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Abstract. We study the problem of efficient (sub-linear) fuzzy search on en-
crypted outsourced data, in the symmetric-key setting. In particular, a user who
stores encrypted data on a remote untrusted server forms queries that enable the
server to efficiently locate the records containing the requested keywords, even
though the user may misspell keywords or provide noisy data in the query. We
define an appropriate primitive, for a general closeness function on the message
space, that we call efficiently fuzzy-searchable encryption (EFSE). Next we iden-
tify an optimal security notion for EFSE. We demonstrate that existing schemes
do not meet our security definition and propose a new scheme that we prove se-
cure under basic assumptions. Unfortunately, the scheme requires large ciphertext
length, but we show that, in a sense, this space-inefficiency is unavoidable for a
general, optimally-secure scheme. Seeking the right balance between efficiency
and security, we then show how to construct schemes that are more efficient and
satisfy a weaker security notion that we propose. To illustrate, we present and
analyze a more space-efficient scheme for supporting fuzzy search on biometric
data that achieves the weaker notion.

1 Introduction

MOTIVATION AND RELATED WORK. Cloud storage, which is a remote storage ac-
cessed over a network, has moved from hype to reality and is currently experiencing
explosive growth. One of the major challenges in cloud storage adoption is providing
security against the untrusted server without compromising functionality and efficiency.
Numerous works have addressed the problem of symmetric searchable encryption in
recent years, e.g. [23, 12, 13,2, 9]. The solutions differ in the level of security and effi-
ciency they provide, however most of them only support exact-match queries.

These solutions, however, are not suitable for practical situations where queried key-
words differ slightly from those corresponding to stored encrypted data. A user can use
different spellings over time, such as “1 800 555-66-77" and “1(800)555 66 77”. Google
queries can tolerate typos, but such functionality is much more challenging to support
when the data is encrypted. Moreover, data can be inherently noisy, e.g. for biometric
identification: investigators querying a criminal database using data from a crime scene
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should allow for “fuzziness” in fingerprint readings and witness description of the sus-
pect. In this work we consider the problem of efficient (sub-linear) search on encrypted
data that supports fuzzy search queries. Sub-linear and, in particular, logarithmic-time
search is essential because a linear scan of the whole data is unacceptable for any ap-
plication dealing with large databases. Typically, this requirement for efficient search is
irreconcilable with achieving a conventional “strong” security notion. But practitioners
are willing to compromise security for functionality and thus it is important to identify
suitable (possibly “weak”) levels of security and provide provably-secure solutions.

Several recent papers pertain to fuzzy searchable encryption. The scheme from [18]
is designed to address the general problem, though it lacks formal security analysis
and we later show that, in spite of being space-inefficient, its security is not strong
enough. The construction from [1], as well as the related schemes for the public-key
setting [10, 11] and the recent work [16] for the symmetric-key setting require the user
to know all the data in advance, analyze the entire data and pre-compute the index before
data outsourcing. This requirement is unsuitable for many broad applications, such as
when data is frequently updated or streaming. The paper [25] motivates and discusses
the problem of fuzzy search, but does not provide any solutions. Fully homomorphic
encryption [14, 24] could be used to implement fuzzy search queries; however, even a
(future) computationally efficient FHE scheme would require search time linear in the
length of the database. Hence the task of finding a provably-secure efficient (sub-linear)
fuzzy encryption scheme supporting on-the-fly encryption has been open prior to our
work.

The major contribution of this work is to initiate the study of a highly relevant prob-
lem, efficient fuzzy encryption, from a cryptographic (provable-security) standpoint. It
should be viewed as a “first step” in this effort and should not be considered a com-
plete treatment of the subject, which has strong possibilities for future directions of
research. Nevertheless, our work provides the foundations for the study of the subject,
including basic definitions, impossibility results, and basic schemes. Our work contin-
ues a line of recent research on studying encryption schemes providing more function-
ality while satisfying weaker security notions, such as deterministic, order-preserving,
format-preserving, property-preserving, predicate, and functional encryption [3,9, 6,
21,15, 17].

We now give an overview of our results.

DEFINING CLOSENESS. To even define our problem, we first need to establish what
“close” means for messages. At its core, closeness is a function assigning a value
(“close”, “far,” or “near”) to any pair of messages from a space. Thus, we introduce
the concept of a closeness domain which consists of a domain along with a closeness
function.

EFFICIENTLY FUZZY-SEARCHABLE ENCRYPTION AND ITS SECURITY. Next we de-
fine the central primitive, efficiently fuzzy-searchable encryption (EFSE), defined on
a closeness domain. In addition to the standard functions of a symmetric encryption
scheme, an EFSE scheme should provide a public function that takes a ciphertext and
returns all ciphertexts in a database that are equal or close to (but none that are far
from) the queried ciphertext. We also allow for optional false-positives, i.e. the function
may return ciphertexts of some near messages. Furthermore, this function should be



sub-linearly efficient. We then discuss the details of how a user and the server perform
search using an EFSE scheme. We note that an EFSE scheme leaks equality and “close-
ness” of queried messages in order to provide efficient exact-match and fuzzy search.
Thus, an optimal security notion for EFSE would be a natural relaxation of the standard
IND-CPA security definition prohibiting queries that trivially exploit this leakage of
closeness and equality—we call this optimal security indistinguishability under same-
closeness-pattern chosen-plaintext attacks (IND-CLS-CPA) and define it formally.

TEMPLATE EFSE CONSTRUCTION AND ITS SECURITY. For generality and conve-
nience, we propose a general template EFSE construction providing the basis of all
specific EFSE constructions that we discuss later. The template construction, which is
inspired by the scheme from [18], formalizes and extends their construction by building
an EFSE scheme from three elements, listed with security notions as follows.

1. An efficient searchable encryption (ESE) scheme, which was defined in [2] and is
essentially a symmetric encryption that leaks equality, and is thus is a generaliza-
tion of deterministic encryption; the relevant security notion is indistinguishability
under distinct chosen-plaintext attack or IND-DCPA [4].

2. A closeness-preserving tagging function that maps domain elements to “tags” so
that only close messages map to overlapping tags; the relevant security condition is
called consistency.

3. A batch-encoding family, each instance of which maps batches of elements accord-
ing to a deterministic function from domain to range; the relevant security notion
is privacy-preserving under chosen batch attacks (PP-CBA) and is related to IND-
DCPA.

Note that the latter two primitives and their security notions are novel.

The template scheme works as follows: a ciphertext contains an ESE-encryption of
the message, as well as a batch-encoding of all of the message’s “tags,” as defined by
the closeness-preserving tagging function. The ESE-encryption leaks equality, and the
batch-encoded tags leak closeness. We show that a scheme based on the template is
secure if the ESE scheme is IND-DCPA-secure, the batch-encoding family is collision-
free and PP-CBA-secure, and the tagging function is consistent. We also suggest how
to instantiate an IND-DCPA-secure ESE scheme and a PP-CBA-secure batch-encoding
family out of blockciphers for use in constructions, leaving the remaining task of finding

a consistent tagging function (discussed later, individually for each particular scheme.)

ANALYSIS OF SCHEME FROM [18]. Next, we present the first cryptographic security
analysis of the scheme from [18] (which was missing a formal definition of security and
proof.) We first define a scheme based on our template construction that is essentially
equivalent, in that the scheme’s core component is a tagging function that for a message
outputs its “neighbors,” i.e. the other messages in the message space that are close to
a message. However, this tagging function is not consistent in general, which means
that this construction is not IND-CLS-CPA-secure in general: to prove this, we present
a simple efficient adversary with high advantage. The attack exploits a simple obser-
vation that looking at two encoded tags one can with high probability tell how many
neighbors the associated messages share. Leaking such information is not required for
the functionality of EFSE and hence is a security breach according to our definition.



We also note that the scheme from [18], besides being IND-CLS-CPA-insecure, is not
very efficient in terms of ciphertext length. The constructions we propose target either
strong security with the same efficiency, or much improved efficiency (with a necessar-
ily weaker security guarantee.)

NEW OPTIMALLY-SECURE CONSTRUCTION. We propose a new general EFSE scheme.
It relies on the notion of the closeness graph, whose vertices are the unique elements of
the message space, and edges indicate closeness between elements. Defined according
to the template model, the tagging function for this scheme sends a message to its set of
incident edges (rather than neighboring vertices 4 la [18]) in the closeness graph. This
tagging function is consistent, and so the scheme is IND-CLS-CPA-secure assuming
the other components of the scheme satisfy the appropriate security notions.

One might worry that our construction is rather inefficient in the ciphertext length,
which is linear in the maximum degree of the closeness graph. However we show that
an EFSE scheme that works on general closeness domains (i.e. the scheme’s algorithms
do not depend on the structure of the closeness domain) must, in fact, require ciphertext
length linear in the maximum degree of the closeness graph. The argument is informa-
tion theoretic and relies on the functionality, rather than security, of the primitive. Thus,
in achieving EFSE on arbitrarily-defined closeness domains the new IND-CLS-CPA-
secure construction is (asymptotically) space-optimal, and moreover optimally secure.

CONSTRUCTIONS WITH IMPROVED EFFICIENCY. In many (even most?) practical ap-
plications, vertices of the closeness graph have massive degrees. Degrees can even be in-
finite, e.g. on continuous spaces—consider, for example, searching a massive database
of website access-records for one that accessed a webpage at approximately 6:59:59.95
PM on May 20, 2012 (where the time query must be fuzzy to account for inherent
lag-time in the network)—here, depending on the granularity of measurements and the
closeness tolerance, there could be a huge number of neighbors. This situation can grow
even worse for multi-dimensional spaces, as the number of “close neighbors” increases
exponentially with dimensionality for closeness defined on a metric. Consider, for ex-
ample, querying a criminal database with a large array of biometric measurements taken
from a crime scene, in an attempt to find suspects—here, multi-dimensional closeness
(closeness in every measurement) is needed, and if there are (say) a few dozen mea-
surements, and even a narrow definition of closeness in each, the number of neighbors
could again be huge. In such situations our optimally-secure scheme, as well as the less-
secure scheme from [18], are unacceptably inefficient—and the aforementioned lower
bound result shows that we cannot expect to do better for arbitrary domains.

We seek the right balance between the desired efficiency and security of EFSE, and
look at closeness domains with a well-defined structure. We argue that IND-CLS-CPA-
security is too strong to be useful in characterizing EFSEs on “non-rigid” closeness do-
mains (where near messages could be encrypted to either close or far ciphertexts), and
so to do this we introduce a new security definition. The new definition requires schemes
to hide all information about plaintexts except nearness and a certain aspect of “local
structure”—essentially, messages’ offsets from a predetermined fixed regular lattice £
on the space. Importantly, this implies that no major relative information (i.e., nothing
above the least-significant-bit level) is leaked about a pair of “disconnected messages,”
that is, messages that cannot be connected through a chain of near known correspond-



ing ciphertext pairs. Hence, we call this notion macrostructure-security. Note that this
security may be useful in applications such as the website access-record and biometric
matching examples above, where it is not a big deal to reveal aspects of local structure
(does it matter if an adversary knows, say, the least significant bits relating to biometric
measurements in the criminal database?) but it is important to hide large differences
between messages.

Our security definition and construction strategy focus on a practical choice of do-
mains with associated metric and close, near, and far distance thresholds, that we call
metric closeness domains; in particular, we consider real multidimensional space. Crit-
ically, on these domains, closeness is defined in a “regular” manner across the space—
namely, for any regular lattice in the space, closeness is invariant under translation by
a lattice vector. The security definition is then defined in terms of a fixed lattice, de-
manding that nothing is leaked except “local structure” of near clusters of messages
with respect to the lattice. To provide a blueprint for building specific schemes, we in-
troduce the concept of an “anchor radius” for a metric closeness domain and a lattice,
and use it to construct a tagging function to build an EFSE via our usual template. We
show that a valid anchor radius implies an EFSE construction that is macrostructure-
secure. Then, to enhance understanding, we present a practical example, filling in de-
tails of the blueprint to build a (relatively) space-efficient, macrostructure-secure EFSE
scheme supporting fuzzy search on fingerprint data. Finally, in the full version [8], we
observe that an efficient scheme that probabilistically acts like an EFSE scheme can be
constructed out of locality-sensitive hash (LSH) functions. But the theory behind these
schemes and their security is beyond the scope of this work.

FUTURE WORK. Our work provides the basis for cryptographic study of fuzzy-search-
able encryption. Our template constructions invite exploration of more efficient schemes
that will automatically satisfy our security notions. In addition, future studies might
achieve more efficient and secure schemes—circumventing our impossibility result by
defining closeness and EFSE primitives in a different manner. For instance, one could
consider only closeness domains with certain natural structure, or closeness could be
defined quantitatively or probabilistically.

2 Preliminaries

We let LR (left-or-right) denote the “selector” that on input mg, m1, b returns my. For
x € Z, the notation [z] denotes the set {1,2,...,x}. In some of the algorithm de-
scriptions, for ease and clarity of analysis, we use abstract set notation. In a practical
implementation, the sets can be implemented by some specialized data structure, or
by vectors/lists with a common predetermined order (e.g., numerical order.) We recall
the syntax and security for symmetric encryption in the full version of the paper [8].
We wait until Section 4 to define efficiently searchable encryption, privacy-preserving
batch-encoding, and closeness-preserving tagging functions. Here, we introduce a met-
ric space, closeness domains and associated graph-theoretical concepts.



METRIC SPACES. (D, d) is a metric space if D is a set and d (the metric) is a real-valued
function on D x D such that for all z,y, z € D,

d(z,y) >0 d(z,y) =0iffx =y
d(z,y) = d(y,x) d(z,z) < d(z,y) + d(y, 2).

CLOSENESS DOMAIN. We refer to the pair A = (D, Cl) as a closeness domain if

1. D is a (finite or infinite) set, called the domain or message space;

2. Clis the closeness function that takes a pair of messages and outputs a member of
{eq, close, near, far}, so that Cl is symmetric (i.e., Cl(m,m’) = Cl(m', m) for
all m,m’ € D) and Cl(m, m’) = eq if and only if m = m/.

According to the output of Cl, we say a pair of messages is equal, close, near, or far.
Note that a closeness domain can be defined by describing which distinct message pairs
of a domain D are close and which are far (the rest are then near.) For convenience, we
say Ais rigid if Cl(m, m’) € {close, far} forall m # m’ € D. When these quantities
exist, the degree of a message m in Ais A, = |[{m’ € D | Cl(m,m’) = close}|, and
the max degree of Ais A = max,ep Q.

As a special case, let d be a metric’ on domain D, and let § > 0. The metric

C sF
closeness domain <D7 Mg 9 ) on domain D with respect to metric d, close threshold
d¢ > 0, and far threshold 6¥ > §°, has the following closeness function: for distinct
close ifd(m,m’) <% 1,2
’ — 7 For instance, ( 0,1}89, M ),

far if d(m,m’) > 6% . (0.1} Ham
where Ham is Hamming distance, is a closeness domain of all length-80 strings where
strings differing in 1 bit are close, differing in 2 bits are near, and differing in more than
2 bits are far.

7 5¢,6F
m,m’ € D,M;"° =

CLOSENESS AND NEARNESS GRAPH, INDUCED SUBGRAPH. Let A = (D, Cl) be a
closeness domain, V4 = D and

&S = {{u,v} | u# v € V4 and Cl(u,v) = close} ;

EY = {{u,v} | u# v € V4 and Cl(u,v) € {close,near}}.
Then G§ = (D, £9) is the closeness graph and GY = (D, EY) is the nearness graph of

A.Forgraph G = (V,€)and H C Vet G(H) = (H,E(H)) be the subgraph induced
by H where £(H) = {{u,v} € £ |u,v € H}.

3 Efficiently Fuzzy-Searchable Symmetric Encryption
We now define our main primitive and show how can it be used for efficient search.
Following that, we formulate the optimal level of security for EFSE schemes.

DEFINING EFFICIENTLY FUZZY-SEARCHABLE ENCRYPTION. FSE = (K, Enc, Dec,
makeDS, fuzzyQ) is a structured fuzzy-searchable symmetric encryption (StructFSE)

3 So in particular, d obeys the triangle inequality.



scheme on closeness domain A = (D, Cl) if (K, Enc, Dec) is a symmetric encryption
scheme on D, and for any key K output by /C,

— makeDS takes a set of ciphertexts C (the database) encrypted under K and outputs
a data structure DSc;

— fuzzyQ, given database C, data structure DS, and query ciphertext ¢, outputs two
subsets E, F' of C such that

E= Ceq(c) and Cclose(c) - F - Cnear(c)>
where for m = Dec(K, ¢), m' = Dec(K, '),

Ceqlc) ={d € C|Cl(m,m') = eq}
Cclose(c) = {C/ eC | Cl(m, ml) = close}.
Cphear(c) ={d € C|Cl(m,m’) € {close,near}}.

One could easily relax the above syntax to not require the returned ciphertexts to equal
those from the database. This would allow one to consider, for example, schemes based
on homomorphic encryption. We stick with a stricter definition for simplicity. To ease
discussion, for implicit fixed key K we say that ciphertexts ¢ and ¢’ are close (respec-
tively, far) if their decryptions m = Dec(K,c) and m’ = Dec(K, ') are close (far).
Notice that in a StructFSE scheme, fuzzyQ(C, DS¢, ¢) returns all ciphertexts in C close
to ¢ and no ciphertexts far from c. Any near ciphertext may be returned as well—these
can be thought of as “legal false positives” in a fuzzy search query. In this sense, FSE
on a rigid closeness domain cannot have any false positives. But of course, even on a
non-rigid domain, we must limit false positives to ensure efficiency.

We say StructFSE scheme FSE = (K, Enc, Dec, makeDS, fuzzyQ) is an efficiently
fuzzy searchable symmetric encryption (EFSE) scheme if for any (sufficiently large)
database C, data structure DSc, key K generated by /C, and query ciphertext ¢ with
|Ccrose(c)| sub-linear in the size of C, the running time of fuzzyQg ps (c) is sub-
linear in the size of C. Notice this condition on the running time limits the number of
false positives for a fuzzy query.

We note that EFSE defined for rigid domains makes a special case of property-
preserving encryption from [21] (for the property of “closeness”), but the general case
of EFSE does not seem to fit the class of schemes from [21].

USING AN EFSE SCHEME. Let FSE = (K, Enc, Dec, makeDS, fuzzyQ) be an EFSE
scheme and K a valid key. In a practical scenario, let C be the set of ciphertexts cur-
rently in an encrypted database, encrypted under K. The server runs makeDS(C) to cre-
ate a data structure DS¢, and upon a new query ¢ = Encg (m), runs fuzzyQ(C, DSc, ¢)
and returns the results, E and F, to the user. By correctness of the scheme, F consists of
all ciphertexts in C whose messages are close to m, and no ciphertexts whose messages
are far from m. Since the scheme is efficient, such a query will take time sub-linear in
the size of the database C (assuming the number of close messages itself is also sub-
linear in the size of C.) Also note that the scheme supports efficient exact-match search
through E.

As a side note, in a practical implementation, additional functions (e.g. add, remove,
edit) would be useful to efficiently update the data structure as the database changes.



In our analysis, we are less focused on efficiency of the data structure maintenance, so
for simplicity we just let the (possibly inefficient) function makeDS construct the data
structure from the entire database. And we leave it as an interesting open problem for
future work to extend and realize the primitive so that “closeness” be specified during
encryption.

Finally, observe that the “difficult” part of building an EFSE scheme is ensuring
that fuzzyQ is efficient. Thus, the construction of Enc might as well be designed with
the efficiency of fuzzyQ in mind. In our constructions, as detailed in Section 4, ci-
phertexts outputted by Enc will contain “encoded tags” such that ciphertexts of close
messages share a common encoded tag. Thus, indexing ciphertexts by encoded tags in
an efficiently searchable data structure, like a binary search tree, leads to an efficient
construction of fuzzyQ.

OPTIMAL SECURITY FOR EFSE SCHEMES. We construct the following indistinguisha-
bility-based security definition, called IND-CLS-CPA*, for analyzing the security of
EFSE schemes. Intuitively, this notion is identical to IND-CPA with the additional con-
dition that left-right queries have the same closeness pattern (in the second requirement
below.)

Definition 1. Let FSE be an EFSE scheme on closeness domain A = (D, Cl). For
bit b € {0,1} and adversary A, let Expiac" " (4) be the standard IND-CPA ex-

periment Expggi];Cpa_b(A) recalled in Figure 1, but with the following restriction: if
(mg,mi), ..., (md, mi) are the queries A makes to its LR encryption oracle Enc(K,

LR(-,-,b)), then

1. |mi| = |mi| foralli e [a]; ‘
2. foralli,j € [q], Cl(m§, m}) = Cl(m,m?).

For an adversary A, define its IND-CLS-CPA advantage against FSE as
AdVngdE-ClS-Cpa(A) - Pr [Exp;nélécls-cpa-l(A) _ 1:| —Pr [EXp;HSdE?CIS-Cpa-O (A) _ 1:| )

We say that FSE is indistinguishable under same-closeness-pattern chosen-plaintext at-
tacks (IND-CLS-CPA-secure) if the IND-CLS-CPA advantage of any adversary against
FSE is small>®.

* We do not study chosen-ciphertext security here as it can be achieved using the encrypt-then-
MAC method [5].

> We use the informal term “small” because the main building blocks of symmetric cryptogra-
phy, blockciphers, have keys of fixed length in practice. Thus, instead of requiring advantages
to be negligible in a security parameter, we leave appropriate concrete bounds to be determined
on a case-by-case basis depending on the application.

® According to our definitions, advantage can be negative; note that “small” refers to an ad-
vantage close to zero. For every adversary with negative advantage there is one with positive
advantage, who just outputs the complement bit.



It should be apparent that IND-CLS-CPA-

. ind-cpa-b
Experiment Exp s, (4) security is optimal for EFSE schemes on rigid

$
K <K closeness domains: revealing equality/closeness
Y & AEne(KLRE,0) patterns of LR-queries is unavoidable as an adver-
Return b’ . sary can run the (public) fuzzyQ function on ci-

phertexts to test for equality and closeness. It may
Fig. 1. The IND-CPA experiment. seem that the optimal security definition on gen-

eral closeness domains, where fuzzyQ is given
flexibility over near message pairs, should not allow distinguishing near messages as
it is not needed for search functionality. However, while a stronger security definition
than IND-CLS-CPA would be possible, the notion would necessarily depend on the
scheme’s construction, i.e., the left-right query restriction would rely on how fuzzyQ
sends near message pairs to close or far ciphertexts. To define a security notion that
is independent from the construction of fuzzyQ, the IND-CLS-CPA experiment forces
left-right query pairs to match near-to-near, as fuzzyQ is permitted to distinguish near
ciphertexts from close and far ciphertexts.

4 Template tag-encoding construction for EFSE

In this somewhat technical section, we build up to a general construction of an EFSE
scheme given a valid “tagging function” on the desired closeness domain. In addition,
we show that under certain conditions, the scheme is IND-CLS-CPA-secure. First,
though, we define several primitives, along with relevant security notions, that will
be components of the construction. The primitives are: efficient searchable encryp-
tion (ESE) schemes [2], closeness-preserving tagging functions, and privacy-preserving
batch-encoding families. We emphasize that, despite the technical language, these prim-
itives are conceptually simple and can be instantiated in natural ways—the formalism
is simply aimed to achieve fuller generality in isolating theoretical requirements from
possible instantiations.

EFFICIENT SEARCHABLE ENCRYPTION AND SECURITY. The ESE scheme primitive
[2] is recalled in the full version [8]. Intuitively, an ESE is an encryption scheme that
“leaks equality,” that is, there is a (public) way to tell if two ciphertexts are encryptions
of the same message. In particular, deterministic functions F', G are provided such that
if ¢; and ¢y are both encryptions of m under key K, G(c1) = F(K,m) = G(cg)
(and this is unlikely if ¢; and co are encryptions of different messages.) The appropri-
ate security notion for ESE was defined by [4] and is called indistinguishability under
distinct chosen plaintext attacks (IND-DCPA)—it is also recalled in the full version
[8]. The notion is identical to IND-CPA except that LR-queries must have the same
“equality pattern” (and so avoiding the obvious attack, as ESE leaks equality.) Note
that any PRF implies an IND-DCPA-secure ESE scheme [4] so there are many options
for instantiation.

CLOSENESS-PRESERVING TAGGING FUNCTIONS. Fix a closeness domain A = (D,
Cl). Let TagUniv be a (finite or infinite) set and let Tags : D — 272821V be a function
assigning a subset of TagUniv to every domain element. We call Tags a closeness-
preserving tagging function (CPTF) from A into TagUniv if for every z,y € D with



Cl(z,y) = close, there exists ¢ € TagUniv such that t € Tags(x) N Tags(y); and for
every x,y € D with Cl(z,y) = far, Tags(z) N Tags(y) = 0.

Further, a CPTF Tags is consistent with respect to closeness domain A if for any
message sets {m{,...,md} and {mi,...,m{} having the same closeness pattern’,

we have ‘ﬂie[q} Tags(m}) ) = ’ﬂie[q] Tags(m?}) ‘ Consistency can be understood intu-
itively as follows: whenever a set of messages has the same closeness pattern as another
set of messages, each set should have the same number of common tags.

Examples of CPTFs are integral to our constructions and several are introduced in
the remainder of this paper.

PRIVACY-PRESERVING BATCH-ENCODING. We say that 7 = (K,En) is an encoding
family on domain D and range R if I outputs random keys and En takes a key K and
an element of D and outputs an element of R such that En(K, -) is a (deterministic)
function from D to R. We further say that Fge, = (Kpen, En, Ben) is a batch-encoding
Sfamily if (KCgep, En) is an encoding family and Ben takes a key K and a set of elements
M C D and outputs {En(K,m) | m € M}. Given a function family (K’,En’) it is easy
to construct a batch-encoding family (Kgen, En, Ben): let Kpe, = K’ and En = En’, and
define Ben(K, -) to take a set of messages, run En(K, -) on each, and return the set of
results.
We say that a encoding family (Kgen,En)
or a batch-encoding family (Kgen,En,Ben) is
. pp-cba-b collision-free if for any key K, En(K,-) is one-
Experiment Exp Ben (4) to-one on D. Now, we define security for batch-

K & Kpen encoding families. Called privacy-preserving un-
b & ABen(KLR(:-b)) der chosen batch attacks, it is essentially the
Return b’ | IND-DCPA generalized to objects of the batch-

encoding primitive.
Fig. 2. The PP-CBA experiment.
Definition 2. Let Fpep, = (Kgen, En,Ben) be a batch-encoding family on domain D
and range R. For an adversary A and b € {0, 1} consider the experiment defined in
Figure 2, where it is required that, if (M}, M), ..., (M, M{) are the queries that A
makes to its LR-batch-encoding oracle (note: each M ; is a set of elements of D), for
all I C [q) we have |;c; M§| = |N;er Mi].
For an adversary A, define its PP-CBA advantage against Fgey, as
AdVIE™(4) = Pr|Bxpl ™ (4) = 1] - Pr | Explr™(4) = 1] .
We say that Fpey is privacy-preserving under chosen batch attacks (PP-CBA-secure) if
the PP-CBA advantage of any adversary against Fgey is small.

Notice that the requirement rules out an obvious attack: suppose to the contrary
that, without loss of generality, the adversary could query (Mg, M}), ..., (M{, M)

with ‘ﬂie[q] Mé‘ > ‘ﬂie[q] M{‘ _If En(K, -) is collision-free, ‘midq] Ben(K, Mg)‘ -

7 That is, Cl(mg, mj) = Cl(mi,m?) forall 4, j € [q].



Micgy {En(K, m) [ m € M}| = ‘mie[q] Mg‘ , 50 by computing |, Ben(K, M)
from the oracle responses the adversary can identify b.

ON HOW TO INSTANTIATE A PRIVACY-PRESERVING, COLLISION-FREE BATCH-ENCO-
DING SCHEME. Anticipating that our EFSE constructs will use PP-CBA-secure batch-
encoding schemes, how can we construct one? In fact, a PP-CBA-secure batch-encoding
scheme can be created straightforwardly out of a pseudorandom function (PRF), as we
now demonstrate.

Let PRF = (Kpgr, Fprr) be a function family on domain D to some range R. Let
Fien = (Kgen,En,Ben) where Kgen = Kprr, En = Fprr, and Ben is defined in the
standard way using En as described above. We claim that if PRF is a PRF, then Fgey is
PP-CBA-secure. See the following result, which is proved in [8].

Proposition 1. For Fgey constructed as above out of function family PRF, and any ad-
versary A, there exist PRF adversaries Fy and Fy such that

AV (A) = Advige(Fo) + Advige (F) -

Further, if A submits queries of total length -y to its oracle, then I, and F5 each submit
queries of total length ~y to their oracles as well.

As will soon become clear, what we actually need is a PP-CBA-secure collision-
free batch-encoding scheme, a natural extension of a IND-DCPA deterministic encryp-
tion scheme. To theoretically achieve collision resistance, a pseudorandom permuta-
tion (PRP) would be necessary. But concretely, statistical collision resistance should
suffice—i.e. on random inputs, a collision occurs after \/@ inputs with probability
approximately 1/2. We suggest using any blockcipher (permutation) that is a PRF (and
thus PP-CBA-secure), though one may have to augment the blockcipher into a variable-
input-length blockcipher [7] as described in [20], or into an encryption scheme like
those of [22,2].

TEMPLATE TAG-ENCODING EFSE CONSTRUCTION. We now provide a general “tem-
plate” construction for an EFSE scheme given a closeness-preserving tagging function
Tags, batch-encoding family Fge,, and ESE scheme ESE. We remark that this template
is a generalization of the technique used in [18], though we have expanded, formal-
ized, and refined it significantly. All forthcoming EFSE constructions use this general
construction as a template.

Let A = (D, Cl) be a closeness domain, Tags a function from D to subsets of a set
TagUniv, Fpen = (Kgen, En, Ben) a batch-encoding family on domain Dg, = TagUniv
and range Ry, and ESE = (Kgsg, Encesg, Decese, F, G) an ESE scheme on D. Then we
define a general tag-encoding StructFSE scheme FSEg;.g [Tags, Fpen, ESE] in Figure 3.

CONDITIONS FOR CORRECTNESS AND EFFICIENCY. The following result, proved in
[8], establishes conditions under which the template construction is a valid StructFSE
scheme and when it is EFSE.

Theorem 1. If Fpey is collision-free and Tags is closeness-preserving, then the scheme
FSEgtag|Tags, Feen, ESE| is StructFSE. In addition, it is an EFSE scheme if Tags, Fgen,
and ESE are efficient and 1 = max,, |Tags(m)| is small.



FSEktag|Tags, Feen, ESE] = (K, Enc, Dec, makeDS, fuzzyQ) where

— K 1uns Kgen <& Kgen and Kgse < Krse, and returns Kgen || Kgse-

— Enc(Kpen||Kzse, m) runs T, — Tags(m); Etags < Ben(Kgen,Tm); Cr
Encese(Kese, m), and returns ¢ < Etags||cr.

— Dec(Kpen|| Kzse, ) parses c as Etags||cr and returns Decgse ( Kese, CR).-

- makeDS(C) initializes an efficient self-balancing search tree 7 representing an asso-
ciative array from elements of Ren to ciphertexts. For each ciphertext ¢ € C parsed
as ¢ = Etags||cr, and for each ¢ € Etags, add the node (¢ — c¢) to 7. Output
DSc «— 7.

- fuzzyQg ps, () parses c as Etags||cr and interprets DSc as search tree 7. Let
E,F = (). For each t € Etags, search 7 for nodes indexed by ¢; for any (¢t — ¢’)
that exist, parse ¢’ = Etags’||cz. Then, if G(cr) = G(cR), add ¢’ to E; otherwise,
add ¢’ to F. Return E, F.

Fig. 3. General tag-encoding construction of a StructFSE scheme given Tags, Fgen, ESE.

CONDITIONS FOR OPTIMAL SECURITY. Now, fix a closeness domain A = (D, Cl), and
let Tags be a CPTF from A into a set TagUniv, Fge, a collision-free batch-encoding
family on TagUniv, and ESE an ESE scheme on D, so that FSEg¢ag[Tags, Fgen, ESE] is
a valid StructFSE scheme by Theorem 1. The next result, proved in [8], gives sufficient
conditions for FSEgtag|Tags, Fpen, ESE| to be IND-CLS-CPA-secure.

Theorem 2. If Tags is consistent with respect to A, i = max,, |Tags(m)| is small,
Fgen is PP-CBA-secure, and ESE is IND-DCPA-secure, then FSEgag|Tags, Fgen, ESE]
is IND-CLS-CPA-secure.

Finally, the following result, proved in [8], shows that consistency of Tags is a
necessary condition for the template scheme to be IND-CLS-CPA-secure.

Theorem 3. If Tags is not consistent, then valid EFSE FSEgag[Tags, Fgen, ESE] is not
IND-CLS-CPA-secure.

Summing up, if CPTF Tags is consistent, 4 = max,, [Tags(m)| is small, batch-
encoding oracle Fge, is PP-CBA-secure and collision-free, and ESE scheme ESE is
IND-DCPA-secure, then FSEgtag|Tags, Fpen, ESE] is a valid, (optimally) IND-CLS-
CPA-secure EFSE. If Tags is not consistent, the scheme is not IND-CLS-CPA-secure.

5 Toward an Optimally-Secure Scheme

We now seek an EFSE construction achieving the optimal level of security, IND-CLS-
CPA, as defined in Definition 1. First, we show that the only previously existing candi-
date is, in general, not IND-CLS-CPA-secure due to Theorem 3. Then, we construct the
first IND-CLS-CPA-secure EFSE scheme using the template from Section 4. Finally,
we show that in a sense, the space-inefficiency of the secure scheme is necessary to
accommodate general closeness domains.



ANALYSIS OF AN EFSE SCHEME SIMILAR TO [18]. The only previously existing
EFSE-type scheme is presented in [18]. As noted, the basic structure of our template
tag-encoding scheme is a generalization of their method, so it is natural to define a tag-
encoding scheme in our model that captures the essence of (and perhaps improves) the
[18] scheme. Here we show that this scheme has poor space-efficiency (length of cipher-
text linear in the degree of a message) and yet fails to achieve IND-CLS-CPA-security.
(Moreover, it only works on certain closeness domains.) In contrast, the schemes we
develop in later sections either achieve IND-CLS-CPA-security, or have much better
space-efficiency.

In [18], the authors construct several variants of a fuzzy-searchable scheme; here we
present a variant/generalization®. This construction only works on closeness domains
A = (D, Cl) with the following constraint: for any m, mo € D, if Cl(my, ms) = far,
then there exists no m with Cl(my,m) = Cl(mg,m) = close. (In particular, this
generally rules out rigid closeness domains.) We define the neighbor set of an element
m to be Nb,,, = {m’ € D | m' # m,Cl(m,m’) = close}. Define Tagbs : D — V4
as TagNbs(m) = Nb,,, U {m}, where V, is the power set of D.

Note that if Cl(m, m’) = close then TagNbs(m) N Taghbs(m') 2 {m,m'} # 0,
and if Cl(m,m’) = far, TagNbs(m) N TagNbs(m') = ) by the condition on A, so
TaglNbs is a CPTF on A. Let Fe, be a collision-free batch-encoding family on V4 and
ESE an ESE scheme on D, and define FSEtagNbs to be FSEgtag[TagNbs, Fgen, ESE| as
per Figure 3. If the max degree A = max,,cp |Nb,,| of A is small, FSEtagNbs is an
EFSE. However, the ciphertext size is linear in A.

We claim that FSEtagNbs is IND-CLS-CPA-insecure for the closeness domains
considered by [18], as well as most other conceivably useful domains. Suppose, for ex-
ample, that the closeness domain has two pairs of close messages with different num-
bers of common close neighbors: i.e.,

Cl(mg, m2) = Cl(my, mg) = close; [Nby, N Nbyp, | # |Nbpy, N Nbpy | (1)

Then the condition of Theorem 3 is satisfied for ¢ = 2, so that FSEtagNbs is IND-CLS-
CPA-insecure for any domain having mg, m1, ms that satisfy (1).

The schemes of [18] are, essentially, instantiations of FSEtagNbs on closeness
domains defined in terms of keywords and edit distance (the minimum number of
operations—insertions, deletions, substitutions—required to transform one string into
the other.) If 6 > 2 is the threshold edit distance, take mo to be any message of length
at least 0 + 1. Let mg be mo but with the first letter changed. Let m4 be mo but with the
last § letters changed. Then m( and mo share more neighbors than 7, and mo share,
so these messages satisfy (1) and FSEtagNbs is IND-CLS-CPA-insecure in this case.

CONSTRUCTION OF THE FIRST SECURE EFSE SCHEME. We now improve on the
scheme of [18] and construct an EFSE scheme that is IND-CLS-CPA-secure even on

8 There are minor differences—notably, FSEtagNbs uses an IND-DCPA-secure ESE rather than
a (stronger) IND-CPA-secure scheme, but this is not an issue as [18] leaks equality already
through its encoding strategy. Moreover, we could instantiate FSEtagNbs with an IND-CPA-
secure scheme in place of ESE and the attack described would still work, since the attack
exploits the Fgen-tagged neighbors, not ESE. Other differences in [18] are inconsequential to
the analysis.



rigid closeness domains. Let A = (D, Cl) be a closeness domain with D finite. Let
Ga = (Va,€EA) be the closeness graph of A. For m € D, let E,,, = {{m,m'} €
Ea | m' € Va} be the set of incident edges to m in G4, and note that message degree
A, = |Epn| and max degree A = max,ep Am.

So that all messages have the same number of close neighbors, we introduce dummy
messages. Construct a new graph Gaun = (Vaun, Eaun) Where Vauyn = VaU{wy,...,wa},
and &y, consists of all edges in €4, plus for any m € Vg, if A — A,, > 0 then let Eguy
also contain edges {m, w1 },...,{m,wa_a,, }. We call these additional edges dummy
edges and w1, . .., wa dummy vertices. Gayy 1s thus a graph in which every element of
V4 C Vguy has degree A.

Define TagEdges : D — Equy as TagEdges(m) = {e € Equn | m € e}. Note: if
Cl(m,m’) = close then TagEdges(m) N TagEdges(m') 2 {{m,m’}} # 0; and if
Cl(m,m’) = far then TagEdges(m) N TagEdges(m’) = (). So TagEdges is a CPTF.

Let Fgen be a collision-free batch-encoding family on domain &gy, and some range
Ren, and let ESE be an ESE scheme on D. Define the StructFSE scheme FSEtagEdges
as FSEgiag[TagEdges, Fpen, ESE] according to Figure 3. Notice that for all m € D,
|TagEdges(m)| < A. So, if A has small max degree, FSEtagEdges is efficient.

Now, Theorem 4 provides the security guarantee of FSEtagEdges. The proof is in
[8], and simply shows the main condition of Theorem 2 (i.e., consistency of TagEdges)
is satisfied in this case.

Theorem 4. If the max degree A of the closeness domain is small, and if ESE is IND-
DCPA-secure and Fgey, is PP-CBA-secure, then FSEtagEdges is IND-CLS-CPA-secure.

Recall that certain blockcipher-based constructions (discussed earlier) satisfy the
necessary efficiency, security, and functionality conditions for ESE and Fge,. The final
missing piece to achieve an efficient IND-CLS-CPA-secure scheme is that TagEdges
should be efficient; i.e., for any message m € D it should be easy to compute E,,.
Thus, FSEtagEdges is an IND-CLS-CPA-secure EFSE scheme on A if the following
two conditions hold:

(1) the max degree of A is small; (2) E,, is predetermined or calculated on-the-fly.

Of course, whether these conditions are satisfied depends on the closeness domain A.
It is an interesting question to identify when (1) holds, and how to achieve (2) in those
situations. However, the possibilities are wide-ranging and so we leave this as a topic
of future research.

Now, we have successfully created a IND-CLS-CPA-secure scheme, but at what
cost? It is apparent that, even if the max degree A is small enough for the scheme to be
efficient, its size can lead to huge space-inefficiency, since ciphertexts in FSEtagEdges
have length linear in A. And A could certainly be quite large—for instance, on a dense
or high-dimensional metric closeness domain, even a small threshold supplies each
message with many close neighbors.

Nevertheless, if we desire a general FSE construction to work on arbitrary closeness
domains, such long ciphertexts are necessary. We explain in the following section.

LOWER BOUND ON CIPHERTEXT LENGTH OF AN FSE SCHEME FOR GENERAL CLOSE-
NESS DOMAINS. Notice that our FSEtagEdges scheme is defined independently of the



closeness graph—in particular, the algorithms makeDS and fuzzyQ did not exploit
any special structure of the closeness graph. In the following result, we show that to
have such a scheme construction that is valid for “general” closeness domains, it re-
quires ciphertext length linear in the max degree of the closeness domain. Moreover,
note that this is an informational theoretic requirement, and relies only on functionality,
rather than security, of the schemes. The proof of the theorem is in [8].

Theorem 5. Let D be a fixed domain and A an integer with 2 < A < |D|. There exists
a family of closeness domains {A; = (D, Cl;) }ie1, each with max degree at most A, so
that if {F SE;}ic1 is a family of FSE schemes on the respective closeness domains that
have common makeDS and fuzzyQ algorithms and a common ciphertext space, then
the ciphertext length is at least A/2.

The bound on ciphertext length asymptotically matches the space-efficiency of scheme
FSEtagEdges from the previous section, demonstrating that FSEtagEdges is “best-
possible” for FSE schemes that work on general closeness domains.

6 Space-Efficient Schemes

Theorem 5 indicates that it is costly to construct EFSE schemes on general closeness
domains. A natural question is whether we can improve efficiency by focusing on close-
ness domains that have nice structure. In particular, to avoid the strict conditions lead-
ing to Theorem 5 we should consider non-rigid closeness domains, where near message
pairs enable “false positives” in a fuzzy query. However, note that if an adversary has
any probabilistic edge in distinguishing near message pairs that lead to false positives
and those that don’t, he can easily break IND-CLS-CPA-security. To avoid such an at-
tack, one must force the probability a near message pair is sent to a close ciphertext
pair to be uniform over all near message pairs. But this negates the flexibility advantage
of near messages—we expect an EFSE scheme satisfying this uniformity condition on
near pairs would be as inefficient as the FSEtagEdges scheme. Thus, it appears that
IND-CLS-CPA-security is too strong for more efficient EFSEs to achieve, even on non-
rigid closeness domains. So to evaluate more efficient schemes, we need a new, weaker
notion of security.

Intuitively, what information must a EFSE scheme on a non-rigid closeness domain
A leak, given that some number of ciphertexts are known? Let H be the set of messages
corresponding to known ciphertexts. For two messages in the same component of the
induced nearness subgraph G (H) (we say they are in the same nearness component)
an EFSE is designed so that anyone might discover this fact by running fuzzyQ on their
ciphertexts. So, by using EFSE we automatically give up a large amount of information
about messages in the same nearness component (namely, their link through a chain of
known near pairs.) It is a natural step to consider allowing more information leakage
relating messages within the same nearness component, while protecting as much as
possible about messages in different components, and hiding the “general location” of
a message in the domain. We also might restrict our view to schemes on “regular” close-
ness domains—that is, domains where message closeness is defined in a similar manner
in all parts of the space. Otherwise, irregularities in the domain would inherently reveal
message locations.



Toward this end, we focus on real /-dimensional domains where closeness of mes-
sages is defined regularly throughout the space. In particular, there is a regular lattice
L such that the closeness function is invariant by £-translations. Our new security no-
tion then requires schemes to hide all information about plaintexts in different nearness
components except for their “local structure” with respect to this lattice. The impor-
tant implication is that nothing major (i.e., only “local structure”) is revealed about the
relationship between a pair of disconnected messages (i.e., messages that cannot be
connected through a chain of near known corresponding ciphertext pairs). Hence, it is
a sort of “macrostructure security” across disconnected nearness components.

In this section and related sections deferred to the full version [8], we focus on
schemes achieving this security on certain metric closeness domains over R¢. Suppose
we can select a lattice £ C R and “anchor radius” p > 0 so that close messages are
each within distance p of a common lattice point, and far messages are not. Then an ob-
vious tagging strategy is to send a message to its anchor points: the lattice points within
distance p of the message. We prove that the resulting scheme is secure with respect
to £ under the new definition. This new “macrostructure-secure” construction leads to
a more detailed discussion that is relegated to the full version [8]. There, we pose an
optimization problem related to the general construction, present some simple scheme
constructions and a way to stitch simple constructions together to build useful schemes,
then describe a practical instantiation of the scheme for fuzzy search on biometric data.
Finally, in [8] we propose a direction of further research toward “probabilistic EFSE”
schemes built out of locality-sensitive hash functions.

6.1 Macrostructure security on lattice-regular closeness domains

Our new notion of security will apply to closeness domains over R for which closeness
is defined in a “regular” manner over the entire space. We characterize this regularity
using a regular lattice on RY. Then, the security notion will hide everything about plain-
texts except for how they locally relate to this regular lattice.

LATTICE-REGULAR CLOSENESS DOMAINS. Let £ be a regular lattice in RY, that is, a
set of vectors characterized as all integer combinations of a finite set of linearly inde-
pendent basis vectors. We say a closeness domain A = (R, Cl) is £-regular if for any
x,y € Rfand any w € £, Cl(x,y) = Cl(x + w,y + w). That is, closeness relations
are invariant under translation by any lattice vector. We say L is a regularity lattice of
A. Also, if z = x + w for some x,z € R’ and w € £, we say that x and z are in the
same L-class and that w is the L-witness from x to z.

MACROSTRUCTURE SECURITY. Let £ be a regular lattice on R and let A = (R*, Cl)
be a L-regular closeness domain on R¢. The security notion is as follows.

Definition 3. Ler FSE = (K, Enc, Dec, makeDS, fuzzyQ) be an EFSE scheme on L-

regular closeness domain A. For an adversary A and b € {0,1}, let Expiac"%"Pb( 4)

be identical to IND-CPA experiment Expa®(A) in Figure 1, but with the re-
striction: for LR-queries (m{,m'), i € [q] made by the adversary, letting Hy =

{mp,...,m¢} and Hy = {mi,...,m1}, require

1. |m§| = |mi| foralli € [q];



2. Vi € [q], m{ and m, are in the same L-class; furthermore, the L-witness from m)
to m' is also the L-witness from m}, to m} whenever m{ and mj, are in the same
connected component of G4 (Hy).

For an adversary A, define its IND-NRL-CPA advantage against FSE as
AdViFnSd];mL_cPa(A) — Pr [Exp;lSdE-an-cpa-l(A) -1 ] _Pr [Exp;néiE-an-cpa-O (A) _ 1:| )

We say that FSE is indistinguishable under same-nearness-component-L-class chosen-
plaintext attacks (IND-NRL-CPA-secure) or, alternatively, macrostructure-secure with
respect to anchor lattice £ (MacroStruct-L-secure) if the IND-NRL-CPA advantage of
any adversary against FSE is small.

The second LR-query requirement asks that a left-query component of G (H) is a
L-translation (translation by a vector in £) of the corresponding right-query component
of GY(Hy). This implies that left and right queries have the same equality/closeness
pattern, which we can see by the following. If m{ = mé then these messages are in
the same nearness component (as they are the same vertex) so 3l € £ with mi =
mg + 1 = mj + 1 = m}. If Cl(m,mp) € {close,near} then these messages are in
the same nearness component so 3 € £ with m} = m{ + [, m] = m}, + [, implying
d(mi,mi) = d(mi + 1,m] +1) = d(mj), m), so Cl(m’, m}) = Cl(mj;, m}). Thus,
MacroStruct-L-security is clearly weaker than IND-CLS-CPA-security.

Returning to the big picture, an MacroStruct-L-secure scheme may leak how all
messages in a nearness component lie with respect to nearby points in the regular-
ity lattice. However, since the lattice itself is regular, no information is leaked about
where those nearby lattice points actually are. Thus, for messages in different nearness
components, an adversary learns nothing about the distance between them, or their ap-
proximate locations in the space, besides some bits with low significance, and that the
distance is above 6F (which is by design.)

Practitioners should be aware that, depending on the application, MacroStruct-£-
security is not always an appropriate security guarantee. For instance, consider a sce-
nario where IP addresses are encrypted by a MacroStruct-L-secure scheme and the
lattice points are IP addresses with the final byte equal to 0. The scheme could possibly
leak the last byte of each IP address, perhaps revealing the particular types of con-
versants in IP traffic data. In general, when the “least significant” bits of data contain
sensitive information, MacroStruct-£L-security may not be enough.

6.2 General macrostructure-secure construction on metric closeness domains

We aim to construct space-efficient EFSE schemes that meet our new notion of Macro-
Struct-L-security for some regularity lattice. For practicality, we focus on the metric
closeness domain on R?, Euclidean metric d, close threshold 6 > 0, and far threshold
6F > 6% 1e., A= (RZ, /\/lgc"sF). Notice that A is £-regular for any lattice £ C RY. We
now define a few useful objects that will play a leading role in the general construction.
Then, the construction follows.



ANCHOR RADII AND POINTS. Fix a lattice £ in R?. For p > 0, we say that p is an
anchor radius on closeness domain A and lattice £, and {v € £ | d(m, v) < p} is the
set of anchor points of message m, if (1) any two close messages m, m’ € D have
a common anchor point, and (2) any two far messages m, m’ € D have no common
anchor points.

GENERAL MACROSTRUCTURE-SECURE CONSTRUCTION AND ITS SECURITY. If p is
an anchor radius on A and £, then TagsAnc’, : R¢ — £ defined as TagsAnc.(m) =
{v € £ | d(im,v) < p} is a CPTF on 4, as condition (1) implies that whenever
d(m, m’) < ¢°, there exists v € £ such that TagsAnc/. (m) N TagsAnc’.(m’) D {v};
and condition (2) implies TagsAnc/.(m) N TagsAnc. (m’) = () whenever d(m, m’) >
OF. Thus, if p is an anchor radius on A and £, Fgen = (Kgen, En, Ben) is a collision-free
batch-encoding family on domain Dg, = L, and ESE is an ESE scheme on D, then
the scheme FSEtagAnc, = FSEg¢ag[TagsAnc/., Fpen, ESE] is a StructFSE scheme by
Theorem 1. The following result is proved in [8].

Theorem 6. FSEtagAnc’. defined ias above is MacroStruct-L-secure provided ESE
is IND-DCPA-secure, Fgep is PP-CBA-secure, |1 = max {v e L|dm,v)<p}is
me

small, and we can efficiently compute anchor points.

Together, Theorem 1 and Theorem 6 say that if we can find an anchor radius p on
closeness domain / and lattice £ such that the maximum number of anchor points p is
small, and we can efficiently compute anchor points, FSEtagAnc/. as constructed above
is an MacroStruct-£-secure EFSE scheme on A.

Note that the problem of finding a given message’s anchor points is essentially the
p-close vectors problem (p-CVP) on the appropriate parameters. Unfortunately, this
problem is harder (assuming fixed maximum number of anchor points x) then the stan-
dard closest vector problem with unlimited preprocessing, which has been shown to be
NP-hard in general [19]. Thus, to ensure both efficiency and security in our specific
constructions, it is vital to demonstrate how to efficiently compute anchor points.

The general “anchor-point” construction presented above provides a template for
defining macrostructure-secure schemes. In the full version [8], we analyze some of
the ramifications and possibilities. First, we pose the general open problem of how to
choose anchor lattice and anchor radius to optimize space-efficiency and flexibility of a
scheme. We next present several specific schemes, and identify how to stitch methods
together to create a scheme supporting “conjunctive” closeness. Then, to enhance un-
derstanding, we describe and analyze a scheme for a practical application: supporting
fuzzy search on biometric (fingerprint) data.
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