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Abstract. Due to the recent emergence of resource-constrained devices,
cryptographers are facing the problem of designing dedicated lightweight
ciphers. KLEIN is one of the resulting primitives, proposed at RFIDSec
in 2011 by Gong et al. This family of software-oriented block ciphers
has an innovative structure, as it combines 4-bit Sboxes with the AES
MixColumn transformation, and has woken up the attention of cryptan-
alysts. Several security analyses have been published, in particular on the
64-bit key version. The best of these results could attack up to 10 rounds
out of the total number of 12. In this paper we propose a new family
of attacks that can cryptanalyze for the first time all the 12 rounds of
the complete version of KLEIN-64. Our attacks use truncated differential
paths and are based both on some of the notions developed in previous
attacks and on our new ideas that allow to considerably improve the
performance. To prove the validity of our attacks, we have implemented
reduced-round versions of them. In particular we were able to reproduce
a practical attack that recovers the whole key on 10 rounds, which also
corresponds to the best practical attack against KLEIN-64.

Keywords: KLEIN, lightweight block cipher, truncated differential crypt-
analysis, MixColumn, key-recovery.

1 Introduction

Design of lightweight and secure primitives has become one of the major interests
of the cryptographic community in order to answer the requirements of a large
number of applications, like RFID and wireless sensor networks. Through these
last years an enormous amount of promising such primitives has been proposed,
like PRESENT [7], LED [12], Spongent [6], ARMADILLO [5], PRINCE [8],
PRINTcipher [14], KLEIN [11], LBlock [23] and Twine [22]. Correctly evaluating
the security of these proposals has become a primordial task that merits all
the attention from the community. This has been proved by the big number of
security analyses of the previous primitives that has appeared (to cite a few: [16,
1, 9, 17, 20, 10, 19]).

On the other hand, most of now-a-days cryptanalysis results are analyses
of round-reduced versions that do not apply to, nor break the full primitive
studied. This trend could be explained by the recent improvements made by

∗Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.



cryptographers in the last few years - partially resulting from competitions like
AES, SHA-3 and eStream - that gave them solid bases and criteria to build
secure designs. Nevertheless, it is still crucial to make security analyses in order
to filter out the candidates that are not secure enough, and narrow down the list
of available lightweight primitives to recommend the use of the secure ones.

KLEIN [11] is a lightweight block cipher proposed at RFIDSec2011 by Gong
et al. Three versions were proposed for different key sizes: 64 bits, 80 bits and
96 bits, with 12, 16 and 20 rounds respectively. KLEIN is combining the AES
MixColumn operations with 4-bit Sboxes. Since its publication, several cryptan-
alysts have been interested in its analysis and some results on round-reduced
versions have been published [2–4, 13, 21, 24]. So far, the highest number of at-
tacked rounds was 10 in the 64-bit version (out of 12), 11 out of 16 in the 80-bit
version and 13 out of 20 in the 96-bit version. Recently biclique analyses ([3, 2])
appeared, but we can remark that this analyses require to perform an exhaustive
search on the whole key and that the acceleration factors are very small.

We propose here a family of attacks that successfully exploits the slow diffu-
sion between higher and lower nibbles in the cipher. They can be applied to the
full 12-round KLEIN-64 with a time and data complexities of 257.07 and 254.5

respectively (other trade-offs are also possible). They apply to 13 and 14 rounds
of KLEIN-80 and KLEIN-96 respectively, improving the previous attacks. We
have also been able to implement some of our attacks, obtaining a practical key-
recovery for 10 rounds of KLEIN-64. We recall that previous practical attacks
reached at most 8 rounds. We have also been able to implement 8-round at-
tacks with a considerably lower data complexity than previous ones and a faster
execution.

The paper is organized as follows: the next two sections introduce KLEIN
family of block ciphers (Section 2) and summarize the results of the security
analyses that have been done so far and also recall some of their key ideas that
are useful for our analysis (Section 3). Section 4 gives a generic description of our
family of attacks and details the technical improvements we found to reduce the
complexity. Section 5 is dedicated to the possible time-memory-data complexity
trade-offs, and gives 4 examples of it while detailing the best time complexity
attack we found on the 12-round version. Section 6 discusses and provides the
results of the implementations we made to verify our attacks, and presents the
10-round practical attack on KLEIN-64. The paper ends with a conclusion.

2 Description of KLEIN

KLEIN is a family of lightweight block ciphers presented by Gong, Nikova and
Law at RFIDSec2011. By design choice, it is implementation compact and has
low-memory needs both in software and hardware, so it is a suitable family for
resource-limited devices such as RFID tags and wireless sensors.

KLEIN encryption routine is a Substitution-Permutation Network that oper-
ates on 64-bit blocks. Three versions are proposed, denoted KLEIN-64, KLEIN-
80 and KLEIN-96 with key-sizes of 64, 80 and 96 bits and 12, 16 and 20 rounds



respectively. Each round is composed of 4 layers: AddRoundKey, SubNibbles,
RotateNibbles and MixNibbles.

More precisely, the state entering a round is first xored with the round-key
through AddRoundKey. The result is then divided in 16 4-bit parts or nibbles
that are all transformed by the same involutive 4 × 4 Sbox represented in Ta-
ble 1. KLEIN designers chose this Sbox instead of a byte-wise one to minimize
implementation costs and memory needs.

Table 1. KLEIN 4 × 4 Sbox

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 7 4 a 9 1 f b 0 c 3 2 6 8 e d 5

Then, RotateNibbles rotates the state two bytes to the left and finally
MixNibbles applies Rijndael MixColumn transformation to each half of the state.
Note that this last step is byte-wise while the others can be seen as nibble-wise.
Contrary to Rijndael, the step MixNibbles is not omitted in the last round.
A final whitening key is added at the end of the process so the encryption
routine requires one more key than the number of rounds. The round-keys are
computed from the MasterKey with the KeySchedule algorithm that follows a
Feistel scheme. A complete description of it can be found in [11].

3 Previous Cryptanalysis

Since KLEIN proposal in 2011, several cryptanalysis have been published, mostly
on the KLEIN-64 version: this block cipher has been attacked with differential
cryptanalysis methods up to 8 rounds [4, 24] and an integral cryptanalysis was
also proposed in [24] up to 7 rounds. All of these attacks reached the maximal
number of rounds possible using their techniques. In [13] a study of the security
of KLEIN is performed, and some ideas are proposed for trying to reach 9 rounds
without success. The best previous attack on KLEIN-64 was made by Nikolić et
al. in [21] and reached 10 rounds. This attack uses a new technique named the
Parallel-Cut Meet-In-The-Middle (PC MITM) that can also apply to KLEIN-80
(up to 11 rounds) and to KLEIN-96 (up to 13 rounds). A summary of these
results and of our best new ones is done in Table 2, where their complexities,
number of rounds reached and version of the cipher are specified.

Most of the previous attacks took advantage of the almost full independence
between higher and lower nibbles: either to build truncated differential paths ([4,
24]) or to split the cipher in two independent subciphers ([21]). More precisely [4,
21, 24] pointed out the fact that all encryption layers, with the exception of
MixNibbles, are nibble-wise and do not mix higher nibbles with lower nibbles.
The two analyses [4, 24] also gave an interesting property of the MixColumn

structure, namely:

Proposition 1. [4, 24] If the eight nibbles entering MixColumn are of the form
0X0X0X0X, where the wild-card X represents any 4-bit value, then the output



Version of KLEIN Source Rounds Data Time Memory Attacks

[24] 7 234.3 245.5 232 integral

[24] 8 232 246.8 216 truncated

KLEIN-64 [4] 8 235 235 - differential

[21] 10 1 262 260 PC MITM

[3] 12 239 262.84 24.5 biclique

Sec. 5.1 12 254.5 257.07 216 differential

[24] 8 234.3 277.5 232 integral

KLEIN-80 [21] 11 2 274 274 PC MITM

Sec. 5.6 13 252 276 216 differential

[2] 16 248 279 260 biclique

[21] 13 2 294 282 PC MITM

KLEIN-96 Sec. 5.6 14 258.4 289.2 216 differential

[2] 20 232 295.18 260 biclique

Table 2. Previous results and some of our new results on KLEIN.

is of the same form if and only if the MSB of the 4 lower nibbles have all the
same value. This case occurs with probability 2−3.

Indeed, the higher nibble from the output of MixColumn belonging to the ith
byte depends on: a) the 4 higher nibbles from the input and on b) the xor of
the MSB of the input lower nibble from the ith byte and the MSB of the input
lower nibble from the i+1th byte (mod 4). This information can be expressed as
three quantities of one bit computed with the MSB of the input lower nibbles.
This proposition allows to construct truncated differential paths with important
probabilities leading to efficient distinguishers and key-recovery attacks up to 8
rounds, as the ones used in [4, 13, 24].

Also, as the pattern of the difference in the input of MixColumn is exactly
the same as the one in the output, this truncated difference allows the at-
tacker to build an iterative path. In the following, we denote by iterative round
a round of KLEIN that goes from a difference with only lower nibbles active
(0X0X0X0X 0X0X0X0X) to the same type of difference in the output. In [4]
it was claimed that a difference with only lower nibbles active passes through
an iterative round with probability 2−5.82, while in [24] it was computed as 2−6.
We will discuss the value of this probability in the next section.

An attentive study of the KeySchedule led to the following proposition:

Proposition 2. [4, 13, 21, 24] In the KeySchedule algorithm, lower nibbles and
higher nibbles are not mixed: the lower nibbles of any round-key can be computed
directly from the lower nibbles of the master key. The same property holds for
higher nibbles.



Note that in KLEIN-64 case, since each round key is as long as the master
key, the lower nibbles of any round-key can be computed directly from the lower
nibbles of any other round-key.

This proposition means that the keySchedule can be seen as two independent
and parallel subroutines involving each half of the key bits.

Propositions 1 and 2 are the two main ideas used in [4, 13, 21, 24], that we
recycle and improve in our attacks.

4 Generic Description of Our Attacks

The best previous differential cryptanalyses of KLEIN basically exploited the
iterative truncated differential path over R rounds for building attacks on R+ 1
rounds. No condition was imposed in the last round, making the whole output
active.

Despite this, if we are given two ciphertexts (C,C ′) with a certain difference
∆out, we can easily check if they verify the difference conditions at the output
of round R (i.e., if they form a pair of values that might satisfy the differential
path) without needing to guess any key-bits: we just have to apply to the out-
put difference the linear transformation MixNibbles−1, and check if the higher
nibbles obtained are null, which will occur with a probability of 2−32.

In previous cryptanalysis, since the number of rounds considered was rela-
tively small, this big sieving of probability 2−32 appearing in the last round was
sufficient to select only the pairs that conform the differential path. The set of
possible key-bits involved in the differential path of the last round was then re-
duced to the ones that verify the conditions of round R, by only keeping the keys
that generated higher nibble inputs with zero difference on each MixColumn from
round R. Since this imposes 3 + 3 = 6 bit-conditions as seen in Proposition 1,
the number of possible key-bits involved is basically reduced by 2−6.

In previous attacks several conforming pairs were produced (for example 6
in the 7-round attack) in order to iterate the filtering step of 2−6 and then
recover the involved round-key bits. Contrary to those attacks which require to
keep only the pairs that follow the differential path in the first step, we allow
ourselves to conserve pairs that do not follow the differential path after the
first filtering step. The pairs that verify the 32-bit conditions at round R + 1
but do not satisfy the differential path are called false alarms. The idea is then
to consider separately each candidate set made of one of these pairs and an
associated possible part of the key (only the lower nibbles), i.e. a candidate triplet
(C,C ′, klow), and apply to it several filters to decide if the set is valid, that is if
the pair is conforming the differential path while the considered part of the key is
the correct one. Those several filters consist in using not only the conditions from
the MixNibbles of round R but also the ones from the other rounds. Our sieves
will then consist in checking the conformity of the candidates’ differences going
through all the successive MixNibbles operations, starting from the ciphertexts
and inverting each round or starting from the plaintexts and considering the
rounds in the forward direction. As we show in Section 4.3, reaching the next



sieve requires to make a guess of 6 information bits. Since the sieve is of 2−6 in
the case of iterative rounds, the number of remaining candidates is unchanged
after the iterative filters, i.e., on average, for each candidate triplet (C,C ′, klow),
only one candidate pair (S, S′)r can be associated per iterative round. We will
show how we can reduce the number of candidate triplets by first choosing a
differential path with specific non-iterative first rounds, that provide a more
powerfull filter, and second by comparing the informations obtained from the
plaintexts/ciphertexts and from the filtering process.

The step for recovering the remaining key-bits is usually much cheaper.

In the following, we will explain in detail this attack in a generic way, includ-
ing some technical improvements that have allowed us to reduce the complexities
of the attack, and provide a result on the whole 12 rounds of KLEIN-64, the 64-
bit key version, as well as much improved results on the other versions. We will
start by studying in detail the properties and equations derived from MixNibble,
showing how to correctly compute the probabilities of the path, the cost of in-
verting each round and of guessing the necessary key-bits. We will also provide
the generic attack procedure with the corresponding complexities. Further, in
Section 5, we present different possible trade-offs of this attack and the con-
crete results on the KLEIN ciphers, with one detailed example on the full 64-bit
version that will also help the comprehension of the attacks.

4.1 MixNibbles properties and detailed equations

Let us denote the binary decomposition of the byte a by (a0, a1, a2, a3, a4, a5, a6,
a7), where a0 is the MSB and a7 the LSB.

Proposition 3. The values of the lower nibbles outputting MixColumn depend
on the values of the lower nibbles at the input and on 3 quantities computed
from the higher nibbles that we will call 3 information bits. More precisely, to
compute the lower nibbles resulting of the operation MixColumn(a,b,c,d), the
3 information bits are: 

a0 + b0

b0 + c0

c0 + d0

In particular, a0 + b0 is needed for computing the lower nibble at the first
position, b0 + c0 the one in the second, c0 + d0 the one in the third and d0 + a0,
which is the sum of the three of them, is needed for computing the lower nibble
in the fourth position.

When considering MixColumn−1(a,b,c,d), a similar property holds for the
computation of the output lower nibbles, which requires the following 3 informa-



tion bits in addition to the input lower nibbles:
a1 + a2 + b2 + c0 + c1 + c2 + d0 + d2

a1 + b0 + b1 + c1 + d0 + d1

a0 + a1 + a2 + b0 + b2 + c1 + c2 + d2

Similarly and consequently with Proposition 1, the values of the higher nibbles
outputting MixColumn depend on the values of the higher nibbles at the input and
on 3 quantities computed from the lower nibbles that we will call 3 information
bits. More precisely, to compute the higher nibbles resulting of the operation
MixColumn(a,b,c,d), the 3 information bits are:

a4 + b4

b4 + c4

c4 + d4

When considering MixColumn−1(a,b,c,d), a similar property holds for the
computation of the output higher nibbles, which requires the following 3 infor-
mation bits in addition to the input higher nibbles:

a5 + a6 + b6 + c4 + c5 + c6 + d4 + d6

a5 + b4 + b5 + c5 + d4 + d5

a4 + a5 + a6 + b4 + b6 + c5 + c6 + d6

(1)

The proof can be found in the full version of this article [15]. This propo-
sition implies that an attacker that knows the values of the input lower (re-
spectively higher) nibbles, has to guess 6 bits only to compute MixNibbles (or
MixNibbles−1) in its lower (respectively higher) nibbles. Since MixColumn is
linear, Proposition 3 applies both to values and to differences. This proposi-
tion will be used in our attacks for two different things: computing the correct
probabilities of each round, as well as showing how to invert the rounds.

4.2 Probability of one iterative round and other initial rounds

As previously said, the probability of one iterative round was correctly pointed
out in [24] as 2−6. In [4] the given probability was 2−5.82. In fact, if no condition
is imposed on the input of one iterative round, the probability of verifying it is
indeed 2−6. We have been able to implement and verify this: we have found a
probability extremely close to 2−6 per iterative round with no special condition
on the input. As 2−6 can be seen as a close lower bound, we will consider this
probability for the iterative rounds without conditions as it is the worst scenario
for the attacker.

The difference in the probability computation can be introduced when, be-
cause of a specific form of the differential path and the branch number of
MixColumn from previous rounds, some input nibbles are active or inactive for



sure. This will change the probability due to the Sbox: as already pointed out
in [4], when a nibble is active with probability one, its probability of outputting
a pair of values with a difference having its MSB to 0 is 7/15, but the proba-
bility of having its MSB to 1 is 8/15. We have correctly taken this into account
and conducted new computations and experiments. All the configurations that
we will use in our analysis are represented in Figure 2, so we use this figure
as reference. We have obtained the following results for the rounds 1,2,3 and 4
represented in the figure:

– For round 1, as pointed out in [24], there exists only one possible difference
with the 4 active lower nibbles that outputs after MixColumn a difference
with only one lower nibble active and no difference in the higher nibbles:
(0d0b0e09). The probability of this round is then 2−16, as we want to obtain
a fixed difference after SubNibbles.

– For round 2 we know for sure that we have only one active MixColumn, and in
its input, we have only one active nibble, that will be active with probability
one. This means that the probability of verifying this round is ( 7

15 ) = 2−1.1.
– For round 3 we have both MixColumn active, each with exactly two active

nibbles in its input. The probability for this round is ( 7
15 )4 = 2−4.4, as the

MSB of all the 4 active nibbles need to be 0.
– For round 4 the track of the influence of the branch number starts to be hard

to follow. We have then performed experiments, and we could verify that the
probability of this step is extremely close to 2−6. Though a bit higher, for
the sake of simplicity and for considering the worst case for the attacker, we
consider it to be 2−6 (so the same case as iterative rounds).

4.3 Cost of inverting one round

By inverting one iterative round we consider the situation where a pair of values
for the lower nibbles of the output is given and we want to obtain the possible
pairs of values for the lower nibble inputs of that round. The lower nibbles of
the corresponding round-key are supposed known.

To invert round r we are given a candidate (C,C ′, klow), and its associated
candidate pair at round r: (S, S′)r. At the end, we obtain (S, S′)r−1. As the lower
nibbles of the key are known, we will omit AddRoundKey from the explanation,
as we only work on the lower nibbles of the state and it can consequently be
seen as transparent. The cost of inverting one round by using the naive way of
guessing the 6 additional information bits (3 for each MixColumn−1 as explained
in Proposition 3) all at once, and next discarding the ones that do not verify
the conditions of the previous round is of 26. We propose here a procedure for
inverting one round with a cost of 24 instead of 26.

Improved cost of inverting one round. We first consider the case of inverting
one iterative round. We will later see what happens when the round is not
iterative. First, we make the 3-bit guess from the right part of Figure 1 to
compute MixColumn−1, RotateNibbles−1 and SubNibbles−1 from steps 1,2 and



3 on half of the known state of (S, S′)r. Then we have obtained the pair of values
of the two most-left and of the two most-right lower nibbles from (S, S′)r−1, and
with them we can compute the nibble differences a, b, c′, d′ at the output of
MixColumn from step 4 in the figure. With the notations from Section 4.1, for
each of the 23 values of the information bits that we have tried, we compute the
following six bits in this exact order: (a5 + a6 + b6, a5 + b4 + b5, a4 + a5 + a6 +
b4 + b6, c

′
4 + c′5 + c′6 + d′4 + d′6, c

′
5 + d′4 + d′5, c

′
5 + c′6 + d′6). It is easy to verify that

these quantities correspond each to one half of the last three equations from
Proposition 3, equations that need to be verified in order to have the higher
nibbles inactive in the input of MixColumn. The first three quantities correspond
to the part of the equations associated to the left MixColumn from Figure 1, and
the next three, to the right one.

4 MN

3 SN

2 RN

1 MN 23 23

a b c d a’ b’ c’ d’

(S, S′)r

(S, S′)r−1

Fig. 1. Detail of inverting one round.

We can store all of these 6-bit values in a list of size 23. Next, we perform
a guess of the 3 bits needed for inverting the other half of (S, S′)r, and we can
compute the nibble differences a′, b′, c, d from the figure. For each one of the 23

values that we try, we compute the following 6 bits, in this order: (c4 + c5 + c6 +
d4 + d6, c5 + d4 + d5, c5 + c6 + d6, a

′
5 + a′6 + b′6, a

′
5 + b′4 + b′5, a

′
4 + a′5 + a′6 + b′4 + b′6)

and check if there is a match in the precomputed list, as we know that, for
any MixColumn−1 with no higher nibbles active in the input nor the output, the
three expressions from equation (1) must be equal to 0. The associated values
of the match will represent a value for a pair candidate at round r − 1, where
∆(S, S′)r−1 = (a, b, c, d, a′, b′, c′, d′). A match occurs with probability of 2−6,
as we want to collide on 6 bits. As we have 23 × 23 pairs, on average we can
expect only one value to stay, so only one value on average for (S, S′)r−1 per
candidate triplet as previously announced, so inverting one iterative round does
not increase the number of kept candidates. The cost of this step, given by
applying the instant matching algorithm from [18] is about 23 + 23 = 24.

If the round we want to invert is not iterative, there usually exist more
difference conditions to be verified on the input, as in addition to the previous
six bit conditions, some more differences might have been fixed, like for example
non-active lower input Sboxes (in the non-iterative rounds we have considered in
our study, this is always the case). The cost of inverting is exactly the same (24),
but since there are more equations to verify, the probability that a candidate
pass will be smaller than 2−6: fewer candidates will be kept. The number of



candidates kept is even smaller when we invert the last round since we have to
match both differences and values of the computed half-states.

4.4 Guessing the necessary key-bits

To perform the attack, we consider the pairs of ciphertexts (C,C ′) that verify
the last round condition on 32 bits and we need to guess the values of the lower
nibbles of the key (klow) that verify as well the first round conditions. Then,
we are able to compute the values and differences before the first MixNibbles,
place where we will stop inverting and where we will do the match of values and
differences recovered in the other direction. Proposition 2 shows us that a |k|/2
bit guess (where |k| is the length of the key) of the lower nibbles of the key is
sufficient to obtain all the lower nibbles of all the round-keys.

We use a divide-and-conquer approach to guess the bits from klow and we are
then able to build the candidates (C,C ′, klow). This technique is similar to the
one proposed for inverting one round. Instead of guessing all the lower nibbles
of one key at the same time, we can perform this guess in an ingenious way that
allows to reduce the computational cost.

We consider the first round of the path (as conditions before MixNibbles

can be tested here without needing to guess any extra bits). From the plaintexts
(from which we obtained the ciphertexts C,C ′) we first consider 4 lower nibbles
that will be the inputs to the same MixColumn, and we guess the sixteen bits
from klow that are xored to this 4 nibbles in the first round. We next compute
the inputs of the corresponding MixColumn and we only keep the keys that fulfill
the needed conditions to verify round 1. These conditions will depend on the
specific path considered. For example, in Figure 2, the conditions of the right
MixColumn from the first round are verified with probability 2−16, as only one
difference can verify them (as explained previously), which means that among
the 216 keybits tried for this half, only one value will verify this part of the path.
We repeat the procedure with the other 4 input lower nibbles and the other 16
key-bits. We combine both partial solutions and we obtain all the 232+p1 possible
candidate triplets derived from (C,C ′), where 2p1 is the probability of verifying
the first round of the path.

The cost in number of encryptions of recovering the candidate triplets for
each pair of ciphertexts considered is then 216 + 216 + 232+p1 × 2|klow|−32, as in
the first round only 32 bits from the lower nibbles intervene, and for realizing
the whole attack we have to guess the remaining ones (for KLEIN-64 the last
factor is 1 as |klow| = 32).

4.5 Generic description of the attack procedure and complexity

First, we choose a truncated differential path over the desired number of rounds:
several choices are possible, varying with the considered differences in the first
three rounds of the path and leading to different time-memory-data trade-offs,
as we will see in Section 5. Note that the size of the truncated difference entering
the first round determines the size of the structures that we can build with the



input plaintexts: if the size is ∆in bits, we can build about 22∆in−1 pairs with
2∆in inputs. In the following 2p represents the probability of the whole path,
R is the number of rounds of the differential path and R + 1 is the number of
rounds that we will attack. We denote by 2p1 , 2p2 and 2p3 the probabilities of
the first 3 rounds respectively, p1, p2, p3 ≤ 0. Since one iterative round has a
probability of 2−6 of being verified and because of the forms of the considered
paths, we have p = p1 + p2 + p3 − 6× (R− 3).

1. Obtaining enough data: With the use of structures, we generate a certain
number of ciphertexts such that we obtain enough pairs to be ensured to
get one that verify our differential path: to obtain the required 2−p pairs, we

encrypt 2−p

22∆in−1 2∆in plaintexts so we perform 2−p

22∆in−1 2∆in encryptions.

2. Last-round filter: At this point, we can discard some pairs that for sure do
not verify the differential path. As detailed in [4, 24], by inverting the out-
put difference through the last MixColumn we can observe the value of the
difference entering this transformation and then discard the ones that do
not have the higher nibbles inactive. In practice, we construct a sorted list
of all the higher nibbles values obtained by inverting MixColumn from the
ciphertexts of a same structure (without considering the key addition) and
look for collisions. Such a collision occurs with probability 2−32 so there are
2−p−32 remaining pairs of plaintexts.

3. Guess the involved key-bits: For each pair of plaintexts and their associated
ciphertexts that collide at the previous step, we make two 16-bit guesses
as explained in Section 4.4 and obtain possible values of the first 8 lower
nibbles of the key. Since the conformity with round 1 is of probability 2p1

it gives us 2−p−32+32+p1 candidates formed by a pair of plaintexts and the
8 first lower nibbles of the master key. If the version attacked is KLEIN-64,
the 8 lower nibbles correspond to the lower nibbles of the whole key but for
KLEIN-80 and KLEIN-96, we have to make additional guesses to obtain all
the possible lower nibble values. For KLEIN-64, KLEIN-80 and KLEIN-96
we obtain respectively 2−p−32+32+p1 , 2−p−32+32+p1+8 and 2−p−32+32+p1+16

possible candidates (C,C ′, klow). This step requires 2 × 1
12 × 216 encryp-

tions, and allows us to compute the associated pair of half-states (associated
to each candidate) at the input of the first MixNibbles that already satis-
fies the conditions from round 1. We will denote this pair of half-states by
(S, S′)∗1.

4. Inverting the rounds: At this point we start inverting the rounds from the
candidates that we have obtained, generating possible pairs (S, S′)r for r
from R to 1. That step requires 24 round encryptions per inversion and per
triplet, as detailed in Section 4.3. During the iterative rounds, the number of
possible triplets stays the same, contrary to what happens during the non-
iterative rounds where the number of candidates is reduced (see Section 4.3).
The attack is performed one triplet at a time. Once we have computed



(S, S′)1, we have to guess the 6 bits needed to invert the first MixNibbles,
and next we have to match values and active differences with the already
computed values (S, S′)∗1.
In the differential paths that we will consider, like the one represented in
Figure 2, if we denote by 2q the filtering probability obtained when inverting
rounds 2,3 and 4 (in some cases round 4 or even 3 adds just a filter of 2−6, but
to be general we include it in the special case), the total number of remaining
candidates in the end is 2−p−32+32+p1+6×4+q, 2−p−32+32+p1+8+6×4+q and
2−p−32+32+p1+16+6×4+q respectively for KLEIN-64, KLEIN-80 and KLEIN-
96. If the number of remaining candidates is smaller than 2|klow|, as there is
one possible value for klow per candidate, the cost of recovering the key is
smaller than the one of exhaustive search. In practice, after inverting all the
rounds, the number of remaining candidates is currently very small.
The cost of this step is given by the initial candidate triplets 2−p−32+32+p1

multiplied by 24 (cost of inverting), multiplied by the number of inverted
rounds and by the relative cost to one encryption of each inverted round.
In the next section we will see an illustrative and detailed example of this
computation.

5. Recovering the whole key: Finally, we have to recover the higher nibbles
of the key, which can be done by an exhaustive search or better (as it is
explained in Section 4.6), and we have recovered the whole key.

4.6 Higher Nibbles recovery

To recover the complete key, we can perform a more efficient attack than the
exhaustive search for the remaining key-bits, by deducing information from the
6-bit guesses associated to the candidates that remain after the sieving process.
One more time, each candidate that passes the sieving process will be studied
separately; we make the hypothesis that the candidate is valid so the 6-bit guesses
give us the values that must take certain combinations of intermediate states.

For instance, at the first round, we know the value that must be taken by
the sum of the MSB of the higher nibbles of the state entering the two first
MixColumn. For each possible value of the higher nibbles of the key, we will
compute that state from the plaintext and check this 6-bit condition. The keys
that pass the test will undergo the second sieve resulting from the second round
information bits and so on.

To limit the number of encryptions required to complete this step, we can
one more time use the independences between the 2 half-states during the
MixNibbles operation. We first make a guess on the 16 higher nibbles of the
master key that are added to the 32 middle bits of the state at the first round
and that impact the value of the 32 bits at the output of the left MixColumn. We
then check the 3 corresponding information bits and realise the same operations
for the 16 key bits required to compute the right MixColumn. Since 216 half-state
encryptions are required for each half, the first round filter requires 216 × 1

2 × 2
round encryptions.



Next, as previously said, each round gives a 6-bit filter for the higher nibbles
of the key. For example, for KLEIN-64 the total complexity of the higher nibbles
recovery is of (216 + 226 + 220 + 214 + 28 + 22)× 1

12 = 222.4 complete encryptions.
This procedure needs to be repeated for each candidate recovered during the
klow search.

5 Different Time-Memory-Data Trade-Offs

Various differential truncated paths are possible, each one leading to different
time-memory-data trade-offs. We have studied many different possibilities and
we present here the 4 cases that have provided better results. The only difference
between them is the shape of the wanted differences in the first three rounds of
the path. We will explain one of them applied to the full 12 rounds of KLEIN-64
in a detailed way as an illustration of the attacks, and next present the other
cases considered, also with results given on the 64-bit key version. In the next
section we will provide the results obtained with some considered cases in all the
versions of the cipher, for several number of rounds up to the highest number
that could be reached (which is 12, 13 and 14 for the 64-, 80-, and 96-bit versions
respectively).

We recall here that the probability values that we will use are well detailed
and explained in Section 4.2.

5.1 Case I

In this case, we consider a truncated differential path that corresponds to the
one in [24]. This path is depicted in Figure 2, including the details of our attack.
This is the application that will provide us the best time complexity attack on
the full 12 rounds of KLEIN-64.

1. Obtaining enough data: Using Figure 2 it is easy to verify that the differential
path has a probability of p = 2−16−1.1−4.4−6×8 = 2−69.5 and that ∆in = 16.
Here, the probabilities correspond to the ones discussed in Section 4.2. We
need to generate pairs such that we can expect with a good probability that
one among them will verify the whole path. Since one structure allows us

to build 216 plaintexts, which lead to 216×(216−1)
2 ≈ 231 pairs, we have to

build 269.5−31 = 238.5 structures to have among all the pairs one verifying
the whole path. This step then requires 238.5 × 216 = 254.5 full encryptions,
which correspond to the data complexity of the attack. As it is smaller than
264, the whole codebook, we can obtain such an amount of plaintexts. Since
the true conforming pair is necessarily composed of 2 plaintexts from the
same structure, one structure can be treated after the other so the required
memory is of 216 plaintexts.

2. Last-round filter: we compare the values obtained when inverting the last
MixNibbles on each ciphertext and keep the pairs that have a difference
with inactive higher nibbles at this point. There remain 269.5−32 = 237.5

candidate pairs of plaintext. The cost of this step is negligible.
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3. Guess the involved key-bits: At this point, we perform the optimized guess of
the lower nibbles of the key, klow, as seen in Section 4.4, so we obtain 232−16×
237.5 = 253.5 candidates (C,C ′, klow) with (216× 1

2 ×
1
12 )× 2 encryptions. So

far, we have 216 possible keys klow for each candidate pair (C,C ′). For each
candidate set, we know the values and differences at the input of MixNibbles
of the first round, (S, S′)∗1, and these values already verify the conditions
imposed through the first MixNibbles.

4. Inverting the rounds: Each time that we obtain one of the 253.5 candidates,
we start inverting rounds and generating the candidate pairs from (S, S′)11
to (S, S′)4 (so we invert 8 rounds). We can see in Figure 2 that for all of these
rounds, the amount of bits guessed compensates the probability of verifying
the path, and we expect to obtain one pair candidate per round and per
candidate set. As we can see in the figure, the remaining probabilities for
inverting rounds 4, 3, 2 and the MixNibbles transform from round 1 (so
to arrive to the previously computed values (S, S′)∗1) is 2q = 2−20−13−36 =
2−69. Indeed, the filter probability at the end of round 3 is of 2−(4×4)−4 =
2−20, since we need to have 4 lower nibbles inactive and two MSB of the
4 active lower nibbles to 0 and the input of MixNibbles as depicted in
Figure 2. The probability of the filter at the end of round two is of 2−13 =
2−(3×4)−1 because of the three inactive lower nibbles at the input of the
active MixColumn and the MSB of the active one, and the filter probability
at the end of the first round is of 2−36 = 2−32−4 as we have to collide with
the previously forward computed 32 bits of values and 4 bits of differences.
If we apply the formula from Section 4.5, we can compute the number of
remaining candidate triplets as 269.5−32+32−16+6×4−69 = 28.5, meaning also
that we recover only 28.5 possibilities for the 32 bits in klow. The term 26×4

comes from the fact that we have to guess the 6 bits for inverting 4 rounds,
namely rounds 4, 3, 2 and also 1, as we want to match the values in (S, S′)∗1.
The cost of this step is 269.5−32+32−16×2× 1

2 ×
8
12 × (23 +23) ' 256.9 encryp-

tions for the inversion of the first 8 rounds. And for inverting the remaining
4 rounds, we have a complexity of 253.5 × 1

12 × (23 + 23) + 253.5+6−20 × 1
12 ×

(23 + 23) + 239.5+6−13 × 1
12 × (23 + 23) + 232.5+6 × 1

12 × (23 + 23) ' 253.9.
This part of the attack will be the bottleneck of the total time complexity:
256.9 + 253.9 = 257.07.

5. Recovering the whole key: Finally, we recover the higher nibbles with the
process explained in Section 4.6. The cost of this step is 28.5 × 222.4, so the
bottleneck in terms of time complexity for recovering the whole key is the
one of the previous step.

This version requires a total of 257.07 encryptions, 254.5 data and 216 memory.

5.2 Case II

We use a truncated differential path associated to the path given in [4] (the
value of the input difference is not fixed). As there is only one active nibble
at the beginning of the path, the structures will be the smallest ones that we



will use (size of ∆in = 4), and the memory will be very small, while the data
complexity will be bigger than in other cases.

For the case of 12 rounds of KLEIN-64, we have a probability for the path
of 2−1.1−4.4−6×9 = 2−59.5. The amount of data needed is 259.5−7+4 = 256.5, and
the memory needed is 24. The bottleneck in the time complexity is given by
259.5−32+32−1.1 × 2 × 1

2 ×
9
12 × (23 + 23) ' 261.98. The number of remaining

candidates is 258.39+6−16−4+6−12−1+6−4−32 = 27.39. The time for recovering the
remaining bits of the key is 27.39 × 222.4 = 229.79.

5.3 Case III

This attack uses a path with an iterative round at every round, and ∆in is
consequently 32. This attack has low data complexity, but the highest memory,
and not very good time complexity in the case of an attack on 12-round KLEIN-
64.

For the scenario on 12 rounds of KLEIN-64, the time complexity is very
close to the one of the exhaustive search. We have a probability for the path
of 2−6×11 = 2−66. The amount of data needed is 23+32 = 235, and the memory
needed is 232. The cost of the time bottleneck is given by 266−32+32−6× 2× 1

2 ×
11
12 × (23 + 23) = 263.87. The number of remaining candidates is 260+6−64 = 22.
The time for recovering the remaining bits of the key is 22 × 222.4 = 224.4.

5.4 Case IV

In this case, we use a truncated path that starts with a difference of the form
(0X0X000000000X0X), when represented as 16 nibbles. this one has the same
time complexity than the second one, better data and worse memory.

For the case of 12 rounds of KLEIN-64, we have a probability for the path of
2−3−4−6×9 = 2−61. The amount of data needed is 216+30 = 246, and the memory
needed is 216. The bottleneck in the time complexity is given by 261−32+32−3×2×
1
2×

9
12×(23+23) = 261.57. The number of remaining candidates is 261−3+6×3−20−48

= 28. The time for recovering the remaining bits of the key is 28 × 222.4 = 230.4.

5.5 Results on KLEIN-64

The complexity of the 4 different trade-offs presented here are summarized in
Table 3 and depicted on Figure 3. Table 4 provides the results obtained on
KLEIN-64 using case I for different numbers of rounds.

5.6 Results on KLEIN-80 and KLEIN-96

For KLEIN-80 and 96 we provide in Table 5 the obtained results for several
numbers of rounds using different cases. Case I does not reach a lot of rounds, as
the data complexity exceeds 264, which is the maximal amount of data available,
after 13 rounds.
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Fig. 3. Beginnings of the truncated differential paths of our 4 trade-offs

Case p1 p2 p3 Data Time Memory

I -16 -1.1 -4.4 254.5 257 216

II -1.1 -4.4 -6 256.5 262 24

III -6 -6 -6 235 263.9 232

IV -3 -4 -6 246 261.6 216

Table 3. Summary of the probabilities and complexities of our 4 trade-offs

Rounds Data Time Memory

8 230.5 231.7 216

9 236.5 238 216

10 242.5 244.4 216

11 248.5 250.6 216

12 254.5 257.07 216

Table 4. Best time complexities for recovering the whole key for several round-reduced
variants of KLEIN-64

6 Implementation and verification

We have experimentally verified the efficiency of the proposed attacks by im-
plementing some variants in C language. We wrote our own implementation of
KLEIN-64 with look-up tables for MixColumn and its inverse and we verified it
with the test vectors given in KLEIN specifications [11].



Version Case Rounds Data Time Memory

80 I 12 254.5 265 216

80 I 13 260.5 271.1 216

80 II 13 262.5 276 24

80 III 13 241 278 232

80 IV 13 252 276 216

96 III 14 247 292 232

96 IV 14 258.4 289.2 216

Table 5. Best complexities for recovering the whole key for several round-reduced
variants of KLEIN-80 and -96

We then implemented the attack exactly as described in Section 5: the com-
plete key is recovered in 2 steps with first the search for the lower nibbles with
a truncated differential and then the search for the higher nibbles with an im-
proved exhaustive search.

In particular, we have been able to implement the first successful practical
attack on KLEIN-64 up to 10 rounds. For this, we have considered case I, the one
having the smallest time complexity and average data and memory needs. We
used several speed-optimization flags and a computer with an Intel(R) Xeon(R)
CPU W3670 at 3.20GHz (12MB cache), and with 8GB of RAM. Our program
shows that the proposed attack works and recovers the correct key.

Below we report the outputs of our program for an attack on 10 rounds. The
field structure refers to the randomly chosen values at the beginning, i.e. the 12
nibbles common to all the plaintexts so that the differences between 2 plaintexts
are only in the first and last 2 lower nibbles. Plaintext 1 and Plaintext 2 form
the conforming pair found that enabled us to determine the lower nibbles of the
key. Once the lower nibbles are found, the higher ones are recovered in a few
seconds.

NB rounds: 10

MasterKeyToFind: 66 a2 fa 17 23 19 39 bd

structure: c0 70 03 39 de 72 30 e0

Plaintext 1: c3 79 03 39 de 72 34 e4

Plaintext 2: c2 77 03 39 de 72 30 e1

lower nibbles found: 06 02 0a 07 03 09 09 0d

Complete Key: 66 a2 fa 17 23 19 39 bd

number of pltxt: 624712959124 ie: 2^39.184403

number of false alarms: 4764629 ie: 2^22.183932

number of structures: 9532364

time elapsed: 1254407.310000 sec

We checked manually that the 2 returned plaintexts conform the differen-
tial path and compared our theoretical results with the practical ones. First,



we notice that this result required by chance little less data than theoretically
predicted (242.5) and second we notice that the ratio of false alarms meets the
theory: since we encrypted 239.184 plaintexts, we were able to create 254.184 pairs
so we expected a total of 254.184−32 = 222.184 pairs to pass the first test which is
really close to the observed number of false alarms. This experiment takes near
to 15 days.

The experiments on 9-round versions took us an average of 2 days to recover
the complete key. Some of them are detailed in the full version of this paper [15].
Since that experiments were quicker, we were able to do several ones to compute
average values. As for the previous result, some experiments needed less data
than expected theoretically (by chance) but in average on 4 tests 236,483 plain-
texts were encrypted (which is really close to the 236.5 expected), 219,483 false
alarms appeared and 47 hours were required.

7 Conclusion

In this paper we propose the first attack on the full version of KLEIN-64. It
improves the previous results from 10 to 12 rounds. For the 80-bit and 96-bit
key versions we have provided several attacks on 13 and 14 rounds respectively.
We have implemented round-reduced versions of our attacks, and have been able
to verify the theoretical complexities that we have predicted and to validate our
assumptions. In particular, we have successfully implemented an attack on 10
rounds of KLEIN-64. This is the practical attack realized on the highest number
of rounds, as previous results could not reach more than 8 rounds.

The main weakness of the cipher might be the fact that the MixColumn

transformation does not correctly mix higher and lower nibbles, as it is the only
transform that does so. Maybe considering other matrices instead could lead to
a more solid construction. Also, the fact that the KeySchedule does not mix
higher and lower nibbles helps the cryptanalyst to perform a reduced partial key
search, so a stronger KeySchedule could help to prevent the attacks.

We believe that the family of attacks presented, though clearly dedicated to
the cryptanalysis of KLEIN, might apply to other ciphers with big independences
between two parts of the state.
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