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Céline Blondeau1 and Gregor Leander2? and Kaisa Nyberg1

1 Department of Information and Computer Science,
Aalto University School of Science, Finland

{celine.blondeau, kaisa.nyberg}@aalto.fi
2 Faculty of Electrical Engineering and Information Technology,

Ruhr Universität Bochum, Germany
gregor.leander@rub.de

Abstract. Block ciphers are arguably the most widely used type of
cryptographic primitives. We are not able to assess the security of a
block cipher as such, but only its security against known attacks. The
two main classes of attacks are linear and differential attacks and their
variants. While a fundamental link between differential and linear crypt-
analysis was already given in 1994 by Chabaud and Vaudenay, these at-
tacks have been studied independently. Only recently, in 2013, Blondeau
and Nyberg used the link to compute the probability of a differential
given the correlations of many linear approximations. On the cryptana-
lytical side, differential and linear attacks have been applied on different
parts of the cipher and then combined to one distinguisher over the ci-
pher. This method is known since 1994 when Langford and Hellman
presented the first differential-linear cryptanalysis of the DES. In this
paper we take the natural step and apply the theoretical link between
linear and differential cryptanalysis to differential-linear cryptanalysis to
develop a concise theory of this method. We give an exact expression of
the bias of a differential-linear approximation in a closed form under the
sole assumption that the two parts of the cipher are independent. We
also show how, under a clear assumption, to approximate the bias effi-
ciently, and perform experiments on it. In this sense, by stating minimal
assumptions, we hereby complement and unify the previous approaches
proposed by Biham et al. in 2002-2003, Liu et al. in 2009, and Lu in
2012, to the study of the method of differential-linear cryptanalysis.
Keywords: block cipher, differential cryptanalysis, linear cryptanaly-
sis, truncated differential, multidimensional linear approximation, bias
of differential-linear approximation

1 Introduction

We are facing a fundamental change with respect to computing and information
technologies. For a few years the computing world has begun to move towards
the “many computers – one user” paradigm, in which the computing devices are
often every day devices – a situation frequently referred to as the Internet of
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Things (IoT). At the same time, security has become an increasingly important
issue for many IoT applications as more and more sensitive personal data is
transferred in a wireless manner. This implies that the use of cryptography
primitives in daily life plays an increasingly crucial role. Among the different
primitives, block ciphers are arguably the most widely used ones.

Great progress has been made in designing and analyzing block ciphers, es-
pecially with the introduction of the AES, but also more recently with many
block ciphers appearing in the area of lightweight cryptography. However, there
is still research on fundamental aspects of these ciphers going on and important
questions are still not understood. For instance we are not able to assess the
security of a block cipher as such, but only its security against known attacks.
The two main classes to be considered here are linear and differential attacks
and their variants.

Differential Cryptanalysis The first type of attacks that is applicable to a
large set of block ciphers is the differential attack introduced by Biham and
Shamir in [8]. Since its invention in the early nineties several variants, tweaks
and generalizations have been discussed. In 1994, Knudsen introduced so-called
truncated differentials attacks [25]. This relaxation of classical differential at-
tacks has since then been applied to many (round-reduced) block ciphers. In the
same paper, Knudsen furthermore introduced the concept of higher-order differ-
entials, an attack vector based on initial consideration by Lai in [27]. Another
variant of differential cryptanalysis (again by Knudsen) is impossible differen-
tials cryptanalysis which uses differentials with probability zero. This concept,
introduced in [26] has later been successfully applied numerously, e.g. to (almost)
break the cipher Skipjack [3]3. In 1999, Wagner introduced the boomerang at-
tack, which allows to connect two differentials over parts of a cipher that do not
coincide in the middle. This attack allowed, among others, to break the cipher
COCONUT98 [39]. Later, the boomerang attack itself has been generalized to
amplified boomerang attack [24] and rectangle attack [4].

Linear Cryptanalysis The second general applicable attack on block ciphers
is the Matsui’s linear attack [34]. Similarly to differential attacks, since its intro-
duction many extensions and improvements have been made, and we mention a
selection here. A more precise estimate for the success probability and the data
complexity are given by Selçuk [38]. The effect of using more than one linear
trail, referred to as linear hulls, has been introduced by Nyberg [37]; see also
Daemen and Rijmen [21]. Multidimensional linear attacks have been studied by
Hermelin, Cho, and Nyberg [23] as a way to further reduce the data complexity
of the basic attack. These approaches have been used for example by Cho [20].
More recently, the zero-correlation attacks introduced by Bogdanov et al. in [15]
have become popular. These attacks, which can be seen as the natural counter-
part of the impossible differential attacks, are based on linear approximations

3 The term impossible differential appeared first in [3].



with probability exactly 1/2. A further generalization of zero-correlation attacks,
namely attacks based on key-invariant biases, was presented in [13].

Theoretical Links Between Linear and Differential Cryptanalysis Most
of the work has been done independently for linear and differential cryptanalysis
and there are examples of ciphers that are more resistant against one type than
against the other. However, the concepts are closely related. A first fundamental
link between them was already given in 1994 by Chabaud and Vaudenay (see
[19]), where it was shown that the probability of a differential can be expressed
in terms of a sum of correlations of linear approximations. Interestingly, this link
was for a long time not used in practice due to its large computational complex-
ity. Only in 2013, Blondeau and Nyberg used the link in [11] to compute the
probability of a differential given the correlations of many linear approximations.
As a second result [12], Blondeau and Nyberg generalized the link to the case of
multidimensional linear distinguishers and truncated differential distinguishers.

Differential-Linear Cryptanalysis On the cryptanalytical side, differential
and linear attacks have been used jointly for the first time by Langford and
Hellman [30]. The basic idea of differential-linear cryptanalysis is to split the
cipher under consideration into two parts. The split should be such that, for
the first part of the cipher there exists a strong truncated differential and for
the second part there exists a strongly biased linear approximation. In [30], the
particular case where the differential over the first part holds with probability one
has been introduced. Later on, Biham et al. [29,5] generalized this attack using
a probabilistic truncated differential on the first rounds of the distinguisher.

More recently in 2012 [33], Lu studied the validity of the model proposed by
Biham et al. with the aim of minimizing the assumptions needed for the validity
of the attack.

Wagner presented ideas towards a unified view of statistical block cipher
cryptanalysis [40]. While concentrating on structural similarities between differ-
ent attacks in a Markov setting he relied, albeit with some doubts, on the pre-
viously made heuristic assumptions under which the differential-linear attacks
had been claimed to work.

It is very remarkable that in none of the previous work on differential-linear
cryptanalysis, the theoretical link presented in [19] between linear and differen-
tial attacks is used to model –and understand better– the general behavior of
differential-linear cryptanalysis.

Our Contribution In this paper we take the natural step and apply the the-
oretical link between linear and differential cryptanalysis to differential-linear
cryptanalysis. This, not surprisingly, has a couple of nice consequences.

To the best of our knowledge, we are, for the first time, able to exactly
express the bias of a differential-linear approximation by a closed expression.
The formula is exact under the sole assumption that the two parts of the cipher
are independent. In particular it is exact when averaging over all round-keys.



While evaluating this exact expression is (for full-scale ciphers) computa-
tional unfeasible, the formulation given in Th. 2 allows, under clear assumption,
to approximate the bias efficiently. In this sense we hereby complement the work
of Lu by stating minimal assumptions.

Moreover, given this exact expression and –along with this– a deeper under-
standing of differential-linear attacks allows us to substantially generalize the
attack vector. In particular, we study the possibility to take into consideration
the hull of a differential-linear approximation and introduce a multidimensional
generalization of differential-linear cryptanalysis which is defined for multiple
input differences and multidimensional linear output masks.

Note that, we do not propose new concrete attacks. But rather we provide a
sound framework for previous and future work on differential-linear cryptanaly-
sis.

Organization of the Paper In Sect. 2, we fix our notations and state sev-
eral general results on differential and linear cryptanalysis. The related work is
resumed in Sect. 3. In Sect. 4, we develop the exact expression for the bias of
the differential-linear distinguisher (cf. Th. 2) and outline its meaning with an
example using the block cipher Serpent. Furthermore, we elaborate more on the
comparison with previous work. In Sect. 5, we derive conditions on how and if
it is possible to obtain good and practical estimations of the exact expression.
We back-up our assumption with experiments using small scale variants of the
cipher PRESENT. Finally, in Sect. 6, we generalize the concept of differential-
linear cryptanalysis to the case of multiple differentials and multiple linear ap-
proximations and derive expressions for the biases and the attack complexities
for this generalization. Sect. 7 concludes the paper.

2 Basics of Linear and Differential Cryptanalysis

2.1 Linear Correlation and Differential Probability

In differential cryptanalysis [8], the attacker is interested in identifying and ex-
ploiting non-uniformity in occurrences of plaintext and ciphertext differences.
Given a vectorial Boolean function F : Fn2 → Fn2 , a differential is given by a pair
(δ,∆) of an input difference δ ∈ Fn2 and an output difference ∆ ∈ Fn2 and its
probability is defined as

P[δ
F→ ∆] = 2−n#{x ∈ Fn2 |F (x) + F (x+ δ) = ∆}.

Linear cryptanalysis [34] uses a linear relation between bits from plaintexts,
corresponding ciphertexts and encryption key. A linear relation of bits of data
x ∈ Fn2 is determined by a mask a ∈ Fn2 and is given as a Boolean function
f(x) = a ·x where “ · ” is the natural inner product of the vectors a and x in Fn2 .
The strength of a linear relation is measured by its correlation.



The correlation of a Boolean function f : Fn2 → F2 is defined as

cor(f) = cor(f(x)) = 2−n
[
# {x ∈ Fn2 |f(x) = 0} −# {x ∈ Fn2 |f(x) = 1}

]
,

where the quantity within brackets correspond to the Fourier coefficient of f at
zero, and can be computed using the Walsh transform of f , see e.g. [18].

In this paper, a block cipher or a part of it with a fixed key and block size
n is considered as a bijective vector-valued Boolean function F : Fn2 → Fn2 . In
the general model of differential-linear cryptanalysis to be built in this paper,
we consider a set of input differences to the cipher which form a linear subspace
of Fn2 . Given a subspace U of Fn2 , let us denote by U⊥ the orthogonal subspace
of U with respect to the inner product of Fn2 . Then

U⊥ = {v ∈ Fn2 |u · v = 0, for all u ∈ U}.

Let us denote by 0` ∈ F`2 the all-zero string of length `. If U = Fs2 × {0t},
for some positive integers s and t, where s + t = n, then U⊥ = {0s} × Ft2. In
this manner we obtain a splitting of Fn2 to two mutually orthogonal subspaces,
whose intersection is {0n}. Another type of example of orthogonal subspaces is
obtained for U = {(0, 0), (1, 1)} × {0n−2}. Then U⊥ = {(0, 0), (1, 1)} × Fn−22 , in
which case U ⊂ U⊥. In any case, the dimensions of U and U⊥ add up to n.

A truncated differential [25] over a vectorial Boolean function F : Fn2 → Fn2
is a set of ordinary differentials (δ,∆) where the input differences δ ∈ U⊥ and
the output differences ∆ ∈ V ⊥. In this paper we assume that U and V are linear
subspaces of Fn2 . In this manner, the truncated differential is determined by a
pair of linear spaces U and V . The strength of a truncated differential is often
measured by the number of solutions (x, δ,∆) ∈ Fn2 × (U⊥ \ {0}) × V ⊥ to the
equation

F (x+ δ) + F (x) = ∆. (1)

To facilitate the derivations in this paper we will use a different but closely
related quantity, which allows the zero difference in the input. It is straightfor-
ward to show that, the number of solutions (x, δ,∆) ∈ Fn2 ×U⊥× V ⊥ of (1) can
be computed as ∑

δ∈U⊥,∆∈V ⊥
#{x ∈ Fn2 |F (x+ δ) + F (x) = ∆}.

We denote by P[U⊥
F→ V ⊥] the probability that a pair of inputs (x, x+δ), where

x is picked uniformly at random in Fn2 and δ ∈ U⊥, gives an output difference
∆ ∈ V ⊥.

Proposition 1. Let U and V be linear subspaces of Fn2 , we have

P[U⊥
F→ V ⊥] =

1

2n|U⊥|
#{(x, δ,∆) ∈ Fn2 × U⊥ × V ⊥ |F (x+ δ) + F (x) = ∆}

=
1

|U⊥|
∑

δ∈U⊥, ∆∈V ⊥
P[δ

F→ ∆]. (2)



The probability P[U⊥
F→ V ⊥] which can be expressed in the two different ways

shown in Prop. 1 will be called the truncated differential probability.

Let us denote by P[U⊥\{0} F→ V ⊥] the probability for the truncated differen-
tial derived analogically as above but without allowing the zero input difference.
Then we have the following relation:

|U⊥| ·P[U⊥
F→ V ⊥] = 1 + (|U⊥| − 1) ·P[U⊥ \ {0} F→ V ⊥]. (3)

In particular, for the ordinary differential probability, we have

P[δ
F→ ∆] = 2 ·P[sp(δ)

F→ ∆]− 1,

for all δ, ∆ ∈ Fn2 , δ 6= 0. Here, as well as later in the paper, we use the notation
sp(a) to denote the vector subspace {0, a} ⊂ Fn2 spanned by a.

Recalling the symmetry of the probability of single differential for a bijective
function F

P[δ
F→ ∆] = P[∆

F−1

→ δ],

let us note that the truncated differential probability is not symmetric, except
in the case when |U | = |V |. In general, we have

|U⊥| ·P[U⊥
F→ V ⊥] = |V ⊥| ·P[V ⊥

F−1

→ U⊥].

Let us recall the link between the differential probabilities and the squared
correlations of linear approximations of vectorial Boolean functions presented by
Chabaud and Vaudenay [19]. In the context of this paper we write it as follows.

P[δ
F→ ∆] = 2−n

∑
u∈Fn

2

∑
v∈Fn

2

(−1)u·δ+v·∆cor2 (u · x+ v · F (x)) , (4)

where F : Fn2 → Fn2 is a vectorial Boolean function, and (δ, ∆) ∈ Fn2 × Fn2 . By
applying this link for all δ ∈ U⊥ and ∆ ∈ V ⊥ in (2) we obtain the following
result which is a generalization of [11,12].

Theorem 1. The probability of a truncated differential with input differences in
U⊥ and output differences in V ⊥ can be computed as a sum of squared correla-
tions with input masks in U and output masks in V as

P[U⊥
F→ V ⊥] =

1

|V |
∑

u∈U,v∈V
cor2 (u · x+ v · F (x)) .

Proof. If for u ∈ Fn2 we have u · δ = 1 for some δ ∈ U⊥ then the linear
function δ 7→ u · δ is non-zero, and hence balanced on U⊥. Thus in this case∑
δ∈U⊥(−1)u·δ = 0. This is not the case exactly if we have u ∈ U , and then∑
δ∈U⊥(−1)u·δ = |U⊥|. Then, applying the same reasoning for all v ∈ Fn2 gives

the claim. ut



Corollary 1. For all w ∈ Fn2 \ {0} and ∆ ∈ Fn2 \ {0} we have

P[∆
F→ sp(w)⊥] =

∑
v∈sp(∆)⊥

cor2(v · x+ w · F (x)).

Proof. From (3) and Th. 1, we have

P[∆
F→ sp(w)⊥] = 2 ·P[sp(∆)

F→ sp(w)⊥]− 1

= 2 · 1

2
·

∑
v∈sp(∆)⊥,b∈sp(w)

cor2(v · x+ b · F (x))− 1

=
∑

v∈sp(∆)⊥

cor2(v · x+ w · F (x)).

ut

2.2 Round Independence

Computation of differential probabilities or linear correlations over an iterated
cipher is often done assuming that the rounds of the cipher behave independently.

Definition 1. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
said to be differentially round independent if for all (δ,Ω) ∈ Fn2×Fn2 the following
holds

P[δ
E→ Ω] =

∑
∆∈Fn

2

P[δ
E0→ ∆]P[∆

E1→ Ω].

Analogically, the parts E0 and E1 are said to be linearly round independent if
for all (u,w) ∈ Fn2 × Fn2 the following holds

cor2(u · x+ w · E(x)) =
∑
v∈Fn

2

cor2(u · x+ v · E0(x))cor2(v · y + w · E1(y)).

It was proved in [2] that the rounds of a Markov cipher [28] are both differentially
and linearly round independent. Next we show that differential and linear round
independence are equivalent concepts for any cipher.

Proposition 2. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦E0 are
differentially round independent if and only if they are linearly round indepen-
dent.

Proof. Let us start by stating (4) in the following equivalent form∑
δ∈Fn

2

(−1)u·δP[δ
F→ ∆] =

∑
v∈Fn

2

(−1)v·∆cor2 (u · x+ v · F (x)) .

This is obtained by applying the inverse Fourier transform to the input difference.
By applying it to the output difference, another equivalent form can be given



where the first summation is taken over ∆ and the second summation over u. We
refer to these equations as partial inverses of (4). A further variant is obtained
by applying the inverse Fourier transform on both differences. We call it the
inverse of (4).

Let us now assume that the parts of the cipher are differentially round inde-
pendent. Then using the inverse of (4) and the assumption of differential round
independence, we get

cor2 (u · x+ w · E(x)) = 2−n
∑
δ∈Fn

2

∑
Ω∈Fn

2

(−1)u·δ+w·ΩP[δ
E→ Ω]

= 2−n
∑
∆∈Fn

2

∑
δ∈Fn

2

(−1)u·δP[δ
E0→ ∆]

∑
Ω∈Fn

2

(−1)w·ΩP[∆
E1→ Ω].

Then using the both partial inverses of (4) we obtain

cor2 (u · x+ w · E(x))

= 2−n
∑
∆∈Fn

2

∑
v∈Fn

2

(−1)v·∆cor2(u · x+v · E0(x))
∑
v′∈Fn

2

(−1)v
′·∆cor2 (v′ · y+w · E1(y))

= 2−n
∑
v∈Fn

2

∑
v′∈Fn

2

cor2(u · x+v · E0(x)) cor2 (v′ · y+w · E1(y))
∑
∆∈Fn

2

(−1)(v+v
′)·∆.

The sum over ∆ is non-zero if and only if v = v′ and the value of this sum, 2n,
cancels with the factor 2−n. We can then see that the condition of linear round
independence is satisfied. The converse proof is analogous. ut

Few ciphers satisfy round independence in the strict sense of Def. 1. On the
other hand, n-bit ciphers of the form EK(x) = E1(E0(x) +K) with n-bit key K
are round independent on average over the key. For simplicity, the results given
in this paper will be stated in terms of strict round independence, but can be
reformulated using average round independence for such ciphers.

3 Previous Work

Let E : Fn2 → Fn2 be a cipher. When applying the technique of differential-linear
cryptanalysis the iterated block cipher is presented as a composition E = E1◦E0

of two parts. The first part E0 is chosen in such a way that there is some strong
truncated differential over E0. Let U and V be the subspaces that define the
truncated differential. Typically, the input difference space U is selected so that
U⊥ is one-dimensional. The output difference space V ⊥ is usually larger. It is
then assumed that there is a strong linear approximation (v, w) over E1, where
v ∈ V , which means that v ·∆ = 0 for all ∆ ∈ V ⊥.

In this section, we assume that the input-difference space U⊥ is one-dimensional.
Let δ be the sole non-zero element in U⊥. Then the bias of the differential-linear
approximation is defined as

Eδ,w := P[w · (E(x+ δ) + E(x)) = 0]− 1

2
.



In the previous treatments [30,5,33], Eδ,w is evaluated using the Piling-up lemma
[34] by decomposing the Boolean variable w ·(E(x+ δ) + E(x)) as a sum of three
variables

w · (E(x+ δ) + E(x)) = v · E0(x+ δ) + w · E(x+ δ)

+ v · (E0(x+ δ) + E0(x)) (5)

+ v · E0(x) + w · E(x),

which are assumed to be independent as x varies.
By using the following notation for the involved biases

εv,w = P[v · y + w · E1(y) = 0]− 1

2

εδ,v = P[v · (E0(x+ δ) + E0(x)) = 0]− 1

2
= P[δ

E0→ sp(v)⊥]− 1

2
, (6)

the Piling-up lemma gives

Eδ,w = 4εδ,vε
2
v,w. (7)

It remains to determine εδ,v given the truncated differential probability P[δ
E0→

V ⊥]. This is where the previous studies differ. In [30], P[δ
E0→ V ⊥] = 1, in

which case P[δ
E0→ sp(v)⊥] = 1, since v ∈ V . According to Biham et al. [7]

this was generalized first in [29] and later by Biham et al. [5] to the case where

P[δ
E0→ V ⊥] < 1. In [5], Biham et al. denote this probability by p′ and by

assuming that when ∆ /∈ V ⊥ the parities of v ·∆ are balanced they obtain the
estimate

P[δ
E0→ sp(v)⊥] ≈ p′ + (1− p′)1

2
.

This exact equality holds if p′ = 1. In general, it gives only an approximation,
for the simple reason that if a linear function v · y vanishes in V ⊥, it cannot
be balanced outside V ⊥. The approximation is better, if V ⊥ is small, which
is the case studied in [5]. This approximation becomes worse, however, as V ⊥

increases. The extreme case is sp(v) = V . Then v · y = 1, for all y /∈ V ⊥.
This problem was observed by Lu and suggested to be solved in his study

[33] by restricting to the case where the output difference space of the truncated
differential is the hyperplane sp(v)⊥.

As in practice, V ⊥ is often smaller than a zero space of a linear Boolean

function, we have that P[δ
E0→ V ⊥] is less than or equal to P[δ

E0→ sp(v)⊥]. It
can also be strictly less, in which case replacing the latter by the former in
the estimation of the bias (6) may lead to a wrong result for Eδ,w. Biham et
al. suggest that the other output differences ∆ ∈ sp(v) \ V ⊥ may occur with
high probability and affect their approximation and stress the importance to do
experimental verification.

Note that it would be possible to fix the assumption by Biham et al. by
correcting the probability of zero parity outside V ⊥ to (2n−1−|V ⊥|)/(2n−|V ⊥|).



In [32], the authors mention the possibility of using multiple linear approxi-
mations in order to improve the complexity of a differential-linear distinguisher.
Their study, which is based on the differential-linear model of Biham et al. [6]
and on the multiple linear model of Biryukov et al. [9], assume that the dis-
tinguisher is built from the combination of only one truncated differential with
independent linear approximations.

The goal of this paper is to analyze in more detail what is happening in the
intermediate layer of the differential-linear approximation and take into account
not only more high-probability output differences from E0 but also more, not
necessarily independent, linear approximations over E1. Still, many differences
and linear masks in the intermediate layer must be left out. To handle them
in Th. 3, we make an assumption analogical to the one of Biham et al. but
corrected.

4 Differential-Linear Hull

The basic tool in examining the intermediate layer between E0 and E1 is the
following theorem. We use the notation Eδ,w and εδ,v introduced in the preceding
section, and denote the correlation of the linear approximation v ·y+w ·E1(y) by
cv,w. Then cv,w = 2εv,w in relation to the notation used in the preceding section.

Theorem 2. Assume that the parts E0 and E1 of the block cipher E = E1 ◦E0

are independent. Using the notation previously defined, for all δ ∈ Fn2 \ {0} and
w ∈ Fn2 \ {0}, we have

Eδ,w =
∑
v∈Fn

2

εδ,vc
2
v,w. (8)

Proof. First, we apply the assumption of independence to the probability P[δ
E→

sp(w)⊥] and then, the link given by Cor. 1 to the differential probability over
E1.

P[δ
E→ sp(w)⊥] =

∑
∆∈Fn

2

P[δ
E0→ ∆]P[∆

E1→ sp(w)⊥]

=
∑
∆∈Fn

2

P[δ
E0→ ∆]

∑
v∈sp(∆)⊥

cor2(v · y + w · E1(y))

=
∑
v∈Fn

2

∑
∆∈sp(v)⊥

P[δ
E0→ ∆]cor2(v · y + w · E1(y))

=
∑
v∈Fn

2

P[δ
E0→ sp(v)⊥]cor2(v · y + w · E1(y)),

where changing the order of summation is possible since

{(v,∆) |∆ ∈ Fn2 , v ∈ sp(∆)⊥} = {(v,∆) | v ∈ Fn2 , ∆ ∈ sp(v)⊥}.

Now by subtracting 1
2 from both of the sides of the obtained equality and using

Parseval’s theorem gives the result. ut



We call the expression (8) the differential-linear hull of E = E1 ◦ E0. The
differential-linear method has been previously applied in cases, where only one
correlation cv,w has been identified to have a large absolute value but the output
differential space of the truncated differential is smaller than the zero space of v.
Consequently more than one trail must be taken into account when estimating
the bias of the differential-linear approximation. We illustrate this in the context
of an attack on the Serpent cipher [1].

Example on Serpent. Differential-linear cryptanalysis [6,22] which has been
applied to many ciphers, remains with the multidimensional linear cryptanaly-
sis [35,36] the most powerful attack on the Serpent cipher [1]. In this section,
we summarize, in our notation, the distinguisher proposed in [6], on 9 rounds of
Serpent.

To be useful in a key-recovery attack, the distinguisher was defined as starting
from the second round of the cipher. First a truncated differential is defined
on 3 rounds of Serpent. In this attack, only one input difference is taken into
consideration meaning that U⊥ is one-dimensional. The output space of the
truncated differential consists of all differences which have the bits number 1
and 117 equal to zero. Hence it is the orthogonal of the two-dimensional space V
spanned by the bits (taken as basis vectors) number 1 and 117. The truncated

differential probability P[δ
E0→ V ⊥] being large, it can, as typically in differential-

linear cryptanalysis, be computed experimentally and was evaluated in [6] to
2−1 + 2−6. The strong linear approximation over the six following rounds has
input mask ν ∈ V where both bits number 1 and 117 are equal to 1. The output
mask is denoted by w. The correlation of this linear approximation is estimated
to cν,w = 2−26.

The resulting differential-linear relation spans over 9 rounds of Serpent. In [6],
its bias was estimated to εδ,νc

2
ν,w with εδ,ν = 2−7 to obtain

Eδ,w ≈ εδ,νc2ν,w = 2−7 · 2−52. (9)

Later, in [22], another similar distinguisher on Serpent was provided. The only
difference was that a new and stronger truncated differential over the three
rounds of E0 was used.

Our aim is to analyze the conditions under which the approximation (9) is
justified. From Th. 2 we deduce that Eδ,w can be computed as

Eδ,w =
∑
v∈V

εδ,vc
2
v,w +

∑
v∈Fn

2 \V

εδ,vc
2
v,w. (10)

We observe that for the two masks v ∈ V , for which only one bit, either number
1 or 117, is equal to 1, the correlations cv,w are equal to zero. Then it follows that
the first sum on the right side of (10) is, indeed, equal to εδ,νc

2
ν,w. It remains to

examine under which assumptions the sum (9) is an underestimate of the actual
bias (10). This will be done in a more general setting in Sect. 5.1.



5 Intermediate Space

5.1 Estimation of the Bias

In this section, we aim to analyze whether we can obtain a good estimate of the
bias of a differential-linear relation. For a better illustration, the analysis pro-
vided in this section is based on Th. 2 where the differential-linear approximation
is defined for one input difference δ and one output mask w. A generalization of
this result for sets of input differences and output masks will be given in Sect. 6.

In the differential context, it is well known that the expected probability of
a differential is underestimated if we are only able to collect a small number of
differential characteristics relative to the differential.

As recalled in Sect. 3, in the few available analyses in the differential-linear
context, the bias of the differential-linear approximation is estimated as the
combination of one strong truncated differential with one strong linear approx-
imation. In this section, we discuss the possibility of generalizing this result to
obtain a better estimate of the bias Eδ,w by using the hull of a differential-linear
approximation more efficiently. From Th. 2, we know that an accurate compu-
tation of the bias of a differential-linear approximation requires the knowledge
of the correlations over E1 for all input masks v ∈ Fn2 , which is impossible in
practice for many ciphers.

From Th. 2 and as given in Eq. (10) the bias of a differential-linear approxi-
mation can be decomposed into two sums with respect to a set V .

Eδ,w =
∑

v∈V,v 6=0

εδ,vc
2
v,w +

∑
v/∈V

εδ,vc
2
v,w.

Notice that the bias of a different-linear equation can be, as in the linear context,
positive or negative. As the complexity of the underlying attack is independent
of the sign, we talk, as in the linear context, of absolute bias |Eδ,w|.
Assumption 1 Given a set V we assume that

|
∑

v∈V,v 6=0

εδ,vc
2
v,w| ≤ |Eδ,w|,

meaning that |
∑
v∈V εδ,vc

2
v,w| is an underestimate of the bias of the differential-

linear approximation with input difference δ and output mask w.

The only way to check if we have an under or over estimate of the actual prob-
ability consists in experimentally computing the bias of a differential-linear ap-
proximation on a reduced number of round of the cipher. These experiments
should be done in respect to the intermediate space V . In [5,6], experiments of
this type where already conducted to check the validity of their results.

If the intermediate space V is large, it is infeasible to compute the biases εδ,v
over E0 or the correlations cv,w over E1 for all v ∈ V . Next, based on the as-
sumption that some probabilities over E0 are equal, we show that

∑
v∈V εδ,vc

2
v,w

can be estimated from the product of one truncated differential probability with
the capacity of one multidimensional-linear approximation.



Theorem 3. Let εδ,V = P[δ
E0→ V ⊥]− 1

|V |
be the bias of a truncated differential

with one non-zero input difference δ and output differences in V ⊥. Further, we
denote by CV,w =

∑
v∈V,v 6=0 c

2
v,w the capacity of the multidimensional linear

approximation with all input masks v in V and one output mask w 6= 0.

If then, for all ∆ /∈ V ⊥, the probabilities P[δ
E0→ ∆] are equal, we have∑

v∈V
εδ,vc

2
v,w =

1

2

|V |
|V | − 1

εδ,V CV,w. (11)

Proof. For a purpose of clarity, let us denote Q = P[δ
E0→ V ⊥]. We denote

by p the common value of the probabilities P[δ
E0→ ∆] for ∆ /∈ V ⊥. Then by∑

∆∈Fn
2

P[δ
E0→ ∆] = 1 we deduce that p =

1−Q
2n − |V ⊥|

.

Since V ⊥ ⊂ sp(v)⊥ holds for all v ∈ V , we have

P[δ
E0→ sp(v)⊥] = P[δ

E0→ V ⊥] +
∑

∆∈sp(v)⊥, ∆/∈V ⊥

P[δ
E0→ ∆]

= Q+ (2n−1 − |V ⊥|) · 1−Q
2n − |V ⊥|

.

Therefore, for all v ∈ V , we have

εδ,v = P[δ
E0→ sp(v)⊥]− 1

2
= Q+

(
2n−1 − |V ⊥|

) 1−Q
2n − |V ⊥|

− 1

2

=
1

2
· 2nQ− |V ⊥|

2n − |V ⊥|
=

1

2
· Q− |V |

−1

1− |V |−1

=
1

2
· |V |
|V | − 1

(
Q− 1

|V |

)
=

1

2
· |V |
|V | − 1

εδ,V .

And we deduce∑
v∈V

εδ,vcv,w =
1

2

|V |
|V | − 1

εδ,V
∑
v∈V

c2v,w =
1

2

|V |
|V | − 1

εδ,V CV,w.

ut

Let us note that if |V | = 2, we have
∑
v∈V εδ,vc

2
v,w = εδ,V CV,w. The larger the

size of |V |, the closer to
1

2
εδ,V CV,w we are.

5.2 Experiments

The experiments of this section have been performed on a 32-bit scaled version
of PRESENT [14,31] called SmallPresent-[8]. The differential-linear approxi-
mations are defined for one input difference δ and one output mask w. To limit



the number of assumptions, the bias εδ,v and the correlations cv,w are computed
experimentally using 230 plaintexts and averaged over 200 keys. When using
Th. 2, round independence is only required between E0 and E1.

The purpose of these experiments was to check the accuracy of Assumption 1.
In each of the figures of this section, we plotted as a reference the experimental
bias

Eδ,w = P[δ → sp(w)⊥]− 2−1, (12)

over 8 rounds of SmallPresent-[8] and given a space V , compare it with∑
v∈V

εδ,vc
2
v,w. (13)

While experiments have been performed for many differential-linear approx-
imations on 8 rounds of SmallPresent-[8], we present results for the input
difference δ = 0x1 and the output mask w = 0x80000000. The bias of this
differential-linear approximation is positive and we are expecting under Assump-
tion 1 to find that (13) is an underestimate of the actual bias. In Fig. 1, resp. in
Fig. 2, the differentials are taken over 3 rounds, resp. 4 rounds, and the correla-
tions are taken over 5 rounds, resp. 4 rounds of SmallPresent-[8]. The space
V is chosen to be linear.

As the accuracy of these approximations depends mostly on the size of the
intermediate space, we study the evolution of (13) in regards to log(|V |).
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Fig. 1. Estimation of the bias a differential-linear approximation on 3+5 rounds
of SmallPresent-[8] for two different chains of intermediate spaces.

Result of the different experiments show that in the case of SmallPresent-[8],
(13) gives as expected an underestimate of the actual bias Eδ,w. In most of the
cases by increasing the size of the intermediate space V , we have a better esti-
mate of the bias (in this experiments, the initial spaces V are subset of the larger
ones). Nevertheless as the second sum of (10) is not always positive we observe
that this gain can be somewhat relative. When experiments are conducted for a
fixed key instead of averaged over keys, we strictly observe that (13) is not an
increasing function of |V |.

In Th. 3, based on the assumption that for all ∆ /∈ V ⊥, the probabilities

P[δ
E0→ ∆] are equal, we propose an estimate of (13). This one is relatively easier



to compute since, independently of the size of V , only one truncated differential
probability and one capacity need to be computed. The blue curves in Fig. 1
and Fig. 2 correspond to the computation of the expression on the right side of
(11). While this expression seems to be a correct estimate of (13) for V of small

size, the assumption that for all ∆ /∈ V ⊥, the probabilities P[δ
E0→ ∆] are equal,

is getting less realistic when increasing the size of the space V .
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Fig. 2. Estimation of the bias of a differential-linear approximation on 4+4
rounds of SmallPresent-[8] for two different chains of intermediate spaces.

This phenomenon also appears when multiplying truncated differential prob-
abilities over rounds of the cipher to obtain the probability of a truncated dis-
tinguisher and has been experimentally tested for instance in [17].

6 Multidimensional Differential-Linear Distinguisher

6.1 The Model

The idea of taking advantage of multiple differentials or multiple linear approxi-
mations is widely spread out in the cryptographic community. To generalize the
results of Sect. 4, let us now consider the case where the space U⊥ of possible
input differences is an arbitrary subspace of Fn2 . The linear approximation over
E1 is assumed to be multidimensional such that the output masks form a linear
subspace W of Fn2 . We denote its orthogonal space by W⊥.

The conditions on which it would be possible to combine such a truncated
differential and multidimensional linear approximation to a strong truncated
differential over the full cipher are similar to the ones in the one-dimensional
case expressed in Sect. 5.

We express here the generalization of Th. 2 to compute the bias

EU,W = P[U⊥ \ {0} E→W⊥]− 1

|W |
, (14)

of a multidimensional differential-linear approximation.



Theorem 4. Let EU,W as in (14). Assume that the parts E0 and E1 of the block
cipher E = E1 ◦ E0 are independent. Then

EU,W =
2

|W |
∑

v∈Fn
2 ,v 6=0

εU,vCv,W , (15)

where εU,v = P[U⊥\{0} E0→ sp(v)⊥]−1/2, and Cv,W =
∑
w∈W,w 6=0 cor2(v ·y+w ·

E1(y)), is for v 6= 0, the capacity of the multidimensional linear approximation
with input mask v and all nonzero output masks w in W .

Proof. First, let us state the following generalization of Cor. 1. Given a bijective
function F : Fn2 → Fn2 , a subspace U ⊂ Fn2 and a mask vector v ∈ Fn2 , we have

2P[U⊥
F→ sp(v)⊥]− 1 =

∑
u∈U

cor2(u · x+ v · F (x)).

Using Th. 1 to write the truncated differential probability in terms of squared
correlations, we apply this result together with Prop. 2 to obtain

P[U⊥
E→W⊥] =

1

|W |
∑

u∈U,v∈Fn
2 ,w∈W

cor2(u · x+ v · E0(x))cor2(v · y + w · E1(y))

=
1

|W |
∑
v∈Fn

2

(
2P[U⊥

E0→ sp(v)⊥]− 1
) ∑
w∈W

cor2(v · y + w · E1(y)).

The next step consists at removing the zero from the possible input differences.
To use relation (3) we multiply the probabilities on the first and second line by

|U | and then subtract 1 =
1

|W |
∑
w∈W

∑
v∈Fn

2
cor2(v · y + w · E1(y)) to get

(|U | − 1)P[U⊥ \ {0} E→W⊥] =
1

|W |
∑
v∈Fn

2

(
2|U |P[U⊥

E0→ sp(v)⊥]− |U | − 1
)
Cv,W

=
1

|W |
∑
v∈Fn

2

(
2(|U |P[U⊥

E0→ sp(v)⊥]− 1)− |U |+ 1
)
Cv,W

=
1

|W |
∑
v∈Fn

2

(
(|U | − 1)(2P[U⊥ \ {0} E0→ sp(v)⊥]− 1)

)
Cv,W .

We obtain the claim by dividing the first and last expression in this chain of
equalities by |U | − 1 and then observing that the term for v = 0 in the last
expression is equal to 1/|W |. ut

6.2 Complexity of a Distinguishing Attack

When the differential-linear approximation is characterized by only one output
mask w, as the data complexity is inverse proportional to the square of the bias



Eδ,w, larger its absolute value is, less costly the underlined distinguishing attack
is. When using multiple output masks, the differential-linear probability should

be distinguishable from the uniform probability
1

|W |
and the data complexity of

the differential-linear distinguisher depends of the number |W | of output masks.
As classically done in the differential context, using multiple input differences
allows the construction of structures and divides the data complexity of the
distinguisher by |U⊥|.
Proposition 3. Using the framework of [10,16,38], the data complexity of a
“multidimensional” differential-linear distinguisher with input differences in U⊥

and output masks in W is proportional to

2

|U⊥|
|W |−1

E2U,W
=
|W |

2|U⊥|
1

(
∑
v εU,vCv,W )2

. (16)

When increasing the number of output masks, for each v ∈ Fn2 the capacity
Cv,W increases. In general, the data complexity, as indicated by (16), depends
on the balance between the factor |W | and the effect of the capacity Cv,W on
the squared differential-linear bias.

6.3 Estimation of the Bias

As in the one-dimensional case, we discuss in this section some conditions on
which we can compute the bias of a multidimensional differential-linear approx-
imation. The approach is similar to the one of Sect. 5.

Given a set V , the sum (15) can be decomposed into two sums:

EU,W =
2

|W |
∑

v∈V,v 6=0

εU,vCv,W +
2

|W |
∑
v/∈V

εU,vCv,W (17)

Practical computation of the bias of a multidimensional differential-linear ap-
proximation relies on the fact that computing only the first partial sum gives us
an underestimate of the absolute bias |EU,W |.

Assumption 2 We assume that

|EU,W | ≥

∣∣∣∣∣∣ 2

|W |
∑

v∈V,v 6=0

εU,vCv,W

∣∣∣∣∣∣ .
It is straightforward to generalize Th. 3 to the multidimensional case.

Corollary 2. Let EU,V = P[U⊥ \ {0} E0→ V ⊥] − 1

|V |
be the bias of a truncated

differential with non-zero input differences in U⊥ and output differences in V ⊥.
Further, we denote by CV,W =

∑
w∈W,w 6=0

∑
v∈V c

2
v,w the capacity of the multi-

dimensional linear approximation.

If then, for all ∆ /∈ V ⊥ the probabilities P[U⊥ \ {0} E0→ ∆] are equal, we have

2

|W |
∑
v∈V

εU,vCv,W =
1

|W |
|V |
|V | − 1

εU,V CV,W .



To test the validity of the results presented in this section, similar experiments
than the ones presented in Sect. 5.2 have been conducted on SmallPresent[8].
Conclusion of these experiments are similar to the ones in the one-dimensional
case. In the case of the PRESENT cipher, these experiments show that∣∣∣∣∣ 2

|W |
∑
v∈V

εU,vCv,W

∣∣∣∣∣ ,
is an underestimate of the absolute bias of the multidimensional differential-
linear approximation. As in Sect. 5.2, we observe that the assumption about the

equality of the probabilities P[U⊥ \ {0} E0→ ∆] made in Cor. 2, influences the
computational result when |V | is large.

7 Conclusion

In this paper, we studied and generalized the differential-linear cryptanalysis.
Starting from the observation that any differential-linear relation can be regarded
as a truncated differential or a multidimensional linear approximation we derive
a general expression of its bias based on the link between differential probabilities
and linear correlations provided by Chabaud and Vaudenay.

We also revisit previous studies and applications of differential-linear crypt-
analysis, where the bias of the differential-linear approximation has often been
estimated under some heuristic assumptions, implicitly or explicitly present in
the derivations. We derive our general formula of the bias under the sole as-
sumption of round independence of the parts of the cipher, and identify new
additional assumptions for computing efficient estimates of it. Extensive exper-
iments have been performed to test the validity of these assumptions. Although
no new applications of differential-linear cryptanalysis are presented in this pa-
per, the potential and generality of our sound framework is demonstrated by its
ability to explain existing examples of differential-linear cryptanalysis.
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