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Abstract. The first three bytes of the RC4 key in WPA are public as
they are derived from the public parameter IV, and this derivation leads
to a strong mutual dependence between the first two bytes of the RC4
key. In this paper, we provide a disciplined study of RC4 biases result-
ing specifically in such a scenario. Motivated by the work of AlFardan
et al. (2013), we first prove the interesting sawtooth distribution of the
first byte in WPA and the similar nature for the biases in the initial
keystream bytes towards zero. As we note, this sawtooth characteristics
of these biases surface due to the dependence of the first two bytes of
the RC4 key in WPA, both derived from the same byte of the IV. Our
result on the nature of the first keystream byte provides a significantly
improved distinguisher for RC4 used in WPA than what had been pre-
sented by Sepehrdad et al. (2011-12). Further, we revisit the correlation
of initial keystream bytes in WPA to the first three bytes of the RC4
key. As these bytes are known from the IV, one can obtain new as well as
significantly improved biases in WPA than the absolute biases exploited
earlier by AlFardan et al. or Isobe et al. We notice that the correlations
of the keystream bytes with publicly known IV values of WPA potentially
strengthen the practical plaintext recovery attack on the protocol.
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1 Introduction

The RC4 stream cipher and several modifications thereof (incorporated in vari-
ous security protocols) have undergone rigorous analysis in cryptographic litera-
ture. The importance and timeliness of this topic is evident from the rich history

? c© IACR 2014. This article is the final version submitted by the author(s) to
the IACR and to Springer-Verlag on 11 February 2014. The version published by
Springer-Verlag is available at [DOI].

?? Supported by DRDO sponsored project Centre of Excellence in Cryptology (CoEC),
under MOC ERIP/ER/1009002/M/01/1319/788/D(R&D) of ER&IPR, DRDO.



of research in RC4 over the last two decades. Among the several directions of
cryptanalytic research in this area, the two most important aspects have been

1. Correlation between the keystream bytes with absolute values, and
2. Correlation between the keystream bytes with the Key and/or IV.

The results under item 1 have been extensively used in the broadcast attack
model, and some important results in this area can be found in [1,6,8,9,11,19].
These biases directly work on the generic RC4 cipher [6] as well when RC4 is
used in protocols like WPA and TLS [1]. In particular, the work of [1] received
a lot of attention due to its impact on commercial protocols.

The results under item 2 explains how the RC4 keystream bytes may leak
information regarding the secret key bytes. While there exist extensive research
results in this area [8,13–15,19], no convincing key-recovery attack is yet available
on RC4 using these biases. However, these biases work quite well in attacking
protocols where some part of the RC4 key is derived from the public IV, as in
the case of WEP [3,4, 7, 21,22,24].

To resist such attacks against WEP, the WPA [5] protocol had been proposed,
where an incremental change in the IV results in a convoluted transformation
of the remaining portion of the RC4 key. The two most recent and prominent
attacks against WPA have been proposed by Sepehrdad et al. [20] and AlFardan
et al. [1]. While the attack of [1] is based on the broadcast model for plaintext
recovery, the work of [20] exploits certain weaknesses in the WPA key schedule
to mount a key recovery attack with complexity 296, less than the exhaustive
key search effort of 2104. Before we proceed further to explain our contributions
in this paper, let us describe RC4 and its usage in the WPA protocol.

We omit the mention of TKIP and refer to the WPA/TKIP protocol sim-
ply as WPA in this paper. In addition, we abuse the notation to refer to the
instantiation of RC4 in this protocol as WPA, in contrast to standalone RC4.

1.1 Description of RC4

The RC4 cipher consists of a Key Scheduling Algorithm (KSA) and a Pseudoran-
dom Generation Algorithm (PRGA). The internal state of RC4 is obtained as a
permutation of N = 256 bytes, and the KSA produces the initial pseudorandom
permutation of RC4 by scrambling an identity permutation using the secret key
k. The secret key k of RC4 is of length typically between 5 to 32 bytes, which
generates the expanded key K of length N = 256 bytes by simple repetition. If
the length of the secret key k = k0, . . . , kl−1 is l bytes (typically 5 ≤ l ≤ 32),
then the expanded key K is constructed as K[i] = ki mod l for 0 ≤ i ≤ N−1. The
initial permutation produced by the KSA acts as an input to the next procedure
PRGA that generates the keystream, as depicted in Fig. 1.

For round r = 1, 2, . . . of RC4 PRGA, we denote the indices by ir, jr, the
keystream output byte by Zr, and the permutations before and after the swap by
Sr−1 and Sr respectively. All additions (subtractions) in context of RC4 are to
be considered as ‘addition (subtraction) modulo N ’, and all equalities in context
of RC4 are to be considered as ‘congruent modulo N ’.
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Fig. 1. Description of RC4 stream cipher.

1.2 Description of WPA

IEEE 802.11 standard protocol for WiFi security used to be Wired Equivalent
Privacy (WEP), which was replaced by Wi-Fi Protected Access (WPA) in 2004.
Both WEP and WPA use RC4 as their core cipher, and the WPA protocol can
be thought of as a wrapper on top of WEP to provide good key mixing features.
WPA introduces a key hashing module in the original WEP design to defend
against the Fluhrer, Mantin and Shamir attack [4]. It also includes a message
integrity feature and a key management scheme to avoid key reuse.

TKIP key schedule. WPA uses a 16-byte secret key for RC4 PRNG, the core
encryption module of the system. This RC4 secret key RC4KEY is generated
through a key schedule procedure known as TKIP [5], which takes as input a
128-bit temporal key TK (shared between the parties), transmitter’s 48-bit MAC
address TA and a 48-bit initialization vector IV, and passes those through two
phases to obtain the final RC4 secret key.

In Phase 1, a 80-bit key P1K is generated from TK, TA and IV32, the upper
32 bits of the IV, using an unbalanced Feistel cipher with 80-bit block and 128-
bit key structure. In Phase 2, the 128-bit RC4KEY is generated from TK, P1K
(from Phase 1) and IV16, the lower 16 bits of the IV. In this phase, TK and P1K
are mixed (using a temporary key PPK) to construct the last 104 bits (13 bytes)
of the RC4KEY, and the first 24 bits (3 bytes) of the RC4KEY are constructed
directly from the IV16, as follows [5, Annex H.1].

RC4KEY[0] = Hi8(IV16); /* top byte of IV16 */

RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F; /* avoid FMS attack */

RC4KEY[2] = Lo8(IV16); /* low byte of IV16 */

In the above expression, Hi8(IV16) and Lo8(IV16) indicate the top and lower
bytes of IV16, respectively. RC4KEY[0] and RC4KEY[2] are simply two parts
of the counter IV16, while RC4KEY[1] is purposefully constructed to avoid the
known WEP attack by Fluhrer, Mantin and Shamir [4]. Once the 128-byte (16-
byte) RC4KEY is prepared, it is directly used for encryption in the RC4 PRNG
core of the protocol.



1.3 Contributions of this paper

There is a growing concern regarding how far we should study the combinatorial
nature of RC4 and protocols based on it. However, we can not help but notice the
glaring implications of such studies in mounting practical attacks on commercial
protocols that still handle a bulk of everyday network traffic. In this backdrop,
we present the motivation and contribution of our paper as follows.

Motivation. To the best of our knowledge, the dependence of the first two
bytes of the RC4 key, constructed from the public parameter IV during WPA
key schedule, has not been studied thoroughly from a combinatorial viewpoint.
We draw our motivation from two important questions in this direction.

1. How do the biases of keystream bytes towards absolute values differ for RC4
in WPA compared to those in case of generic RC4?

2. Are there any exploitable correlations between the keystream bytes and the
first three key bytes of RC4 derived from the IV in WPA?

Contribution. Our results provide the first disciplined study of keystream non-
randomness in RC4 when used in WPA. The study contains explanation of exist-
ing biases as well as discovery of new ones. The results have diverse applications
in different cryptanalytic results, ranging from the best WPA distinguisher to
improved broadcast attack against WPA.

Specific outcomes of our first motivation
We provide theoretical justification of some experimental observations on WPA,
made by AlFardan et al. [1], to obtain further insight into such observations.

– In Section 2.3, we derive the complete sawtooth distribution of the first
keystream byte Z1 when RC4 is executed with IV’s as in WPA.

– The biases in Z1 gives a method to distinguish the keystream of WPA from
that of generic RC4, with a packet complexity of approximately 219. Note
that WPA may be considered as a ‘mode of operation’ for RC4, and our
observation shows that this mode statistically deviates from the core cipher,
where the deviation is visible with a considerably less number of packets.
The previously known distinguisher of [20], first presented in Eurocrypt 2011,
achieves a 0.5 probability of success in distinguishing WPA from generic RC4
with time complexity 243 and packet complexity 240. Later in [18], the distin-
guisher was improved to achieve 0.5 probability of success in distinguishing
WPA with time complexity 242 and packet complexity 242.

– In Section 2.4, we show how the initial keystream bytes Z3, . . . , Z255 of WPA
are biased towards zero following a similar sawtooth pattern, and in Sec-
tion 2.5, we provide a theoretical estimate for (Zr = r) better than [6].

Specific outcomes of our second motivation
All biases of the keystream bytes in WPA presented in [1] are correlated to
absolute values in [0, 255], and the experimental study discovers that they are
mostly of the order of 1/N2 over the probability of random association 1/N .



Indeed these are not of the same level as the bias in the event (Z2 = 0), which
is of the order 1/N over the probability of random association 1/N , as proved
in [11]. However, it is well known that there are quite a few significant biases of
the keystream bytes with the initial key bytes of RC4 [7, 8, 13–15, 17, 19]. The
first three bytes of the RC4 key in WPA are derived from the public parameter
IV, and thus the correlation of keystream bytes with any combination of the first
three RC4 key bytes can be successfully exploited in broadcast attack against
WPA. Our investigations in this direction reveal the following results.

– There exist high biases in the keystream bytes Z1, Z2, Z3, Z256, Z257 towards
the first three ‘public’ (IV-derived) bytes of the RC4 key in WPA. For the first
time in the literature, we discover such hugely significant biases, matching
the order of the (Z2 = 0) bias [11], even in the case of WPA.

– In a broadcast setting, we could recover the aforesaid bytes of the plaintext
with probability close to 1 using only 221 samples, in contrast with the
existing works [1, 6] that require 230 samples for the same bytes.

– We explore some new biases in this line and present a detailed study on the
correlations of the keystream bytes with different IV combinations in WPA.

– We also discover a new absolute bias at the keystream byte Z259, the farthest
known so far among the initial keystream bytes to have a significant bias.

An independent work [12] in a similar direction is to appear in FSE 2014.

2 Biases in WPA resulting from TKIP key schedule

The first three bytes of the RC4 key in WPA is derived as in Equation (1).

K[0] = (IV16 >> 8) & 0xFF K[2] = IV16 & 0xFF

K[1] = ((IV16 >> 8) | 0x20) & 0x7F (1)

Note that a 2-byte IV16 is expanded to the initial 3 bytes of the key (Fig. 2),
and the first two key bytes K[0] and K[1] have 6 bits in common, apart from the
two fixed bits in K[1]. The third key byte K[2] is independent of the first two
bytes of the key. Thus, TKIP can generate only 216, and not 224, distinct values
for the first 3 bytes of the RC4 secret key – a loss in entropy that we believe
may result into some non-random behavior in the initial phases of the cipher.

2.1 Bias in K[0] + K[1] for WPA

As K[0] and K[1] share 6 bits from the common source Hi8(IV16), we first take
a look at their sum, K[0] +K[1], for potential non-randomness. We notice that

1. K[0] +K[1] must always be even, as K[0] and K[1] have the same LSB.
2. K[1] can never exceed 127 as its MSB is 0. It can not even attain all possible

values below 127, as its 6-th bit (from LSB side) is fixed at 1.
3. Values of K[1] and K[0] +K[1] strictly depend on the value/range of K[0].



Hi8(IV16) Lo8(IV16)

0 1

K[0] K[1] K[2]

Fig. 2. Expansion of WPA IV16 into the first three bytes of the RC4 key.

These restrictions result in corresponding conditions on the range of K[1] and
K[0] + K[1], depending on the range of K[0]. The complete set of conditions
on the respective ranges is shown in Table 1, which results in a consolidated
probability distribution of K[0] +K[1] as described in Theorem 1.

Theorem 1. The probability distribution of the sum of first two bytes of the RC4
key generated by TKIP key schedule in WPA, i.e., the distribution of Pr(K[0] +
K[1] = v) for v = 0, 1, . . . , 255, is as in Table 1:

Pr(K[0] +K[1] = v) = 0 if v is odd;

Pr(K[0] +K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159];

Pr(K[0] +K[1] = v) = 2/256 if v is even and

v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255];

Pr(K[0] +K[1] = v) = 4/256 if v is even and v ∈ [64, 95] ∪ [192, 223].

Table 1. Probability distribution of K[0] + K[1] resulting due to TKIP key schedule.

K[0] K[1] (depends on K[0]) K[0] + K[1] (only even) K[0] + K[1] Prob.

Range Value Range Value Range (only even) (0 if odd)

0 – 31 K[0] + 32 32 – 63 2K[0] + 32 32 – 95 0 – 31 0

32 – 63 K[0] 32 – 63 2K[0] 64 – 127 32 – 63 2/256

64 – 95 K[0] + 32 96 – 127 2K[0] + 32 160 – 223 64 – 95 4/256

96 – 127 K[0] 96 – 127 2K[0] 192 – 255 96 – 127 2/256

128 – 159 K[0]− 96 32 – 63 2K[0]− 96 160 – 233 128 – 159 0

160 – 191 K[0]− 128 32 – 63 2K[0]− 128 192 – 255 160 – 191 2/256

192 – 223 K[0]− 96 96 – 127 2K[0]− 96 32 – 95 192 – 223 4/256

224 – 255 K[0]− 128 96 – 127 2K[0]− 128 64 – 127 224 – 255 2/256

Proof. The value of K[0] + K[1] is always even, as discussed earlier. The value
and range of K[1], and hence that of K[0] +K[1], depends on the range of K[0];



shown in Table 1. The probability distribution of K[0] +K[1] may be calculated
directly from this dependence pattern; also shown in Table 1. One may check

(128× 0)︸ ︷︷ ︸
odd values

+

(
16× 0 + 16× 2

256
+ 16× 4

256

+16× 2

256
+ 16× 0 + 16× 2

256
+ 16× 4

256
+ 16× 2

256

)
= 1,

to validate the consistency of the probability distribution of K[0] +K[1]. ut

2.2 Bias in RC4 PRGA initial permutation S0 for WPA

In 2007, Paul and Maitra [13] proved the famous Roos’ biases [15], which state
that the initial bytes of the permutation S0 are biased towards the secret key
bytes. S0[0] is biased towards K[0], which is uniformly distributed, identical to
the lower half of the counter IV16. For S0[1] however, we get the following result.

Theorem 2. In case of WPA, the probability distribution of (S0[1] = v) for
v = 0, 1, . . . , N − 1, after the completion of KSA, is given as

Pr(S0[1] = v) = α · Pr(K[0] +K[1] = v − 1)

+ (1− α) · (1− Pr(K[0] +K[1] = v − 1)) · Pr(S0[1] = v)RC4

+
(1− α)

N − 1
·
∑
x 6=v

Pr(K[0] +K[1] = x− 1) · Pr(S0[1] = x)RC4,

where α = 1/N +(1−1/N)N+2, and the probability terms Pr(S0[1] = v)RC4 and
Pr(S0[1] = x)RC4 refer to the corresponding values in generic RC4.

Proof. From the proof of Roos’ biases in [13], we know that the initial permuta-
tion byte S0[1] is biased towards K[0] +K[1] + 1 with a probability Pr(S0[1] =
K[0]+K[1]+1) ≈ 1/N+(1−1/N)N+2 = α, say. Thus we write the probability
distribution of S0[1] = v in case of WPA as follows.

Pr(S0[1] = v) = Pr(S0[1] = v ∧ K[0] +K[1] + 1 = v)

+
∑
x6=v

Pr(S0[1] = v ∧ K[0] +K[1] + 1 = x)

The first event (S0[1] = v ∧ K[0] + K[1] + 1 = v) occurs if and only if the
independent events (S0[1] = K[0] + K[1] + 1) and (K[0] + K[1] = v − 1) occur
simultaneously. This happens with probability α ·Pr(K[0] +K[1] = v−1) where
α is due to Roos’ bias, and the second term is obtained from Theorem 1.

On the other hand, the event (S0[1] = v ∧ K[0] + K[1] + 1 = x) for x 6= v
may be further decomposed as follows

Pr(S0[1] = v ∧ S0[1] = K[0] +K[1] + 1 ∧ K[0] +K[1] + 1 = x)

+ Pr(S0[1] = v ∧ S0[1] 6= K[0] +K[1] + 1 ∧ K[0] +K[1] + 1 = x).



The first term denotes an impossible condition (probability 0), and the second
term can be computed as Pr(K[0] +K[1] = x− 1) ·Pr(S0[1] 6= K[0] +K[1] + 1) ·
Pr(S0[1] = v | S0[1] 6= x), that is, as

(1−α) ·Pr(K[0]+K[1] = x−1) ·(Pr(S0[1] = v)RC4+Pr(S0[1] = x)RC4/(N−1)),

where we assume that (S0[1] = v) and (S0[1] = x) occur exactly as in generic
RC4 when S0[1] 6= K[0] +K[1] + 1, with appropriate probability normalization.
We get the result after due simplification of the summation over x 6= v. ut

For N = 256, as in WPA and RC4, we get α ≈ 0.368 in Theorem 2. The
probabilities Pr(K[0] + K[1] = v − 1) and Pr(K[0] + K[1] = x − 1) are taken
from Theorem 1, and the probabilities Pr(S0[1] = v)RC4 and Pr(S0[1] = x)RC4

are taken from Proposition 1, derived in [10, Theorem 6.2.1].

Proposition 1 (from [10]). After RC4 KSA, for 0 ≤ u ≤ N−1, 0 ≤ v ≤ N−1,

Pr(S0[u] = v) =


1
N

((
N−1
N

)v
+
(

1−
(
N−1
N

)v) (N−1
N

)N−u−1)
, if v ≤ u;

1
N

((
N−1
N

)N−u−1
+
(
N−1
N

)v)
, if v > u.

The theoretical distribution of S0[1] in WPA, thus produced from Theorem 2,
is shown in Fig. 3. This distribution closely matches our experimental data, and
differs significantly from the one for generic RC4 (as derived in [10]).

0 32 64 96 128 160 192 224 255
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Fig. 3. Theoretical plot for Pr(S0[1] = v) for RC4 and WPA, where v = 0, . . . , 255.



2.3 Bias in the first keystream byte Z1 of WPA

Recall that in the first round of RC4 PRGA, the initial permutation entry S0[1]
serves as j1 = S0[i1] = S0[1], and plays an important role in determining the
first keystream byte Z1 = S1[S1[i1] + S1[j1]] = S1[S0[S0[1]] + S0[1]]. In fact, we
know that S0[1] is prominent in the distribution of Z1 proved by Sen Gupta et
al. in [17, Theorem 13]. We reproduce the distribution as follows.

Proposition 2 (from [17]). The probability distribution of the first output byte
of RC4 keystream is as follows, where v ∈ {0, . . . , N − 1}, Lv = {0, 1, . . . , N −
1} \ {1, v} and Tv,X = {0, 1, . . . , N − 1} \ {0, X, 1−X, v}.

Pr(Z1 = v) = Qv +
∑

X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v);

Qv =


Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;
Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;
Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v), otherwise.

We consider two cases while computing the numeric values of Pr(Z1 = v). If
the initial permutation S0 of RC4 PRGA is constructed from the regular KSA
with random key, the probabilities Pr(S0[u] = v) closely follow the distribution
proved by Mantin in [10, Theorem 6.2.1]. However, if the initial permutation
S0 originates from RC4 KSA using TKIP-generated keys, as in the case with
WPA, then Pr(S0[1] = v) must be computed using Theorem 2, including its
idiosyncratic biases for WPA shown in Fig. 3.

We compute the exact probabilities Pr(Z1 = v) for RC4 and WPA using
the estimation strategy of joint probabilities proposed in [17]; particularly es-
timating the joint probabilities Pr(S0[X] = A ∧ S0[Y ] = B) as Pr(S0[X] =
A) · (Pr(S0[Y ] = B) + Pr(S0[Y ] = A)/(N − 1)). The distribution of S0[1] = v
is considered independently in each case. This results in two different distribu-
tions of Z1; one for generic RC4 (same as [17]) and the other for RC4 in WPA.
Figure 4 displays the two distributions, clearly pointing out the bias resulting
in the PRGA as a result of TKIP key schedule, and shows that the theoretical
distribution for WPA closely matches our experimental data.

Note that the patterns of these two theoretical distributions closely match
the recent experimental observations of AlFardan et al. [1] (Fig. 10(a) in the full
online version of the paper). The only difference is that there exist keylength
dependent spikes at Z1 = 129 for the observations in [1], as the experiments
were done using 16-byte keys; whereas in our theoretical analysis, we disregard
the keylength dependence altogether, and prove a general distribution of Z1.

In fact, if WPA had employed RC4 with full-length 256-byte secret keys,
where the first three bytes of the key K[0],K[1],K[2] were constructed from the
IV using TKIP key schedule principle (as in Equation (1)), the pattern of the bias
in Z1 for WPA would have been the same. We have independently verified our
theoretical results through experiments involving secret keys of various lengths.
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Fig. 4. Theoretical plot for Pr(Z1 = v) for RC4 and WPA, where v = 0, . . . , 255.

Distinguishing WPA. We attempt to combine the values of Z1 in suitable sub-
sets of the support interval {0, 1, . . . , 255} to construct a distinguisher between
WPA and generic RC4. The structure of the event considered for distinguishing
WPA from RC4 in this case is ‘eS : (Z1 ∈ S) where S ⊆ {0, 1, . . . , 255}’. The
subset S may be quite large, and thus the base probability p = Pr(eS) in either
distribution is not essentially small. In such a case, the distinguisher complexity
may be estimated as O( 1−p

pq2 ).
Now we may define a suitable set S for the target distinguishing event. As

most of higher biases are for even values of the first byte, we assume that the
distributions of WPA and RC4 differ the most in cases when Z1 takes an even
value. Based on this intuition, we pick the set S as the set of all even values
{0, 2, 4, . . . , 254} within the range; thus defining the distinguishing event as

eS : (Z1 = 2k for k = 0, 1, . . . , 127).

From our theoretical results on the distribution of Z1 in WPA and RC4, as
proved in Section 2.3, we estimate the following probabilities:

p = Pr(eS) in RC4 ≈ 0.4999946
p(1 + q) = Pr(eS) in WPA ≈ 0.5007041

}
⇒ q ≈ 0.001419 ≈ 0.363/N.

For N = 256, we require an estimated 8N2 = 219 keystream packets to distin-
guish WPA from generic RC4 with more than 70% probability of success. This
is the best distinguisher of WPA to date, improving the previous distinguishers
of packet complexity more than 240, identified by Sepehrdad et al. [18, 20].

It may be noted that some distinguishers of RC4 (compared to uniform ran-
dom generators) remain equally effective in its WPA ‘mode of operation’, like
the distinguisher based on (Z2 = 0). However, the sawtooth pattern of Z1 is
unique to WPA, and is not present in original RC4.



2.4 Bias towards zero in bytes Z3, . . . , Z255 of WPA

We extend the effect of the bias in S0 of WPA to the biases in the initial
keystream bytes towards zero. Maitra et al. [9] proved the biases of the ini-
tial keystream bytes Z3, . . . , Z255 towards zero, and we reproduce their result
from [17, Theorem 14] in Proposition 3, as follows.

Proposition 3 (from [17]). For RC4 PRGA rounds 3 ≤ r ≤ N − 1, the
probability that Zr = 0 is given by:

Pr(Zr = 0) ≈ 1

N
+

cr
N2

, where

cr =


N

N−1 (N · Pr(Sr−1[r] = r)− 1)− N−2
N−1 , for r = 3;

N
N−1 (N · Pr(Sr−1[r] = r)− 1) , otherwise.

In [17], the computation of Pr(Zr = 0) depended on the computation of
Pr(Sr−1[r] = r), which in turn required the distributions of initial permutations
S0 and S1 of RC4 PRGA (details in [17, Corollary 2] and [17, Lemma 1]).

We consider two cases – one in which the initial permutation S0 is generated
by generic RC4 KSA using random keys, and the other where S0 is biased (Fig. 3)
for using RC4 with keys originating from TKIP. These two cases produce two
different distributions of Pr(Zr = 0) for r = 3, . . . , 255. The patterns closely
match the experimental observations of AlFardan et al. [1] (Fig. 11 in the full
online version of the paper) as well as our experimental data, as shown in Fig. 5.
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Fig. 5. Theoretical plot for Pr(Zr = 0) for RC4 and WPA, where r = 3, . . . , 255.



2.5 Bias in (Zr = r) for WPA

Significant biases in the event (Zr = r) for r = 3, . . . , 255 have recently surfaced
in the context of plaintext recovery attack on RC4 [1, 6], and these biases are
found to be more prominent than the previous ones for certain values of r. Isobe
et al. identified these biases and attempted a proof in [6, Theorem 8], but the
estimates did not ‘exactly coincide with the experimental values’. Considering
the significance of these biases in cryptanalysis of RC4, we explore an alternative
avenue to estimate them, as detailed in Theorem 3.

Theorem 3. For RC4 PRGA rounds 3 ≤ r ≤ N−1, the probability that Zr = r
is approximately

Pr(Zr = r) =
1

N
+ Pr(S0[1] = r) · 1

N

(
1− 1

N

)(
1− r − 2

N

)(
1− 2

N

)r−3

.

Proof. The major path leading to the target event is as follows.

– Suppose that S0[1] = r, i.e., j1 = r and j2 = r + S1[2]. This ensures that
S1[r] = r after the first round of PRGA, and S2[j2] = S1[2] after the second.

– Suppose that j2 6= 3, . . . , r, which occurs with probability
(
1− r−2

N

)
. This

ensures that ir does not touch either of the locations r or j2 till round r− 1.
– Suppose that none of the indices j3, . . . , jr−1 touches either of the locations

r or j2. This happens with probability
(
1− 2

N

)r−3
as j2 6= r, and ensures

that after round r − 1, we have Sr−1[r] = r and Sr−1[j2] = S1[2].
– Finally, suppose that jr = j2, which holds with probability 1/N . This ensures

that after round r, we have Sr[r] = S1[2] and Sr[j2] = r.
– The final state results in Zr = Sr[r + S1[2]] = Sr[j2] = r with probability 1.

Considering the above events to be independent, the probability that the main

path holds is given by α = Pr(S0[1] = r) · 1
N

(
1− r−2

N

) (
1− 2

N

)r−3
. If the above

path does not occur, then we assume that the event (Zr = r) happens due
to random association, with probability 1/N . Thus we can compute the target
probability as Pr(Zr = r) ≈ α+ (1− α) 1

N , and get the result. ut

Figure 6 (upper plot) displays our theoretical result in comparison with that
of Isobe et al. [6], where the experimental data for RC4 has been obtained
from the authors of [1], and the values of Pr(S0[1] = r) are obtained from
Mantin’s distribution [10] for S0. It is evident that our theoretical values match
the experimental data better than that of [6]. Note that the experimental values
are for RC4 with 16-byte secret keys, and hence the data is non-smooth (with
small spikes) at certain points. In contrast, the theoretical values of our result
is for general RC4 with full-length secret keys, thus making the curve smooth.

It is interesting to note that RC4 in WPA exhibits enhanced non-random
behavior in the events (Zr = r), as shown in Fig. 6 (lower plot) for 232 runs of
WPA. However, substituting the distribution of S0 for WPA in our theoretical
result (or that of [6]) does not match the experimental observations, and we
believe that further investigation in this direction is necessary to settle the issue.
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Fig. 6. Plot of Pr(Zr = r) for RC4 and WPA, where r = 3, . . . , 255. The experimental
data for RC4 in these plots are obtained from the authors of [1].

3 Correlation of the keystream bytes with IV in WPA

The weaknesses in the WPA key schedule have recently been exploited twice in
the literature of RC4 cryptanalysis – first by Sepehrdad et al. [18,20] and then by
AlFardan et al. [1]. While Sepehrdad et al. [18,20] attacked the inner workings of
the WPA key schedule to devise a key recovery attack with complexity 296, the
recent work of AlFardan et al. [1] mounted a plaintext recovery attack on WPA
by exploiting the biases of the keystream bytes towards absolute values. It was
shown that the WPA key schedule, designed to prevent key recovery attacks,
unintentionally made the plaintext recovery attack on RC4 even simpler. In this
section, we target a third direction of attack – exploiting correlations of the
keystream bytes towards the IV to perform plaintext recovery of WPA.



In WPA, the first three bytes of the RC4 key, K[0],K[1],K[2], are derived
from the IV. For the u-th recipient in a broadcast setting, let us denote these
bytes by Ku[i] where i = 0, 1, 2 and 1 ≤ u ≤ n. Note that the values of Ku[i] are
publicly known, and hence these could be exploited towards plaintext recovery
attacks in case they have prominent correlations with the keystream bytes.

In this section, we will investigate for significant correlations between the
keystream output bytes Zr of WPA and certain linear combinations of the bytes
{K[0],K[1],K[2]}. Let us assume that the number of such correlations with
probability significantly different from 1/N = 1/256 for the keystream byte Zr

is bounded above by Qr. In this setting, we shall denote the corresponding linear
combinations as Lr,q(K[0],K[1],K[2]), where q = 1, 2, . . . , Qr.

In Table 2, we list the most significant correlations of this kind for RC4
keystream bytes. Some of these are already known in the literature, and the ones
identified by us will be pointed out clearly in the course of this discussion. The
references for most of these biases can be found in [18, Figure 4.9]. We know that
the bytes K[0] and K[1] are dependent in WPA, and hence the biases observed
in RC4 may vary in case of WPA. Thus we first present detailed experimental
data in Table 2 to explain the scenario. ‘WPA (part)’ denotes WPA with the
first 3 key bytes constructed from the IV and next 13 key bytes chosen randomly,
and ‘WPA (full)’ denotes WPA with first 3 key bytes constructed from the IV
and next 13 key bytes generated by TKIP. We notice that ‘WPA (part)’ models
‘WPA (full)’ quite well, also observed earlier by [1].

Table 2. Linear correlations observed between the keystream bytes and key of RC4
and WPA with 232 samples. Probability of random association is 1/256 ≈ 0.003906.

Byte Linear combinations [18, Fig 4.9] Our Experiments

RC4 WPA (part) WPA (full)

Z1 L1,1 = −K[0]−K[1] 0.005304 0.005264 0.005334 0.005338

L1,2 = K[0] 0.004367 0.004325 0.004179 0.004179

L1,3 = K[0] + K[1] + K[2] + 3 0.005214 0.005220 0.004684 0.004633

L1,4 = K[0] + K[1] + 1 0.004072 0.004025 0.003761 0.003760

L1,5 = K[0]−K[1]− 1 0.004100 0.004083 0.003905 0.003905

L1,6 = K[2] + 3 0.004461 0.004428 0.003904 0.003902

L1,7 = −K[0]−K[1] + K[2] + 3 0.004458 0.004424 0.003903 0.003903

Z2 L2,1 = −1−K[0]−K[1]−K[2] 0.005316 0.005298 0.005304 0.005303

L2,2 = −K[1]−K[2]− 3 0.005348 0.005303 0.005313 0.005314

L2,3 = K[1] + K[2] + 3 0.005341 0.005304 0.005315 0.005315

L2,4 = K[0] + K[1] + K[2] + 3 0.002512 0.002507 0.002505 0.002503

Z3 L3,1 = K[0] + K[1] + K[2] + 3 0.004436 0.004401 0.004406 0.004405

Z256 L256,1 = −K[0] 0.004450 0.004427 0.004430 0.004429

L256,2 = −K[1] – 0.003907 0.004037 0.004036

Z257 L257,1 = −K[0]−K[1] 0.004115 0.004096 0.004095 0.004094



In Table 2, note that there are certain cases where the biases in RC4 and
WPA are not the same. In fact, there are some cases where the biases are in the
opposite direction. There are also a few situations where there exist prominent
biases in some cases but none in the others. Let us explain a couple of cases.

Correlation of L1,4: Let us first point out the contrast when the correlation of Z1

is studied with K[0] +K[1] + 1. This is positive for RC4, but negative for WPA.
In [19], it has been observed experimentally that Z1 has a positive bias towards
K[0] +K[1] + 1. This bias has been explained in [16] by considering two paths.
The first path considers the scenario when Z1 is always equal to K[0]+K[1]+1,
which requires the condition K[1] = N − 1 to be satisfied. However in WPA,
the most significant bit of K[1] is zero, and thus K[1] cannot be equal to N − 1.
So this path does not contribute to the event Z1 = K[0] + K[1] + 1 in WPA.
For the other path, it is assumed in [16] that Pr(Z1 = K[0] + K[1] + 1) = 1/N
when K[1] 6= N − 1. The experimental results in [16] show that this value is
actually (1/N −4/N2) for RC4. However in WPA, this value is even lower, close
to (1/N − 9.5/N2). Hence the contrast in the biases between RC4 and WPA.

Correlation of L256,2: Consider the case where Z256 has no bias towards (−K[1])
in RC4, but it is biased in WPA. The reason is that Pr(K[1] = K[0]) = 1/4 in
WPA, and thus we can write P (Z256 = −K[1]) ≈ 0.25 × P (Z256 = −K[0]) +
0.75×1/N = 0.25×0.004029+0.75/256 ≈ 0.004036, which matches with the ex-
periment. This does not occur in RC4 as Pr(K[1] = K[0]) = 1/N is insignificant
in that case due to independent values of K[0] and K[1].

3.1 Improvement in Broadcast Attack for WPA

We present a significantly improved broadcast attack against WPA over the
existing works. In [6], only RC4 was studied and thus the idea of using the
IV of WPA did not arise. In [1], broadcast attack on WPA has been mounted
similar to that on TLS (which is almost equivalent to traditional RC4) and the
correlations of the keystream bytes with the IV of WPA have not been explored
at all. Exploiting the IV correlations significantly improves the recovery of the
plaintext bytes {1, 3, 256, 257} in broadcast attack on WPA.

Existing attacks. In [6], the first byte was obtained using the conditional
probability P (Z1 = 0|Z2 = 0); thus the order of samples required would be
Ω(N2). The biases in bytes {3, 256, 257} are of the order of 1/N2 over the random
association probability of 1/N ; thus the order of samples required would be
Ω(N3) if one carries out the broadcast attack on RC4 as in [6]. The broadcast
attack on WPA presented in [1] also considers biases to absolute values and those
biases are again of the order of 1/N2 over the random association probability
1/N . In this case as well, Ω(N3) samples will be required to mount the attack.
For actual broadcast attack, the constant involved in the order notation is quite
high (around 26) in order to attain a success probability close to 1.



Our attack. Contrary to the existing approaches, our correlations between the
keystream bytes and K[0],K[1],K[2] are of the order of 1/N over the random
association probability 1/N , and thus we require only Ω(N) samples to mount
the broadcast attack in theory. It has been pointed out in [1] that the WPA
IV structure actually allows more efficient recovery of plaintext bytes in some
positions than with uniform keys in RC4. However, they could only obtain prac-
tical results with 224 samples or more to achieve a certain probability of success.
In fact, the requirement was around 230 samples for a success probability close
to 1. We show that the WPA IV structure actually provides significantly better
results (much lower number of samples) for certain plaintext bytes.

In the broadcast scenario, we obtain ciphertext bytes C
(u)
r corresponding to

various keystream bytes Z
(u)
r and fixed message bytes Mr. For each user u, we

substitute the Ku[i] values in our list of Lr,q to obtain Qr many votes for Z
(u)
r .

With absolute biases in RC4, the idea of [6] was to use the maximum (or a few
top votes) for Zi to obtain the target plaintext, but these votes could not be
accumulated. In [1], the idea of multinomial distribution allowed the biases of
Zi to all possible absolute values to be utilized cumulatively. However, this idea
does not work in our case as there is no immediate way to represent the linear
combinations of the IV in the form of a probability distribution.

We do not use the votes for all Qr relations of Z
(u)
r ; we choose the votes

corresponding to a few relations out of Lr,q, and merge those votes for all users.
These votes in turn provide us with votes for the target plaintext byte Mr. For
Z1, we get the best result using two relations, while in other cases, we obtain
the finest results using only the best biases in Lr,q. After merging the chosen
votes, we consider the byte with the maximum votes as the probable plaintext
byte M̂r. Table 3 presents our experimental results for broadcast attack. The
success probability in each case is close to 1, and we have attained success in
every practical experiment we performed with the claimed packet complexities.

Table 3. Experimental results for our plaintext recovery attack.

Byte Event Complexity

Z1 Z1 = −K[0]−K[1], 5 · 213 ≈ 215.322

Z1 = K[0] + K[1] + K[2] + 3

Z2 Z2 = 0 214

Z3 Z3 = K[0] + K[1] + K[2] + 3 219

Z256 Z256 = −K[0] 219

Z257 Z257 = −K[0]−K[1] 221

We show the (Z2 = 0) case to illustrate that while the theoretical complexity
of obtaining the byte in broadcast attack is only Ω(N), it requires 214 samples to
reach a success probability close to 1. Our results show significant improvements
for recovering the four plaintext bytes {1, 3, 256, 257}, where the existing works



require around 230 samples to achieve the same success probability. It remains
an open problem to utilize all biases in Lr,q simultaneously in this attack.

3.2 New key correlations in WPA

To strengthen the set of biases applicable towards a plaintext recovery attack
against WPA, we investigated for correlations of the keystream bytes in WPA to
the IV in the general linear form for the events (Zr = a·K[0]+b·K[1]+c·K[2]+d).
In particular, we tried with a, b, c ∈ {−1, 0, 1} and d ∈ {−3,−2,−1, 0, 1, 2, 3}.
As the first three bytes of the key, K[0],K[1],K[2], are known parameters, these
biases may be added to the set of known biases for Zr, and this may potentially
result in a stronger plaintext recovery attack on WPA.

In line of discussion in Section 2.1, one may easily note that the distribution
of K[0] ± K[1] ± 1 is not uniform at all. We specifically identify three cases,
as presented in Figure 7, after an experimentation with 235 samples, where we
identify many biases of the order of µ/N2 over random association (µ > 0.3).
Towards sharpening the broadcast attack against WPA, these biases need to be
explored in more details and it would be an interesting open question how to
use these biases in conjunction with the absolute biases as explained in [1].

3.3 Absolute bias in Z259

In [1, 6], several new biases were identified in the first 257 bytes of RC4, and
exploited in broadcast attack. In [6, 23], the long term biases of RC4 were ex-
ploited to mount broadcast attack on later bytes. However, it may be interesting
to find absolute biases little farther than byte 257, if they are better than using
the long term biases, or if they could be used in conjunction with the long term
biases. In this regard, we present a new bias at round N + 3 = 259, described
in Theorem 4. To the best of our knowledge, this is the farthest absolute bias in
the initial keystream bytes of RC4 that is of the order of O(1/N2) over 1/N .

Theorem 4. The probability that the (N + 3)-th keystream byte of RC4 is 3 is
approximately Pr(ZN+3 = 3) = 1/N + 0.18/N2.

Proof. The main path leading to the target event is as follows.

– Start with S0[1] = 3 and S0[2] = 0 to obtain S3[2] = 3 and S3[3] = 0 after
the third round, with probability 1.

– Suppose that none of j4, . . . , jN+1 touches the locations {2, 3} and jN+2 6= 3.

This happens with probability
(
1− 2

N

)N−2 (
1− 1

N

)
, and eventually leads to

ZN+3 = 3 with probability 1.

Considering the above events to be independent, the probability that the main

path holds is given by α = Pr (S0[1] = 3 ∧ S0[2] = 0)
(
1− 2

N

)N−2 (
1− 1

N

)
. If it

does not occur, we assume that ZN+3 = 3 holds due to random association,
with probability 1/N . Using [10, Theorem 6.2.1] for Pr (S0[1] = 3 ∧ S0[2] = 0),
we compute Pr(ZN+3 = 3) ≈ α+ (1− α) · (1/N) ≈ 1/N + 0.18/N2. ut

Experiments with 233 random keys show that Pr(ZN+3 = 3) = 0.003909,
both in the case of RC4 and WPA; thus conforming to the theoretical value.
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Fig. 7. Linear correlations between the IV and the initial keystream bytes of WPA.



4 Conclusion

In this paper, we present various non-randomness results on RC4 when used in
the WPA protocol. We analyze several biases of RC4 and also note how they
evolve in WPA as the initial three key bytes are derived from the IV. We prove
the interesting sawtooth distribution of the first byte and the similar nature for
the biases in (Zr = 0), as pointed out in [1]. We also improve the theoretical
estimate for the (Zr = r) bias of RC4 to obtain better results than [6].

In another direction, we revisit the correlation of certain keystream bytes to
the first three IV bytes in WPA and we notice that they provide much higher bi-
ases than what had been presented in [1]. This improves the broadcast attack on
WPA significantly towards obtaining certain plaintext bytes. Our combinatorial
results complement the existing literature in understanding the reason of some
interesting empirical biases in WPA, as well as in adding some new observations
and biases in the scenario of broadcast attack against WPA.
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