of MAC6.1 is obtained by using the result of
MAC6.2 without the key check value.

Case MAC3. Let F be a random function that replaces EK , and P ′ be a random
permutation that replaces EK′ . Let Q(X) = F (P ′−1(F (X))) and G be a random
function. The core of the proof of MAC3 lies in proving that three oracles Q =
(P ′(·), F (·), Q(·)) are indistinguishable from three oracles G = (P ′(·), F (·), G(·)).
We show this when the domain of the first oracle, P ′, is restricted to {0n}. We
only need P ′ to generate the key check value, and hence it is sufficient for our
purpose. We then replace the call of Q(X) for the final block by G(X), and the
rest of the proof follows from those of MAC2.2 and MAC6.2.

Case MAC4.1 and MAC4.2. We define five oracles, Q = (Q1(·), . . . , Q5(·)).
We use Q1 and Q2 to obtain the key check value. For a query M , we let
M [1] · · ·M [m]

n← pad1(M), and we use Q3 to encrypt M [1], Q4 to encrypt
blocks that correspond to M [2], . . . ,M [m− 1], and Q5 to encrypt the last block
that corresponds to M [m]. We show that these oracles can be used to simulate
MAC4.1, and we also show that they are indistinguishable from five indepen-
dent random functions. Therefore, this eliminates the interaction between the
key check value and the MAC computation. The rest of the proof is similar to
that of MAC2.1, and the proof of MAC4.2 follows from that of MAC4.1.

Case MAC5. For MAC5, we define seven oracles, Q = (Q1(·), . . . , Q7(·)). We use
Q1 for the key check value. Q2 is used for the first block, Q3 is used for the middle
blocks, and we use four oracles Q4, . . . , Q7 for the final block, depending on the
length of the input. We show that these oracles can be used to simulate MAC5,
and that they are indistinguishable from seven independent random functions.
Then the MAC computation becomes independent from the key check value,
and the proof follows.

8 Possible Fixes

There are applications where the security loss from using the key check value is
not an issue. For instance the key check value may be computed on a master

key, and MACs are computed with session keys that are derived from the master
key in a cryptographically strong way, and the master key may never be used to
compute the MAC.

For other applications that need to fix the issue of reduction in security, one
possible option is to change the specification of the scheme, or the other is to
change the definition of the key check value. Since the latter seems to be imprac-
tical in view of the long history and the wide spread deployment of the standard,
we discuss the former option. We present two generic solutions, meaning that
they do not harm the provable security of the mode of operation, and they work
for MACs, encryption modes, and authenticated encryption modes.

We can always use the key derivation function used in MAC6.1 even when the
underlying blockcipher uses n-bit keys. Specifically, consider the case of MAC5,
or CMAC, with 128-bit key AES. In this case, AESK(0n) is used as the key
check value and AESK(·) is used in the actual computation of the tag. Instead,
one can use AESK(0n) as the key check value, derive K ′ as K ′ ← AESK(0n−11),
and use AESK′(·) in computing the tag. Under the assumption that AES is a
pseudorandom permutation, the key check value and AESK′(·) are independent,
and thus the original security proof of MAC5 carries over.

The above solution introduces an additional key scheduling process, and we
present another solution without it. Let K and K ′ be two independent keys for
a blockcipher E. If we use EK(0n) to derive the key check value and EK′(·)
for the mode of operation, then this clearly does not harm the provable secu-
rity. Now consider a blockcipher E′

K defined as E′
K(X) = EK(X ⊕ L) ⊕ L,

where L = EK(0n−11). Then similarly to XEX construction [28], under the as-
sumption that E is a strong pseudorandom permutation, the pairs of oracles
(EK(·), EK′(·), E−1

K′ (·)) and (EK(·), E′
K(·), E′−1

K (·)) are indistinguishable if the
first (leftmost) oracle takes only one value, 0n, as the input. Therefore, we can
use EK(0n) to derive the key check value, and use E′

K(·) and E′−1
K (·) for the

mode of operation. If the mode of operation is provably secure with the pseu-
dorandomness assumption, we can use E′′

K defined as E′′
K(X) = EK(X ⊕ L),

where L = EK(0n−11), instead of E′
K . In this case, similarly to the proof of XE

construction [28], (EK(·), EK′(·)) and (EK(·), E′′
K(·)) are indistinguishable if the

first oracle takes only 0n as the input. Therefore, we can use EK(0n) to derive
the key check value, and use E′′

K(·) for the mode of operation.

9 Conclusions

We have investigated the use of ANSI X9.24-1 key check value with the MACs
specified in ISO/IEC 9797-1. MAC1.1 is widely known to be insecure, and we
showed attacks against five MACs, out of nine MACs, by taking advantage of
the knowledge of the key check value. We also showed that, for these five MACs,
the analysis is tight and the attack cannot be improved. The results suggest that
using the key check value does result in a security loss by s/2 bits, but it does not
result in a total security loss. This indicates that, depending on the applications
and the length of the key check value, they can still be used in practice even in

the presence of the key check value, as the security impact is limited as long as s
is not large, say 16 or 24 as suggested in [2]. For the remaining four MACs, the
security impact of using the key check value is small, even if the key check value
consists of the entire block. We also presented possible ways to fix the issue of
the security loss.

It would be interesting to see the impact of the key check value on the
security of other blockcipher modes of operation e.g., MAC5 and MAC6 in the
1999 version of ISO/IEC 9797-1 [13], and it would also be interesting to see a
more efficient way to fix the issue of the security loss, possibly a solution that
depends on the mode of operation. Finally, some stronger security bounds than
the standard birthday bound are known for several MACs [24,26], and it would
be interesting to see if similar bounds can be obtained in the presence of the key
check value.

Acknowledgments. The authors would like to thank Morris Dworkin for in-
forming them of the issue of the key check value on CMAC, which motivated
the work. The authors also would like to thank participants of Dagstuhl Seminar
09031 (Symmetric Cryptography), participants of ASK 2011 (The First Asian
Workshop on Symmetric Key Cryptography), and the anonymous FSE 2014 re-
viewers for comments. The work by Tetsu Iwata was carried out in part while
visiting Nanyang Technological University, Singapore, and was supported in part
by MEXT KAKENHI, Grant-in-Aid for Young Scientists (A), 22680001, and in
part by the Naito Science & Engineering Foundation. The work by Lei Wang
was supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06).

References

1. ANSI: Financial Institution Retail Message Authentication (American Bankers
Association). ANSI X9.19 (1986)

2. ANSI: Retail Financial Services Symmetric Key Management Part 1: Using Sym-
metric Techniques. ANSI X9.24-1:2009 (2009)

3. Barker, W.C., Barker, E.: Recommendation for the Triple Data Encryption Algo-
rithm (TDEA) Block Cipher. NIST Special Publication 800-67, Revision 1 (2012)

4. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

5. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT. Lecture
Notes in Computer Science, vol. 2656, pp. 491–506. Springer (2003)

6. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBCMACs.
In: Shoup, V. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp.
527–545. Springer (2005)

7. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT. Lecture Notes in
Computer Science, vol. 2332, pp. 384–397. Springer (2002)

8. Black, J., Rogaway, P.: CBCMACs for Arbitrary-Length Messages: The Three-Key
Constructions. J. Cryptology 18(2), 111–131 (2005)

9. Bosselaers, A., Preneel, B. (eds.): Integrity Primitives for Secure Information Sys-
tems, Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040,
Lecture Notes in Computer Science, vol. 1007. Springer (1995)

10. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO. Lecture Notes
in Computer Science, vol. 6223, pp. 21–40. Springer (2010)

11. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST Special Publication 800-38B (2005)

12. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D (2007)

13. ISO/IEC: Information Technology – Security Techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms Using a Block Cipher. ISO/IEC 9797-1:1999
(1999)

14. ISO/IEC: Information Technology – Security Techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms Using a Block Cipher. ISO/IEC 9797-1:2011
(2011)

15. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE. Lecture Notes in Computer Science, vol. 2887, pp. 129–153. Springer (2003)

16. Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT. Lecture Notes in Computer
Science, vol. 2904, pp. 402–415. Springer (2003)

17. Iwata, T., Wang, L.: Impact of ANSI X9.24-1:2009 Key Check Value on
ISO/IEC 9797-1:2011 MACs. Cryptology ePrint Archive, Report 2014/183 (2014),
full version of this paper, http://eprint.iacr.org/

18. Knudsen, L.: Chosen-Text Attack on CBC-MAC. Electronics Letters 33(1), 48–49
(1997)

19. Knudsen, L., Preneel, B.: MacDES: MAC Algorithm Based on DES. Electronics
Letters 34(9), 871–873 (1998)

20. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

21. Martin, D., Oswald, E., Stam, M.: A Leakage Resilient MAC. Cryptology ePrint
Archive, Report 2013/292 (2013), http://eprint.iacr.org/

22. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT. Lecture Notes in Computer Science, vol. 3348, pp. 343–355. Springer
(2004)

23. Nachtigall, E.: ICSF Verify Key Check Value. IBM Techdocs Library, Doc:
PRS4840 (2011)

24. Nandi, M.: Improved Security Analysis for OMAC as a Pseudorandom Function.
J. Mathematical Cryptology 3(2), 133–148 (2009)

25. Petrank, E., Rackoff, C.: CBC MAC for Real-Time Data Sources. J. Cryptology
13(3), 315–338 (2000)

26. Pietrzak, K.: A Tight Bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP (2). Lecture Notes in Computer Science, vol. 4052, pp.
168–179. Springer (2006)

27. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

28. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 3329, pp. 16–31. Springer (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/

29. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. Investigation
Reports on Cryptographic Techniques in FY 2010 (2011), http://www.cryptrec.
go.jp/english/

30. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

A Attacks against MAC1.1

It is widely known that MAC1.1 is not secure for variable length messages. These
attacks are known as the length-extension attack. We here recall these attacks
for completeness.

Existential Forgery against MAC1.1. Let (M,T) be a known message and tag
pair, where T = MAC1.1K(M). We show that existential forgeries are possible
provided that pad1(M) ̸= T holds. If |M | ≥ n then define

M∗ = pad1(M) ∥M ′ ∥ · · · ∥M ′ ∥T ⊕msbn(M) ∥ lsb|M |−n(M),

where M ′ = T ⊕msbn(pad1(M)) ∥ lsb|pad1(M)|−n(pad1(M)). If 0 ≤ |M | < n then
define

M∗ = pad1(M) ∥T ⊕ pad1(M) ∥ · · · ∥T ⊕ pad1(M) ∥M ′′,

where M ′′ is a string that satisfies 0 ≤ |M ′′| < n and pad1(M ′′) = T ⊕pad1(M).
We see that T is the correct tag for all M∗ defined above.

Selective Forgery against MAC1.1. Let M∗ be the message that A tries to forge.
The following selective forgery attack uses one known message and tag pair
and one chosen message and tag pair. Let (M1, T1) be the known message and
tag pair, where T1 = MAC1.1K(M1). We assume that M1 ̸= M∗ and T1 ̸=
pad1(M∗). If M1 = M∗ holds, then the attack fails, and if T1 = pad1(M∗), then
A can ask for a different known message and tag pair. Let M2 be

M2 =

{
pad1(M1) ∥T1 ⊕msbn(M

∗) ∥ lsb|M∗|−n(M
∗) if |M∗| ≥ n

pad1(M1) ∥M ′ else

where M ′ is a string that satisfies 0 ≤ |M ′| < n and pad1(M ′) = T1⊕pad1(M∗).
Next, A asks M2 to its MAC oracle and obtains T2 = MAC1.1K(M2). We see
that T2 is a valid tag for M∗.

B Existential Forgery against MAC1.2

Let s = n. We show an existential forgery against MAC1.2 with a success prob-
ability of about n/2n/2, and the query complexity of about 2n/2. Our adversary
makes one query to the MAC oracle and one verification query. Now A is given

http://www.cryptrec.go.jp/english/
http://www.cryptrec.go.jp/english/

KCV = EK(0n). Denote the integer representation of KCV as int(KCV), i.e.,
int(KCV) is an integer Z such that binn(Z) = KCV. Let ε be the empty string,
and V = MAC1.2K(ε) be the corresponding tag. Note that pad2(ε) = 0n∥0n and
hence V = EK(0n ⊕ EK(0n)) = EK(KCV). A makes a query ε to the MAC1.2
oracle and receives the value of V . Next, A defines M as

M = V ∥KCV ∥ · · · ∥KCV ∥ 0m,

where 0 < m ≤ n and int(KCV) = |M |. Then, it holds that

pad2(M) = KCV ∥V ∥KCV ∥ · · · ∥KCV ∥ 0n.

Recall that V = EK(KCV) and KCV = EK(0n). We see that V is the correct tag
for M defined as above.

Now we evaluate the complexity of the above attack. It is dominated by the
verification of (M,V), and hence the query complexity is about int(KCV)/n.
Since we are interested in attacks with complexity below 2n/2, it is necessary
that we have int(KCV) < n2n/2, which holds with a probability of n/2n/2 as the
value of KCV is uniformly random.

Overall this existential forgery attack can be applied to MAC1.2 with a prob-
ability of n/2n/2.

