
A Framework for Automated
Independent-Biclique Cryptanalysis

Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{farzaneh.abed, christian.forler, eik.list,

stefan.lucks, jakob.wenzel}@uni-weimar.de

Abstract. In this paper we introduce Janus, a software framework –
written in Java – which is built to provide assistance in finding indepen-
dent-biclique attacks for a user-chosen set of parameters, e.g., the number
of rounds and dimension of the biclique. Given a certain cipher, Janus
not only finds an optimal bipartite graph (biclique), but also provides
an all-round carefree package of finding an optimal matching-with-pre-
computation step, rendering the found biclique, and determining the
computational complexity of the attack.
We have used the Janus framework to verify existing results on ARIA
and the AES. Additionally, by using this framework, we could find the
first full-round biclique attacks on all versions of the AES-like cipher
BKSQ.

Keywords: automated cryptanalysis, biclique, BKSQ

1 Introduction

Overview. Biclique cryptanalysis was first introduced by Khovratovich et al.
in 2011 [17] and presented at the FSE 2012 [18]. The authors used this approach
to find preimages for reduced-round versions of the block cipher based hash
functions Skein [12] and SHA-2 [21]. Bicliques represent an improvement of the
splice-and-cut approach [4,22,23], which itself is a variant of meet-in-the-middle
attacks. More detailed, biclique cryptanalysis uses a complete bipartite graph
(biclique), which can be constructed over a part of a primitive, to extend an
existing meet-in-the-middle or similar attack. While the splice-and-cut approach
was intentionally designed to target hash functions, Wei et al. presented the
first splice-and-cut attacks on the block cipher KTANTAN [28]. Bogdanov et
al. then adapted biclique-based attacks on the AES [5]. Their work obtained a
high level of attention, since they demonstrated the first single-key attacks on
all full versions of the AES with a significant advantage over exhaustive search.
Since then, biclique attacks have become a well-known technique and attacks on
several further ciphers have been published in [1,2,3,7,8,13,14,15,20,24,26,27].
Finding good (independent) bicliques over a given number of rounds is a time-
consuming task which requires in-depth knowledge of the investigated cipher to

find well-suited differentials. Thus, it is adequate to think about using a computer
to find such bicliques. Usually, implementations of common block cipher APIs
are not designed to provide a sufficiently fine granularity, e.g., access to single
steps and the basic operations of the cipher is not supported, but required to
find good bicliques.

Our Contribution. A unified API is needed to reduce the effort of modifying
a block-cipher implementation for the biclique search. In addition, such an API
would allow applying one single biclique-searching framework that fits all. In this
paper, we present such a framework, called Janus, which is open source and free
to use1. The main feature of Janus is to find a complete and independent bi-
partite graph for a certain number of given rounds. In addition, it computes the
corresponding step of matching with precomputations, and the overall complex-
ity. Finally, it supports rendering a graphical illustration of the found biclique
and the matching part.
Janus provides a highly modular and flexible API, i.e., it allows the user to
determine parameters like the used cryptographic primitive, the starting/ending
round, the dimension of the biclique, the starting difference, etc.
First, we used our framework to verify and validate published attacks on vari-
ants of the AES and ARIA (see Section 4). Thereby, we detected a flaw in the
complexity computation of the attack on AES-192. Thus, we were not able to
verify the claim made for this attack. But secondly, further analysis revealed
that the authors just forgot to include one round during the matching-with-
precomputation phase. This example points out the importance of an automated
framework to validate claims for existing attacks.
Additionally, we used Janus to find the first full-round attacks on variants of
the AES-like cipher BKSQ [10]. Results of our work can be found in Section 4
in Table 1.

Related Work. There are several published tools and frameworks which sup-
port certain cryptanalytic techniques. Though, these frameworks are mostly lim-
ited to a very specific area of application. For example, the work of Daemen
and Van Assche2 concentrates only on analyzing their SHA-3 winner Keccak [9].
They provide, among other things, a computation of linear and differential trails.
Another framework was introduced by Leurent [19] to analyze ARX-based hash
functions (like Skein or Blake) with the goal to assist in finding good differen-
tial trails. Further, Stankovski implemented an automated algebraic cryptanal-
ysis framework [25], which uses the Maximum-Degree-Monomial (MDM) test to
launch algebraic attacks against stream and block ciphers. Currently, it supports
more than 20 stream and block ciphers, and provides a possibility to produce
TeX code for graphs.

1 https://github.com/janus-framework/janus
2 http://keccak.noekeon.org/KeccakTools-doc/ [April 2013]

2

https://github.com/janus-framework/janus
http://keccak.noekeon.org/KeccakTools-doc/

Outline. In Section 2 we will provide a brief introduction of biclique crypt-
analysis. In Section 3 we introduce Janus – containing the search for bicliques,
the matching phase, and the rendering option. We used our framework to verify
existing attacks on the AES and ARIA, as well as to mount new attacks on
BKSQ. Our results are shown in Section 4. Section 5 concludes the paper.

2 Independent-Biclique Cryptanalysis

In this section we review the basics of independent-biclique cryptanalysis follow-
ing the work of [17]. A biclique is a complete bipartite graph which covers some
steps of a given cipher. It connects every element in a set of starting states S with
every element in a set of ending states C. We enumerate the elements in S by Sj
and the elements in C by Ci, where a path from Sj to Ci represents the encryp-
tion under a key K[i, j]. More formally, the 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}]
is called a d-dimensional biclique, if

∀i, j ∈ {0, . . . , 2d − 1} : Sj
K[i,j]−−−−→
B

Ci,

where B denotes the steps of the cipher covered by the biclique. The basic idea
is to divide the key space into 2k−2d groups of 22d keys, where k denotes the
length of the secret key and d is the dimension of the biclique. A biclique can
then be defined for one such group of keys K[i, j], where the individual keys
are represented relative to a so-called base key of the group, K[0, 0], and two
differences ∆K

i and ∇Kj :

K[i, j] = K[0, 0]⊕∆i ⊕∇j .

An adversary can construct a biclique over one part of a cipher and apply then
a meet-in-the-middle or similar attack over the remaining parts.

2.1 Independent Bicliques

In [5,16,17], Khovratovich et al. proposed two different paradigms for biclique
attacks: bicliques from independent differential trails (or independent bicliques)
and bicliques from interleaving differential trails (or long bicliques). Independent
bicliques allow the construction of bicliques from two sets of differentials:

1. In the beginning, the adversary chooses a so-called base computation, i.e., a
3-tupel {S0, C0,K[0, 0]}, where the key K[0, 0] maps the internal state S0 to
the state C0 over B:

S0
K[0,0]−−−−→
B

C0.

2. Then, it chooses 2d differences ∆K
i , derives new keys K[i, 0] = K[0, 0]⊕∆K

i ,
perfoms 2d computations from the state S0 in forward direction and arrives
at 2d states Ci:

S0
K[0,0]⊕∆K

i−−−−−−−→
B

C0 ⊕∆i = Ci ∀ i ∈ {0, . . . , 2d − 1}.

3

These are called the ∆i-differentials.
3. Similarly, it chooses 2d further differences ∇Kj , again derives new keys K[0, j]

= K[0, 0]⊕∇Kj , computes 2d times from the state C0 in backward direction,

and arrives at 2d states Sj :

Sj = S0 ⊕∇j
K[0,0]⊕∇K

j←−−−−−−−
B−1

C0 ∀ j ∈ {0, . . . , 2d − 1}.

These are called the ∇j-differentials.

If all ∆i-differentials do not share any active non-linear operations with the
∇j-differentials, then every state Sj can be connected with every state Ci by
encrypting Sj under the key K[i, j] = K[0, 0]⊕∆K

i ⊕∇Kj . Thus, one obtains a

set of 22d independent (∆i,∇j)-differential trails:

S0 ⊕∇j
K[0,0]⊕∆K

i ⊕∇
K
j−−−−−−−−−−−→

B
C0 ⊕∆i ∀ i, j ∈ {0, . . . , 2d − 1}.

The length of the biclique differentials is limited by two full diffusions of the
cipher. An adversary can potentially create bicliques over more rounds by using
the long-biclique approach. Though, the construction of long bicliques is quite
sophisticated and requires a significantly higher computational effort. More im-
portantly, the requirement for independent differentials is a very clear and well-
understood criterion that allows us to test it by using an automated approach.
Therefore, we focus on the independent-biclique approach in this work.

2.2 Matching-with-Precomputations

If a constructed biclique is quite short and the matching part needs to cover
too many rounds, then a meet-in-the-middle attack may no longer be applica-
ble. In such cases, [5] proposed an alternative procedure called matching-with-
precomputations.
Assume an adversary is given a cipher E which can be split into three parts
E = B ◦ E2 ◦ E1, where E1 is the subcipher that maps a plaintext P to an
internal state V , E2 maps V to another internal state S, and B maps the state
S to the ciphertext C:

P
E1−−→ V

E2−−→ S
B−→ C.

After constructing a biclique over B, the adversary is given 2d states Ci, and ob-
tains the corresponding plaintexts Pi from a decryption oracle. Then, it performs

2d forward computations from the plaintexts Pi to
−→
Vi,0,

Pi
K[i,0]−−−−→
E1

−→
Vi,0,

and stores the 2d values
−→
Vi,0. Similarly, it performs 2d backward computations

from the states Sj to
←−−
V0,j ,

←−−
V0,j

K[0,j]←−−−−
E−1

2

Sj ,

4

and stores the 2d values
←−−
V0,j . These two steps are called the precomputations. In

the following, the adversary re-uses the stored values for the remaining 22d − 2d

computations

Pi
K[i,j]−−−−→
E1

−→
Vi,j , and

←−
Vi,j

K[i,j]←−−−−
E−1

2

Sj ,

where it recomputes only those parts of the key schedule and the round transfor-
mation that differ from the stored values. By using this method, one can reduce
the computational effort significantly even if no attacks are known to cover the
remaining parts of the cipher. The recomputation costs can be further reduced
by only matching in a part of V (partial matching).

2.3 Complexity Calculation

For every biclique, the adversary tests 22d keys. Hence, it needs to construct
2k−2d bicliques to cover the full key space. For the time complexity, [5] proposed
the equation:

Cfull = 2k−2d (Cbiclique + Cdecrypt + Cprecomp + Crecomp + Cfalsepos) , (1)

where

– Cbiclique denotes the costs for computing 2 · 2d trails over B,
– Cdecrypt is the complexity of the oracle to decrypt 2d ciphertexts,

– Cprecomp represents the effort for 2d computations of E1 to determine
←−−
V0,j

and 2d computations of E−12 to determine
−→
Vi,0,

– Crecomp describes the costs of recomputing 22d values
←−
Vi,j and

−→
Vi,j , and

– Cfalsepos is the complexity to eliminate false positives.

The full computational effort of the attack is dominated by the recomputations.
The memory requirements are upper bounded by storing 2d intermediate states
Vi,j .

3 Framework Design

Our current implementation consists of four components:

1. The biclique search subsystem is responsible for searching for indepen-
dent differential trails over some sub-cipher B of a given primitive E.

2. Given a found biclique, the matching subsystem analyzes the remaining
parts of the cipher to find a matching which leads to an attack with a minimal
computational effort.

3. The rendering subsystem can visualize bicliques as well as matching phase
differentials in PDF format, using the community version 5.3.0 of the open-
source library iText [6].

4. Moreover, the framework contains a number of common components, such
as cipher implementations, serialization and utility classes, as well as cipher-
dependent helper classes which generate and compare differentials.

In this work we concentrate on describing the two major components in detail.

5

3.1 Biclique Search

The task of finding independent bicliques can be transformed into the task of
finding pairs of independent differentials (∆f ,∇b). In advance, the user needs to
specify:

– a target cipher E,
– the round range of the sub-cipher B,
– the dimension of bicliques d,
– a strategy to test the independency of differentials,
– and a strategy to define and generate round key differences.

The general biclique search follows the steps from Section 2.1. Assume that B
covers the rounds [r, s] with 1 ≤ r ≤ s ≤ Nr of a given cipher E, where Nr is
the total number of rounds in E. We denote

– by NBr = s− r + 1 the number of rounds covered by B,
– by Ti the state after Round i,
– by Ui the intermediate state after the non-linear operation in Round i,
– and by Ki the round key of Round i.

We further call the state of the cipher’s key register, which contains the key for
Round r, the starting key, and the state which contains the key for Round s the
ending key.
First, we fix K[0, 0] and S0 to and derive C0. This base computation is computed
only once for a given cipher and round interval. We then create a trail ∆f which
will store all state values Ti, all intermediate state values Ui, as well as all round
keys Ki which are used in B. At the beginning, we initialize them with all-zero

values. Then, we choose a starting key difference ∆Kf

with d bits set. In the

following, we iterate over all 2d possible values for the d set bits in ∆Kf

, and
compute 2d − 1 differential trails

S0
K[0,0]⊕∆Kf

i−−−−−−−−→
B

Cfi , ∀ i ∈ {1, . . . , 2d − 1}.

We denote by ∆f
i the resulting differences between the corresponding states,

intermediate states and round keys of the trail ∆f and the base computation:

∆f
i =

(
S0

K[0,0]−−−−→
B

C0

)
⊕

(
S0

K[0,0]⊕∆Kf

i−−−−−−−−→
B

Cfi

)
.

Bits which are active in any of the 2d−1 differential trails ∆f
i should remain active

in the differential ∆f . Thus, the ∆f
i -trails are accumulated to ∆f by applying

the logical OR pair-wise to all corresponding state and round key differences of
all differentials ∆f

i :

∆f ←
2d−1∨
i=1

∆f
i .

6

This procedure is repeated for in total Nd unique starting key differences ∆Kf

,
∀f ∈ {1, . . . , Nd}. All Nd accumulated forward trails ∆f are stored in a list. The
Nd backward trails ∇b are computed similarly afterwards.
For every pair of differentials (∆f ,∇b), we check if any of their corresponding
states or round keys share active parts in non-linear operations. If not, the
current pair yields an independent biclique. Since any identified biclique can be
used to mount an attack, we provide an option for the early abort as soon as
the first such pair has been found. The time complexity of the biclique search
process is given by

Ctime = Cforward + Cbackward + Ctesting,

where

– Cforward is given by constructing Nd ∆-differentials,
– Cbackward denotes the effort of constructing Nd ∇-differentials,
– and Ctesting represents the costs for comparing N2

d pairs of differentials
(∆,∇).

The complexity is dominated by the effort for testing N2
d pairs of differentials.

We have to store the states and round keys of Nd forward differentials, where
every differential holds NBr + 1 (from r− 1 to s) state differences, NBr (from r to
s) intermediate state differences, and a cipher-dependent number of Nk round
key differences, since E may employ pre- and post-whitening keys. Hence, we
need to store

Cmemory = Nd · (2NBr + 1) · n+Nk · k
bits, where n and k denote the state and round-key size, respectively. In the case
when the available memory is not sufficient to store all forward differentials, the
biclique search is performed in iterations.

Ciphers. Throughout the framework we employ a unified interface for cipher
implementations. Standard implementations allow the client to specify only the
plaintext, the used key and, in some cases, a tweak. The implementations in our
framework have to provide access also to internal values, such as intermediate
states to allow the comparison of state differences.
In addition, they have to provide access to the values of round keys as well as to
their internal key register. To obtain the longest possible independent bicliques,
one should not minimize the number of active bits with respect to the secret
key. Since the key schedule of most ciphers provides a significant diffusion, it
would increase the number of affected bits in the round-key differences ∆K

i or
∇Kj and hence, would increase the number of active bits in the differential trails.
Instead, one should choose key differences which have a minimum number of
active bits in the round keys at the beginning (for ∆-differentials) or at the end
(for ∇-differentials) of B, respectively. This minimizes the number of active bits
in non-linear operations of the differential trails through B. Thus, the starting
point for choosing key differences should be an intermediate state of the cipher’s
key register, from where one can derive the differences for all further round keys.

7

The ciphers we are interested in utilize a key register which is updated in an
iterated reversible procedure, with the consequence that the secret key can be
reconstructed from any given register state. Our implementations specify if the
key schedule of a cipher is reversible. In this case – which applies to most AES-
like primitives and modern lightweight ciphers – they provide a method which
allows to invert the key schedule given an arbitrary k-bit state of the key register
at a certain number of iterations. In the opposite case, the starting key differences
are injected in the secret key as a fallback solution.

Starting Key Differences. The number of tested differentials, Nd, depends
on the dimension of the biclique d and the size of the key register k. Given k
and d, one could potentially generate Nd =

(
k
d

)
forward and backward differen-

tials, which becomes infeasible for k ≥ 64. Though, this effort can be reduced
significantly for byte- and nibble-wise operating ciphers. In the following, we
consider three strategies to generate key differences for such primitives, which
are illustrated in Figure 1.

Fig. 1. Approaches to iterate over key differences for byte-wise/nibble-wise operating
ciphers: iterate over a minimum number of active bytes/nibbles (left), over multiple
bytes/nibbles with equal value (middle), or choose user-defined differences over a part
of the key to cancel out results of the round transformation (right).

1. Firstly, one can set only a minimum number of d active bits in the starting
key difference. Then, for byte-wise operating primitives, there are only k

dd/8e
active bytes in the difference. As a consequence, for byte- and nibble-wise
primitives the number of possible differences which can be tested reduces to

Nd =
(
k/8
dd/8e

)
and Nd =

(
k/4
dd/4e

)
differentials, respectively. For bit-wise operating primitives, one can limit the
number of generated key differences to a user-definable number.

2. Secondly, one can set the same difference for multiple nibbles/bytes in the
starting key difference. At the first sight, these will produce additional active
bytes in the state after a key injection, making it harder for the differential
to be independent in a pair. At second sight, the additional active bytes may
cancel out byte differences in the key schedule and/or the round transfor-
mation of AES-like ciphers, as we can learn from the attack on SQUARE
by Mala [20]. Though, this strategy increases the number of tested keys to
Nd = 2k/8 for byte-wise and Nd = 2k/4 for nibble-wise primitives, respec-
tively.

8

3. Alternatively, one can employ custom rules to generate round-key differences.
In their attack on AES-192, Bogdanov et al. employed the inverse result of a
MixColumns operation as a part of the round key difference [5]. And in their
attack on ARIA-256 [8], the authors used dedicated differences in which
the right half of the 256-bit key canceled the difference injected by the left
half. One can learn from those examples that cipher-specific key differences
can result in longer bicliques for AES-like ciphers. Since testing all custom
differences in the key space is infeasible, the task of choosing “good” custom
starting key differentials can be left to the user.

3.2 Matching

A matching-with-precomputations step is supposed to be applied to the sub-
ciphers not covered by a given biclique (here E2 ◦E1). Our framework can help
to identify a well-suited matching by investigating two aspects: first, it tests all
possible rounds which can be used to locate V :

P −−→
E1

V ←−−−
E−1

2

S,

and second, it tests all possible nibbles or bytes in V which can be used for a
partial matching. For every round r that can be used to locate V , we perform
four steps:

1. First, we compute differentials from the start and the end of the matching
part to the middle:

P
K[0,0]⊕∇K

j−−−−−−−→
E1

Vr ⊕∇Vj and Vr ⊕∆V
i

K[0,0]⊕∆K
i←−−−−−−−

E−1
2

S.

Note that these differential trails result from injecting differences in the
round keys.

2. Then, for every nibble/byte in V , we create a new difference δV in which the
bits that are used for a partial matching are set. We compute the differentials
from V to start and end:

P ⊕ δP K[0,0]←−−−−
E−1

1

Vr ⊕ δV and Vr ⊕ δV
K[0,0]−−−−→
E2

S ⊕ δS .

These active bits in these trails represent the parts of the states and round
keys that have to be known in order to apply the partial matching.

3. For the recomputation effort of an attack, one has to consider only those
parts of the states and round keys that are active in both differential trails:
0 → ∇Vj and δP ← δV . Therefore, we apply the logical AND (∧) between
the active bits/nibbles/bytes (depending on the cipher) of all corresponding
states and round keys and obtain the accumulated differential ∆P

j by

∆P
j = (0→ δV) ∧ (δP ← Vr).

9

Similarly, we compute the accumulated differential ∇Si

∇Si = (δVr ← 0) ∧ (δVr → δS).

4. As the final step, the number of active bits/nibbles/bytes in keys, states, and
intermediate states is counted in both ∆P

j and ∇Si to have a single number
which refers to the recomputational effort.

4 Applications

We used our implementation to validate existing biclique attacks on the AES
and ARIA from [5,8], and to mount new attacks on the three versions of the
cipher BKSQ. Table 1 summarizes our results and compares them with previous
attacks.

Primitive Rounds Comp. Data Memory Ref.

complexity complexity (CP) complexity

AES

AES-128 10 (full) 2126.72 272 28 This work

AES-128 10 (full) 2126.18 288 28 [5]

AES-192 12 (full) 2190.28 248 28 This work

AES-192 12 (full) 2189.74(∗) 280 28 [5]

AES-256 14 (full) 2254.53 264 28 This work

AES-256 14 (full) 2254.42 240 28 [5]

ARIA

ARIA-256 16 (full) 2255.20 280 28 [8]

BKSQ

BKSQ-96 10 (full) 294.47 280 28 This work

BKSQ-144 14 (full) 2142.63 296 28 This work

BKSQ-192 18 (full) 2190.78 296 28 This work

Table 1. Independent-biclique attacks constructed by automated search in compar-
sion with previously published attacks. CP: chosen plaintexts, (∗): The computational
complexity should be 2190.16 (cf. Section 4.1).

4.1 Verifications

AES. In our experiments on the AES we could construct bicliques on up to
three rounds for the 128-bit, and on up to four rounds for the 192-bit and 256-
bit versions. Hence, our results confirm to the findings of Bogdanov et al. in terms
of maximal biclique lengths. In their independent-biclique attacks, Bogdanov et
al. pointed out that the round key differences are a linear function of the indices
i and j. Thus, the authors could neglect the effort for recomputing the S-boxes
in the key schedule. We did not employ this optimization, since we searched
for a more general approach in our implementation. Additionally, we detected a

10

minor flaw in the complexity calculation for the independent-biclique attack on
the 192-bit version. There, the authors forgot to consider either the round 6 or 7
with 16 active S-boxes which increases the number of SubByte operations from
2.8125 to 3.8125, and the total complexity from 2189.74 to 2190.16.

ARIA. ARIA is a Korean variant of the AES. Its round transformation provides
a significant diffusion, where every input byte is involved in the computation
of seven output bytes. In the key schedule of ARIA, the input key is trans-
formed in a four-round Feistel structure to create four intermediate key words
W0,W1,W2,W3. All round keys are then extracted from these words using ro-
tations and XORs. Chen and Xu [8] injected one-byte differences for the ∆i-
and ∇j-differentials in the leftmost 128 bits of the key, and used the rightmost
128 bits to cancel the resulting seven-byte difference. We have implemented and
verified the attack on ARIA-256. However, the Feistel preparation in the key
schedule refused more efficient attacks.

4.2 Independent-Biclique Attack on the Full AES-128 and AES-192.

While the time complexities of the previous works on the AES are better than
our results for them, we could decrease the data complexity for the 128-bit and
192-bit versions. In the biclique for the 128-bit version, the ciphertexts Ci differ
in only 11 out of 16 bytes, as can be seen on the left side of Figure 2 in Appendix
A.
The bytes 0, 8, 12 (from left: the first, third and fourth byte in the uppermost
row) are active in the ciphertexts only after the key injection in the final round.
Due to the key schedule of the AES, these bytes in the final round key always
have an equal difference. As a consequence, since the ciphertexts can only take
(28)9 values, the data complexity is upper bounded by 272.
Similarly, in the biclique for the 192-bit version, the ciphertexts Ci differ in only
five out of 16 bytes before the final key addition, as illustrated on the right side
of Figure 2 in Appendix A.
Due to the key schedule, the bytes 1, 5, 9 (from left: the first, third and fourth
byte in the second row) in the round key for the final round always have an equal
difference. The ciphertexts for this biclique can take only (28)6 values. Thus, the
data complexity of an attack using this biclique is upper bounded by 248.

4.3 Specification of BKSQ

BKSQ is a substitution-permutation network that was proposed by Daemen
and Rijmen in [10]. The cipher represents a generalization of Rijndael, in which
the state has a rectangular m × n-structure (cf. [11]). There are three different
versions of BKSQ which all have a state size of 96 and individual key lengths
of 96, 144, or 192 bits. The internal state is represented by a 3 × 4- and the
secret key is represented as a 3× 4-, 6× 4-, or 9× 4-byte matrix. The plaintext
is transformed in 10/14/18 rounds using the four operations:

11

– MixColumns/θ: The internal state is multiplied column-wise by a circulant
MDS-matrix in the Galois-Field GF (28).

– SubBytes/γ: Each byte in the internal state is replaced using an 8 × 8-bit
S-box.

– ShiftRows/π: The i-th row of the internal state for i ∈ {0, 1, 2} is rotated by
i bytes to the left.

– AddRoundKey/σ[ki]: The internal state is XORed byte-wise with the subkey
ki for round i.

Before the first round, an inverse θ-operation is applied to the plaintext and an
additional key k0 is XORed with the state.

4.4 Independent-Biclique Attack on Full BKSQ-96.

This subsection explains our independent-biclique attack on full BKSQ-96. The
attack includes three steps: partitioning the key space, constructing a biclique,
and matching over the remaining parts of the cipher. The complexity of the
attack is described at the end.

Key Space Partitioning. We partition the key space in 280 sets with respect
to the round key for Round 8, k8. The base keys K[0, 0] of the sets are the 280

12-byte values with two bytes fixed to zero, where the ten remaining bytes run
over all possible values. The 216 keys K[i, j] in a set are defined by applying the
key differences ∆K

i and ∇Kj to the base key, where i, j ∈ {0, . . . , 255}.

K[0, 0] =
(k) =

0 0 ∆K
i (k8) =

(k) = ∇K
j (k8) =

l l

Note that the key schedule of BKSQ-96 performs a bijective mapping where
every value for the secret key is mapped uniquely to one value of each round
key. Thus, our splitting of the key space covers the full secret key space.

3-Round Biclique of Dimension 8. We construct a biclique of dimension
eight over the rounds 8-10. Figure 3 in Appendix B shows the base computation
as well as the ∆i- and ∇j-differentials. It can be seen from there that all ∆i-
and ∇j-differentials are independent, i.e., their keys and states do not share
active bytes which are used as inputs to the non-linear S-box. From Figure 3 in
Appendix B one can see that the ∆i-differentials affect the ciphertexts Ci in only
10 bytes. By fixing C0 for all bicliques, we can upper bound the data complexity
of this attack by 280 ciphertexts.

Matching Over 7 Rounds. The matching part covers the first seven rounds
of the cipher, as illustrated in Figure 4 in Appendix B. We choose the first byte
of the state after Round 3 for the partial matching. The bytes which have to be
recomputed are darkened in Figure 4.

12

Similar to the attacks on the AES in [5], we have to be accurate concerning the
recompution effort. In all attacks on BKSQ we follow the argumentation of [5]
and focus on the number of S-boxes which require recomputation in order to
have a single value which refers best to the total effort, since the number of S-
box lookups is the dominant summand compared to the number of recomputed
θ- and σ- operations.
As we can see from Figure 4 in Appendix B, we need to consider nine S-boxes
in the first, three S-boxes in the second, and one additional S-box in the third
round. Hence, we have 9 + 3 + 1 = 13 S-boxes in the forward part of the
round transformation. In backward direction (covering rounds 4 to 7) we need
to consider 3 + 9 + 7 + 3 = 22 S-boxes in the round transformation. Additionally,
we have to take into account the S-boxes that require recompution in the key
schedule. BKSQ uses the S-box for the rightmost column of each of its round
keys. There are 3 + 3 + 3 + 3 + 1 + 1 + 0 + 1 = 15 such active S-boxes in the
last column of the round keys. These sum up to 13 + 22 + 15 = 50 S-boxes for
one group of keys.

Complexity of the Attack. In the full BKSQ-96, there are 10 · 12 = 120
S-boxes in all γ-operations of the full cipher and 30 S-boxes in the key schedule.
Thus, for 216 keys in one key group, Crecomp is equivalent to 216 · 50

150 = 214.42

full encryptions. In all of our attacks on BKSQ we use bicliques of dimension
eight. Therefore, the decryption oracle needs 28 decryptions per biclique. Since
we match in eight bits in the state v, we can expect to have 216−8 false positive
key candidates per key group in average, which have to be tested in a brute-force
stage.
For BKSQ-96, the effort to construct a biclique, Cbiclique, is given by computing
2 · 28 times three out of 10 rounds, which is equal to 27.26 full encryptions. The
precomputations costs are given by computing 28 times three rounds in forward
direction from P to V and 28 times four rounds in backward direction from
S to V . Hence, Cprecomp is equal to 27.49 encryptions. The full computational
complexity is given by

280 · (27.26 + 28 + 27.49 + 214.42 + 28) = 294.48

encryptions. This attack requires 280 chosen plaintexts, and memory to store 28

96-bit states at a time.

4.5 Independent-Biclique Attack On Full BKSQ-144.

Key Space Partitioning. In the attack on the 144-bit version of BKSQ we
partition the key space in 2128 sets with respect to the block (k12‖kL13), which
contains the full round key k12 and the leftmost two columns of k13. The base
keys of the sets, K[0, 0], are the 2128 18-byte values, where two bytes are fixed
to zero and the remaining 16 bytes run over all possible values. The 216 keys
K[i, j] in a set are defined by applying the key differences ∆K

i and ∇Kj to the
base key, where i, j ∈ {0, . . . , 255}.

13

K[0, 0] = 0

0

∆K
i (k12||kL13) = ∇K

j (k12||kL13) =

Note that the key schedule of BKSQ-144 maps every value of the secret key
uniquely to one value of each 18-byte block of the key register. Thus, our splitting
of the key space with respect to (k12‖kL13) covers the full secret-key space.

4-Round Biclique of Dimension 8. We construct a four-round biclique which
covers the rounds 11 to 14, as shown in Figure 5 in Appendix C. This time, the
ciphertexts Ci are affected in all bytes. Thus, the attack can potentially include
the full codebook.

Matching Over 9 Rounds. We match in the first byte of the state after
Round 3. Figure 6 in Appendix C shows the active bytes in the matching phase.
We consider 9 + 3 + 1 = 13 S-boxes in forward and 3 + 9 + 12 + 12 + 12 + 6
+ 2 = 56 active S-boxes in the backward part of the matching. Moreover, in the
key schedule, we have to recompute one active S-box in each of the round keys
k1, k4, k7, and k10. Hence, there are in total 13 + 56 + 4 = 73 active S-boxes in
the matching phase.

Complexity of the Attack. In the full cipher, there are 14 · 12 = 168 S-boxes
in the γ-operations and 27 S-boxes in the key schedule. Thus, for 216 keys in one
key group, Crecomp is equivalent to 216 · 73

195 = 214.58 full encryptions. Cbiclique
is given by computing 2 · 28 times four out of 14 rounds, which is equivalent to
27.19 full encryptions. Considering Cprecomp, one has to compute 28 times ten
out of 14 rounds, which is equivalent to 27.51 full computations. The total time
complexity is given by

2128 · (27.19 + 28 + 27.51 + 214.58 + 28) = 2142.63

full encryptions. The data complexity of this attack is 296, and we need memory
to store 28 states.

4.6 New Independent-Biclique Attack On Full BKSQ-192.

Key Space Partitioning. For this attack we divide the key space into 2176

sets with respect to the block (k16‖k17), which contains the keys for rounds 16
and 17. The base keys K[0, 0] are the 2176 24-byte values with two bytes fixed
to zero, where all other bytes run over all possible values. The 216 keys K[i, j]
in a set are defined by applying the key differences ∆K

i and ∇Kj to the base key,
where i, j ∈ {0, . . . , 255}.

K[0, 0] =
0
0 ∆K

i (k16||k17) = i i ∇K
j (k16||k17) =

j

Note, that the key schedule of BKSQ-192 maps every value of the secret key
uniquely to one value of each 24-byte block of the key register. Thus, our splitting
of the key space with respect to (k16‖k17) covers the full secret-key space.

14

5-Round Biclique of Dimension 8. We construct a 5-round biclique which
covers the rounds 14 to 18, as shown in Figure 7 in Appendix D. For this attack,
the ∆i-differentials affect all bytes in the ciphertexts Ci. Hence, this attack may
require the full codebook.

Matching Over 13 Rounds. We match in the first byte of the state after
Round 5, as shown in Figure 8, Appendix D. There, an adversary should recom-
pute 12 + 12 + 9 + 3 + 1 = 37 S-boxes in the forward direction, 3 + 9 + 4 · 12
+ 6 + 2 = 68 S-boxes in backward direction and six S-boxes in the key schedule.
Hence, 37 + 68 + 6 = 111 S-boxes need to be recomputed in total.

Complexity of the Attack. In BKSQ-192, there are 18 · 12 = 216 S-boxes
in the γ-operations and 51 bytes in the key schedule. Thus, for 216 keys in one
key group, Crecomp results in 216 · 111267 = 214.73 full encryptions. Cbiclique is given
by computing 2 · 28 times five out of 18 rounds, which is equivalent to 27.15 full
encryptions. Cprecomp is given by computing 28 times 13 out of 18 rounds or
27.53 computations. The full time complexity is given by

2176 · (27.15 + 28 + 27.53 + 214.73 + 28) = 2190.78

full encryptions. Again, the data complexity is 296 and the memory complexity
is 28.

5 Conclusion and Outlook

With Janus, we have introduced a user-friendly, highly flexible, and expandable
framework for cryptanalysts which supports automated biclique cryptanalysis
of a user-specified cryptographic algorithm. With this framework, we found the
first full-round attacks on BKSQ-96, BKSQ-144, and BKSQ-192. It is planned to
increase the number of supported primitives, e.g., the AES and SHA-3 finalists
to analyze the resistance against biclique attacks.

References

1. Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. Bi-
clique Cryptanalysis of the PRESENT and LED Lightweight Ciphers. Cryptology
ePrint Archive, Report 2012/591, 2012. http://eprint.iacr.org/.

2. Farzaneh Abed, Eik List, and Stefan Lucks. On the Security of the Core of PRINCE
Against Biclique and Differential Cryptanalysis. Cryptology ePrint Archive, Re-
port 2012/712, 2012. http://eprint.iacr.org/.

3. Zahra Ahmadian, Mahmoud Salmasizadeh, and Mohammad Reza Aref. Biclique
Cryptanalysis of the Full-Round KLEIN Block Cipher. Cryptology ePrint Archive,
Report 2013/097, 2013. http://eprint.iacr.org/.

4. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Selected Areas in Cryptography’08, pages 103–119, 2008.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

5. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
Cryptanalysis of the Full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 344–371.
Springer, 2011.

6. 1T3XT BVBA. iText, a Free Java-PDF Library, 2012. http://www.itextpdf.

com/.
7. Mustafa Çoban, Ferhat Karakoç, and Özkan Boztaş. Biclique Cryptanalysis of

TWINE. Cryptology ePrint Archive, Report 2012/422, 2012. http://eprint.

iacr.org/.
8. Shaozhen Chen and Tianmin Xu. Biclique Attack of the Full ARIA-256. IACR

Cryptology ePrint Archive, 2012:11, 2012.
9. Joan Daemen and Gilles Van Assche. Differential Propagation Analysis of Keccak.

In FSE, pages 422–441, 2012.
10. Joan Daemen and Vincent Rijmen. The Block Cipher BKSQ. In Jean-Jacques

Quisquater and Bruce Schneier, editors, CARDIS, volume 1820 of Lecture Notes
in Computer Science, pages 236–245. Springer, 1998.

11. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

12. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function Family.
Submission to NIST (Round 3), 2010.

13. Deukjo Hong, Bonwook Koo, and Daesung Kwon. Biclique Attack on the Full
HIGHT. In Howon Kim, editor, ICISC, volume 7259 of Lecture Notes in Computer
Science, pages 365–374. Springer, 2011.

14. Kitae Jeong, HyungChul Kang, Changhoon Lee, Jaechul Sung, and Seokhie Hong.
Biclique Cryptanalysis of Lightweight Block Ciphers PRESENT, Piccolo and LED.
Cryptology ePrint Archive, Report 2012/621, 2012. http://eprint.iacr.org/.

15. Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-
Bicliques: Cryptanalysis of Full IDEA. In EUROCRYPT, pages 392–410, 2012.

16. Dmitry Khovratovich and Christian Rechberger. A Splice-and-Cut Cryptanalysis
of the AES. IACR Cryptology ePrint Archive, 2011:274, 2011. http://eprint.

iacr.org/2011/274.
17. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques

for Preimages: Attacks on Skein-512 and the SHA-2 Family. Cryptology ePrint
Archive, Report 2011/286, 2011. http://eprint.iacr.org/.

18. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family. In FSE, pages 244–
263, 2012.

19. Gaëtan Leurent. ARXtools: A Toolkit for ARX Analysis. Technical report, Uni-
versity of Luxembourg, 2012.

20. Hamid Mala. Biclique Cryptanalysis of the Block Cipher SQUARE. Cryptology
ePrint Archive, Report 2011/500, 2011. http://eprint.iacr.org/.

21. NIST National Institute of Standards and Technology. FIPS 180-2: Secure Hash
Standard. April 1995. See http://csrc.nist.gov.

22. Yu Sasaki and Kazumaro Aoki. Preimage Attacks on Step-Reduced MD5. In
Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP, volume 5107 of Lecture
Notes in Computer Science, pages 282–296. Springer, 2008.

23. Yu Sasaki, Lei Wang, and Kazumaro Aoki. Preimage Attacks on 41-Step SHA-
256 and 46-Step SHA-512. Cryptology ePrint Archive, Report 2009/479, 2009.
http://eprint.iacr.org/.

16

http://www.itextpdf.com/
http://www.itextpdf.com/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/274
http://eprint.iacr.org/2011/274
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

24. M. Shakiba, M. Dakhilalian, and H. Mala. Non-isomorphic Biclique Cryptanalysis
and Its Application to Full-Round mCrypton. Cryptology ePrint Archive, Report
2013/141, 2013. http://eprint.iacr.org/.

25. Paul Stankovski. Automated algebraic cryptanalysis. Technical report, Dept. of
Electrical and Information Technology, Lund University, 2010.

26. Yanfeng Wang, Wenling Wu, and Xiaoli Yu. Biclique Cryptanalysis of Reduced-
Round Piccolo Block Cipher. In Mark Dermot Ryan, Ben Smyth, and Guilin
Wang, editors, ISPEC, volume 7232 of Lecture Notes in Computer Science, pages
337–352. Springer, 2012.

27. Yanfeng Wang, Wenling Wu, Xiaoli Yu, and Lei Zhang. Security on LBlock against
Biclique Cryptanalysis. In WISA2012, Lecture Notes in Computer Science (LNCS),
8 2012. To appear.

28. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved Meet-in-the-Middle Cryptanalysis of KTANTAN (Poster). In
Udaya Parampalli and Philip Hawkes, editors, ACISP, volume 6812 of Lecture
Notes in Computer Science, pages 433–438. Springer, 2011.

A Bicliques From the Attack On Full AES-128 and
AES-192

Forward differential

Round 8

Round 9

Round 10

Backward differential

Round 8

Round 9

Round 10

S0 Sj

Ci C0

Forward differential

Round 9

Round 10

Round 11

Round 12

Backward differential

Round 9

Round 10

Round 11

Round 12

S0 Sj

Ci C0

Fig. 2. ∆i- and ∇j-differentials of the bicliques for the AES-128 (left) over the rounds
8 - 10 and the AES-192 (right) over the rounds 9 - 12.

17

http://eprint.iacr.org/

B Independent-Biclique Attack On Full BKSQ-96

Base computation

Round 8

Round 9

Round 10

Forward differential

Round 8

Round 9

Round 10

Backward differential

Round 8

Round 9

Round 10

S0 S0 Sj

C0 Ci C0

Fig. 3. Biclique for BKSQ-96 over the rounds 8 - 10 with ∆i- and ∇j-differentials.

Backward matching

Round 4 Round 5 Round 6 Round 7

Forward matching

Round 1 Round 2 Round 3

Fig. 4. Recomputations for BKSQ-96 in forward and backward direction.

18

C Independent-Biclique Attack On Full BKSQ-144

Base computation

Round 11

Round 12

Round 13

Round 14

Forward differential

Round 11

Round 12

Round 13

Round 14

Backward differential

Round 11

Round 12

Round 13

Round 14

S0 S0 Sj

C0 Ci C0

Fig. 5. Biclique for BKSQ-144 over the rounds 11 - 14 with ∆i- and ∇j-differentials.

Backward matching

Round 4 Round 5 Round 9

...

Round 10

Forward matching Round 1 Round 2 Round 3

Fig. 6. Recomputations for BKSQ-144 in forward and backward direction.

19

D Independent-Biclique Attack On Full BKSQ-192

Base computation

Round 14

Round 15

Round 16

Round 17

Round 18

Forward differential

Round 14

Round 15

Round 16

Round 17

Round 18

Backward differential

Round 14

Round 15

Round 16

Round 17

Round 18

S0 S0 Sj

C0 Ci C0

Fig. 7. Biclique for BKSQ-192 over the rounds 14 - 18 with ∆i- and ∇j-differentials.

...

Backward matching

Round 6 Round 7 Round 8 Round 12 Round 13

Forward matching
Round 1 Round 2 Round 3 Round 4 Round 5

Fig. 8. Recomputations for BKSQ-192 in forward and backward direction.

20

	A Framework for Automated Independent-Biclique Cryptanalysis
	Introduction
	Independent-Biclique Cryptanalysis
	Independent Bicliques
	Matching-with-Precomputations
	Complexity Calculation

	Framework Design
	Biclique Search
	Matching

	Applications
	Verifications
	Independent-Biclique Attack on the Full AES-128 and AES-192.
	Specification of BKSQ
	Independent-Biclique Attack on Full BKSQ-96.
	Independent-Biclique Attack On Full BKSQ-144.
	New Independent-Biclique Attack On Full BKSQ-192.

	Conclusion and Outlook
	Bicliques From the Attack On Full AES-128 and AES-192
	Independent-Biclique Attack On Full BKSQ-96
	Independent-Biclique Attack On Full BKSQ-144
	Independent-Biclique Attack On Full BKSQ-192

