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Abstract. We present attacks on full Hummingbird-2 which are able to recover
the 128-bit secret keys of two black box cipher instances that have a certain type
of low-weight XOR difference in their keys. We call these highly correlated keys
as they produce the same ciphertext with a significant probability. The complexity
of our main chosen-IV key-recovery attack is 264. The first 64 bits of the key can
be independently recovered with only 236 effort. This is the first sub-exhaustive
attack on the full cipher under two related keys. Our attacks use some novel tricks
and techniques which are made possible by Hummingbird-2’s unique word-based
structure. We have verified the correctness and complexity of our attacks by fully
implementing them. We also discuss enabling factors of these attacks and de-
scribe an alternative design for the WD16 nonlinear keyed function which is re-
sistant to attacks of this type. The new experimental function replaces S-boxes
with simple χ functions.

Keywords: Hummingbird-2, Related-Key Cryptanalysis, Lightweight Cryptog-
raphy, Authenticated Encryption, Hummingbird-2nu.

1 Introduction

Hummingbird-2 is a light-weight authenticated encryption primitive designed by a team
led by Eric Smith of Revere Security and presented in RFIDSec ’11 [1]. Hummingbird-
2 has been proposed for standardization in RFID use within ISO [2].

Hummingbird-2 was created largely in response to an effective FSE ’11 attack by
Saarinen [3] against the original Hummingbird algorithm [4–6]. Saarinen’s single-key
attack broke the 256-bit Hummingbird-1 with 264 effort.

Some independent analysis on Hummingbird-2 has been published. In [7] a “dif-
ferential sequence attack” is described, but the total complexity of the attack is higher
than exhaustive search and therefore it is “of theoretical interest only”. The same is
said of the side channel cube attack presented in [8]. An even more far-fetched attack is
described in [9], requiring 2240 memory.

IACR ePrint [10] described an attack simultaneously using dozens of related keys.
Unfortunately the attack, as described, had some errors and the authors subsequently
withdrew the paper. However, some observations contained in it inspired our research
that led to the discovery of high-probability correlated keys described in Section 2.1.

The structure of this paper is as follows. In Section 2 we describe the relevant com-
ponents of the Hummingbird-2 algorithm and make a number of observations about its
various features. In Section 3 we describe an effective key-recovery attack that uses a



single key relation. We discuss enabling factors of the attack in Section 3.7, followed
by conclusions in Section 4.

Appendix A contains a full specification for a new variant which is resistant to these
attacks and is based on novel χ functions (rather than traditional S-boxes).

2 Examining the Hummingbird-2 Algorithm

Hummingbird-2 is neither a block cipher nor a stream cipher in the traditional sense but
combines some of the features of both. In this it resembles other integrated authenticated
encryption proposals such as Helix [11] and Phelix [12].

The “Hummingbird structure” uses 16-bit data paths throughout as it was origi-
nally targeted towards low-end microcontrollers such as the TI MSP430 family. Data is
always encrypted or decrypted in 16-bit increments. The cipher accepts a 64-bit initial-
ization vector IV , a 128-bit secret key K, and maintains a 128-bit state in registers R.
A method for deriving message authentication tags from the internal state is also given
in the specification [1].

We use the following symbols and notation:

x⊕ y : Exclusive-or operation between x and y.
x� y : Modular addition x+ y mod 216.
x� y : Modular subtraction x− y mod 216.

x≪ n : Left circular shift (rotation) of x by n bits.
x≫ n : Right circular shift (rotation) of x by n bits.

Si : A 4× 4 - bit nonlinear substitution box, i ∈ {1, 2, 3, 4}.
IV i : Word i of the 64-bit initialization vector, i ∈ {1, 2, 3, 4}.
Ki : Word i of the 128-bit secret key, i ∈ {1, 2, · · · , 8}.
Rri : Word i of the 128-bit state at position r, i ∈ {1, 2, · · · , 8}.

P r, Cr : Plaintext and ciphertext words at position r.
t
(r)
i : Used to mark temporary, internal quantities.

In the following sections, we will describe the various algorithm components and
present observations that will be used in the final overall attack. These cryptanalytic
observations may also be useful in attacks of other types than the one described in this
work. For a complete specification of Hummingbird-2, we refer the reader to [1].

2.1 WD16 (and High-Correlation Related Keys)

Hummingbird-2 draws almost all of its nonlinearity from the WD16 function. WD16
uses four keying words (total 64 bits) which define a permutation on a 16-bit input
value. One may see WD16 as a 16-bit block cipher with a 64-bit key.

WD16 is a four-round substitution-permutation network. In each round, a 16-bit
subkey is XORed to the state, four 4× 4 - bit S-boxes are applied in parallel, followed
by a linear mixing step. The structure is shown in Figure 1.

We use S(x) to denote the parallel application of the 4-bit S-boxes S1, S2, S3, S4

on the 16-bit word x. The linear operation is L(x) = x⊕ (x≪ 6)⊕ (x≫ 6). If we
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Fig. 1. The “WD16” mixing function is a 16-bit substitution-permutation network with four
rounds and a 64-bit subkey (k1, k2, k3, k4). It is used in both initialization and encryption phases.



Table 1. All 4× 18 = 72 high-probability related key word pairs where δ = ki⊕ k′i is canceled
by ∆ = ki+1 ⊕ k′i+1 in the WD16 nonlinear function with probability 1/4.

δ → ∆ δ → ∆ δ → ∆ δ → ∆

0001 → 3B8E 0010 → 74D3 0100 → C30C 1000 → D374
0002 → 2A8A 0010 → DC71 0100 → C71D 2000 → 6198
0002 → 2ECB 0020 → 30C3 0200 → 4D37 2000 → E3B8
0003 → 0441 0020 → B8E3 0300 → 8208 3000 → 2088
0007 → 0441 0030 → CC30 0300 → 8E3B 3000 → B2EC
0007 → 3B8E 0040 → CC30 0400 → 4515 5000 → E3B8
0008 → 1545 0050 → 1041 0400 → 8619 6000 → 8220
0008 → 3FCF 0060 → DC71 0600 → 4926 7000 → 8220
0009 → 330C 0060 → FCF3 0700 → 0822 8000 → 9264
000A → 1104 0070 → 1041 0700 → 8E3B 8000 → C330
000A → 3FCF 0080 → 5451 0A00 → 8208 9000 → 5154
000B → 0882 00A0 → 4410 0B00 → 0411 B000 → 1044
000C → 0CC3 00B0 → FCF3 0B00 → 4926 B000 → B2EC
000C → 2208 00C0 → 6492 0C00 → 4104 C000 → 4110
000E → 0882 00D0 → 2082 0D00 → 4D37 E000 → 1044
000E → 2649 00D0 → B8E3 0E00 → 0411 E000 → F3FC
000F → 1DC7 00F0 → 4410 0E00 → CF3F F000 → 4110
000F → 2649 00F0 → 5451 0F00 → 4104 F000 → 6198

shorten their compound operation to LS(x) = L(S(x)) then WD16 can be written as:

WD16(x, k1, k2, k3, k4) = LS(LS(LS(LS(x⊕ k1)⊕ k2)⊕ k3)⊕ k4). (1)

We occasionally also use LS−1 and WD16−1 to denote the inverses of respective func-
tions. We fist observe that the WD16 can produce closely correlated output with some
distinct but related keys.

Observation 1 Consider two 64-bit WD16 keys (k1, k2, k3, k4) and (k′1, k
′
2, k
′
3, k
′
4)

that for some i ∈ {1, 2, 3} are related by δ = ki ⊕ k′i and ∆ = ki+1 ⊕ k′i+1, with the
other two key words equivalent. There are such pairs that will yield equivalent WD16
encryption and decryption for approximately 1/4 for input and output values.

In a differential attack we only want to have a single active S-box to maximize
the probability. As with any 4 × 4 S-box, each one of S1, S2, S3 and S4 must have
differentials that work for at least four of the 16 input values, leading to the given
probability 1/4.

Looking at Figure 1 we can see how after the δ = ki ⊕ k′i difference is introduced
at position i, it is then subjected to a S-box substitution and a a linear transformation
before the ∆ = ki+1 ⊕ k′i+1 key difference cancels it out at i + 1 with the given
probability 1/4.

Table 1 gives a list of all of such pairs that have the optimum probability of exactly
1/4. This table was created via an exhaustive search.

We give some examples of WD16 key pairs for which WD16A(x) = WD16B(x)
with probability 1/4:
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Fig. 2. Initialization round. There are four initialization rounds with a counter stepping through
i = 0, 1, 2, 3.

A = 0001 0000 0000 0000 B = 0000 3B8E 0000 0000
A = FFFF FFFF F000 6198 B = FFFF FFFF 0000 0000
A = 1234 5000 6090 1234 B = 1234 A000 0108 1234

The last two examples use the F000→ 6198 relation which was (randomly) chosen
for the main attack described in Section 3 of this paper. There is a wide spectrum of
variations of a more general attack methodology that is represented by that specific
case; picking some other relation leads to a different attack.

2.2 Initialization and State Collisions

The initialization phase of Hummingbird-2 creates a 128-bit initial state from the 64-bit
IV using the secret key and the WD16 function.

Initialization is a four-round process. Figure 2 shows a single initialization round.
The state is first set as R = IV | IV . In each round, there are are four invocations of
WD16 together with some mod 216 additive mixing, followed by cyclic rotations of
the first four registers and linear exclusive-or “accumulation” mixing of the first four
registers with the last four. The round counter i = 0, 1, 2, 3 is also used in the mix at



the very beginning. The input keys to WD16 alter between the two halves of the master
key (K1, K2, K3, K4) and (K4, K5, K7, K8).

Observation 2 For each key K, there is a family of 432 related keys K ′ that yield the
same state R after four initialization rounds with probability P = 2−16 over all IV
values.

There are six possible positions i for δ = Ki ⊕ K ′i and ∆ = Ki+1 ⊕ K ′i+1 that
maximize the probability; i ∈ {1, 2, 3, 5, 6, 7}. Since there are two S-box activations in
each round and four initialization rounds, the total probability of arriving at the same
initial state for two such related keys is (1/4)2×4 = 2−16. As there are 72 suitable
(δ,∆) pairs (see Table 1), for each 128-bit key K there are at least 6 × 72 = 432
related keys that will give the same initial state with the given 2−16 probability. This
observation has been experimentally verified.

2.3 Encryption

Hummingbird-2 encrypts and decrypts data in 16-bit increments, as shown in Figure 3.
The 128-bit state Ri and key K define a permutation from the plaintext word P i to the
ciphertext word Ci or vice versa. To encrypt plaintext word P i into a ciphertext word
Ci, the following steps are taken:

ti0 = P i �Ri1

ti1 =WD16(ti0,K1,K2,K3,K4)

ti2 =WD16(ti1 �R
i
2,K5 ⊕Ri5,K6 ⊕Ri6,K7 ⊕Ri7,K8 ⊕Ri8)

ti3 =WD16(ti2 �R
i
3,K1 ⊕Ri5,K2 ⊕Ri6,K3 ⊕Ri7,K4 ⊕Ri8)

ti4 =WD16(ti3 �R
i
4,K5,K6,K7,K8)

Ci = ti4 �R
i
1.

After each encrypted word is processed, the state is updated:

Ri+1
1 = Ri1 � t

i
3

Ri+1
2 = Ri2 � t

i
1

Ri+1
3 = Ri3 � t

i
2

Ri+1
4 = Ri4 �R

i
1 � t

i
3 � t

i
1

Ri+1
5 = Ri5 ⊕ (Ri1 � t

i
3)

Ri+1
6 = Ri6 ⊕ (Ri2 � t

i
1)

Ri+1
7 = Ri7 ⊕ (Ri3 � t

i
2)

Ri+1
8 = Ri8 ⊕ (Ri4 �R

i
1 � t

i
3 � t

i
1).

For decryption, an inverse of WD16 function is required and the t quantities are
computed in reverse order. The update function remains the same.
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Fig. 3. Encryption of plaintext word P i to ciphertext word Ci and update of state R. The “tem-
porary” variables t0 · · · t4 are used in the description of the attack.

2.4 Related-Key Progression in Encryption

We see that there are four invocations of WD16 in each encryption operation and that
key halves K1..K4 and K5..K8 are used twice each. In the middle two WD16 rounds
the key is XORed with four of the higher “accumulator” state registers, but that has no
effect on the differential. Since the differential is activated twice, there is a (1/4)2 =
1/16 probability of matching ciphertexts.

Observation 3 There is a 1/16 probability that for a matching state R the related keys
K and K ′ (as defined in Section 2.1) will encrypt the same plaintext word to the equiv-
alent ciphertext word.

Note that if the key difference is in K5..K8, there is a 1/4 probability of equivalent
state update as the last WD16 invocation only affects ciphertext output, not the state.
Conversely, if the key difference is in K1..K4, the state update will be equivalent in
decryption with 1/4 probability. Furthermore, if the (δ,∆) difference is in (K1,K2) as
the first WD16 does not affect the state in decryption and at least 12 bits of the plaintext
will be equivalent as there is only one active S-box.



3 Crafting an Attack

There are many ways that one can use the high-probability correlated keys in an attack.
We will describe the one that we implemented, which uses only a single related key pair
described in Section 3.1.

The attack proceeds in a number of distinct stages. We first find a suitable IV val-
ues for the attack (Section 3.2), and then proceed to solve various internal quantities
(Sections 3.3 and 3.4) and finally parts of the secret key (Sections 3.5 and 3.6).

3.1 Attack Model

We assume that the attacker has access to two “black box” oracles whose keys are
related by

K ⊕K ′ = (F000 6198 0000 0000 0000 0000 0000 0000). (2)

The choice of this particular key relation is almost arbitrary in the set of admissible
key dfferences. Many of the differentials in Table 1 could be used as well.

In our model the attacking algorithm may perform chosen-IV initializations and
query encryptions and decryptions from the oracles. For an ideal cipher the most ef-
fective way to recover the secret key K (and K ′) would be to through brute force with
expected complexity of 2128 trials. Therefore we will use the estimated time required
for a single trial, consisting of initialization and encryption/decryption of a single word
as the “unit complexity” c = 20.

We note that in a brute force attack eight words need to be encrypted in order
to be reasonably sure that the correct key has been found, but with the probability
65535/65536 the incorrect ones can be rejected after encryption of a single word. Hence
we use this as the unit complexity.

3.2 Finding a State Collision

The first stage of the attack is to find an IV value that produces a matching stateR after
the four-round initialization procedure for both K and K ′. As indicated by Observation
2 in Section 2.2, one expects to find such a collision after searching through 216 different
IV values. Detection of a collision can be made by trial decryptions. If we decrypt a
word x immediately after initialization, then there is a 1/4 probability that 12 bits of
the corresponding plaintext words will match as discussed in Section 2.4. The overall
complexity of this step is no more than 220 to find an IV collision that holds with
overwhelming probability.

Note that subsequent collisions may be found faster (for this K1,K2 relation) if
we first search using words (IV 1, IV 2, IV 3) and for consecutive searches keep those
words constant and loop through values of IV 4. The two initial round collisions are
therefore guaranteed and consecutive collisions can be found with probability 2−12.

Our attack requires only a single initialization state collision, henceforth denoted
simply as IV .



Table 2. High nibbles of intermediate values N = ((P i � Ri
1) ⊕ K1)) >> 12 and N ′ =

((P ′i �Ri
1)⊕K′

1) >> 12 in WD16 that will provide a collision. These are the pairs for which
S1(N) ⊕ S1(N

′ ⊕ 0xF) = 0x6. Note that in the diagonal there are four entries as expected; if
N = N ′ there is a 1/4 probability of a collision.

N \N
′
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - - - - - - - - - - A - - - - -
1 - 1 - - - - - - - - - - - - - -
2 - - 2 - - - - - - - - - - - - -
3 - - - - - - - - 8 - - - - - - -
4 - - - 3 - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - F
6 0 - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - C - - -
8 - - - - - 5 - - - - - - - - - -
9 - - - - 4 - - - - - - - - - - -
A - - - - - - - 7 - - - - - - - -
B - - - - - - 6 - - - - - - - - -
C - - - - - - - - - - - B - - - -
D - - - - - - - - - - - - - D - -
E - - - - - - - - - - - - - - E -
F - - - - - - - - - 9 - - - - - -

3.3 AttackingRi
1 with Carry Bits

It is important to note that in HB2 encryption we can also have state and ciphertext
word collisions when the plaintext words P (for K instance) and P ′ (for K ′ instance)
are not equal.

The next stage involves the recovery of Ri1. We can generate full codebooks P i ↔
Ci and P ′i ↔ C ′i that depend on the IV and previous P j , j < i values with roughly
217 effort if i is small. We fix Cj = C ′j for j < i and the states Ri do not diverge.
Looking at Figures 1 and 3 we note the following.

Observation 4 The first (δ,∆) collision in the encryption operation works when

S((P i �Ri1)⊕K1)⊕ S((P ′i �Ri1)⊕K ′1) = L−1(∆). (3)

Here we use S to denote the four parallel S-box lookups and L−1 to denote the
inverse of the shift/XOR linear step in WD16, as in Equation 1.

The δ and ∆ values dictate which values the input differential P i ⊕ P ′i can take.
Since the input differential δ = K1 ⊕K ′1 = F000 is in the high nibble, only the high
nibbles N = ((P i � Ri1)⊕K1)) >> 12 and N ′ = ((P ′i � Ri1)⊕K ′1) >> 12 really
matter. We can tabulate successful pairs; see Table 2.

We see that Table 2 has only one entry per each horizontal and vertical line; N ′ can
be given as a function of N and vice versa. If the N and N ′ entries are shifted by one
position the collision at that point becomes impossible.

As we only want to have a single active S-box, may choose the high nibbles of P i

and P ′i arbitrarily, but we have to keep the low 12 bits the same.



Observation 5 The probability of the carry shift depends solely on the value of plain-
text low bits and the low bits of Ri1. The shift will occur only when

(P i ∧ 0FFF) + (Ri1 ∧ 0FFF) ≥ 1000. (4)

Since we have created a codebook of P i ↔ Ci, we may effectively loop through
the low 12 bits of p = P i ∧ 0FFF = P ′i ∧ 0FFF and until the carry-over “shift” occurs
and the pattern changes from p = 0000. This will give us the low bits of Ri1. This
process isn’t entirely foolproof as there are is a second collision that is required in the
encryption process, but due to abundance of trials we may accurately pinpoint the p
carry transition point with a good probability.

For each p value we may test 16 × 16 = 256 high nibble pairs for a matching
ciphertext collision. Those collisions must occur at the points with an entry in Table
2. We may loop from low values of p towards higher values and see the lowest p value
which starts to give different “grid”. The algorithm we use is therefore essentially based
on elimination of impossible combinations.

Note that the K1 keying XOR in Equation 3 also affects this step and the actual
shift that occurs. However, we have found that if we guess the highest bit of K1 (and
hence K ′1 which has the inverse high bit), we can actually determine all 16 bits of Ri1
with high probability with roughly 217 total complexity and one guessed bit.

3.4 Deriving Additional Quantities for an Attack

From Section 2.3 we see that R1 is updated as Ri+1
1 = Ri1� t

i
3. If we have derived two

consecutive R1 values using the technique outlined in Section 3.3, we obtain the value
of t3 at round i:

ti3 = Ri+1
1 �Ri1. (5)

Furthermore, since Ci = ti4 �R
i
1, we obtain

ti4 = Ci �Ri1. (6)

This stage proceeds by attempting to create a sequence where ti4 = ti+1
4 holds with

a high probability. To do this, for i = 1, 2, 3 · · · 27 process each full 16-bit codebook
as discussed in Section 3.3 and choose Ci to be the smallest value after Ri1 such that
corresponding Pi and P ′i form a state collision.

For those pairs where ti4 = ti+1
4 , the following relation holds since WD16 is a

permutation and matching output words imply matching input words:

ti3 �R
i
4 = ti+1

3 �Ri+1
4 . (7)

We manipulate Equation 7 into ti3 = ti+1
3 �Ri+1

4 �Ri4 and substitute that into the
R4 update function

Ri+1
4 = Ri4 �R

i
1 � t

i
3 � t

i
1 (8)

to obtain
ti1 = �Ri1 � t

i+1
3 . (9)



Since Ri1 and ti+1
3 are known quantities, as is ti0 = P i �Ri1, we now can attack the

first half of the keywords:

ti1 = WD16(ti0,K1,K2,K3,K4). (10)

Note that due to the probabilistic nature of our R1 derivation method, not all of these
candidate pairs are valid. However, we have experimentally verified that in practice a
sufficient number is valid and the key search algorithm (described in Section 3.5) is
designed in a way that accounts for false pairs.

3.5 A Time-Memory Trade-off forK1 · · ·K4 Search

The information obtained in Sections 3.3 and 3.4 – especially Equation 10 – already al-
low the keyspace of Hummingbird-2 to be split in half and a 264 attack can be mounted
via exhaustive search. We will describe a simple time-memory tradeoff attack that al-
lows further square root reduction for the first half of the key words.

In this step, we are given n values (xi, yi), 1 ≤ i ≤ n, that satisfy

WD16(xi,K1,K2,K3,K4) = yi (11)

with a reasonable probability (see Equation 10).
We’ve experimentally discovered that if we perform the search for matching con-

secutive t4 pairs discussed in Section 3.4 up to a limit of 27 plaintext / ciphertext words,
we are typically left with n = 24 candidates. Out of these, about 23 will be “right pairs”
that actually satisfy Equation 11 for the correct subkeys. This is a sufficient fraction for
a time-memory trade-off technique.

To eliminate one of the keys, we pair the the values and investigate (xi, yi) and
(xj , yj), 1 ≤ i ≤ j ≤ n. There are n(n − 1)/2 pairs, quarter of which will be right
pairs. This will help to cancel out K3 in the computation.

Table Generation. For each i, j pair, we first construct a lookup table for subkey K4.
For each guessed 0 ≤ K4 < 216 we compute the middle value h and build a table T ():

h = LS−1(LS−1(yi)⊕K4)⊕ LS−1(LS−1(yj)⊕K4)

T (h) =K4.

Here a candidate for K4 can be obtained from the h value by building an appropriate
data structure that takes care of collisions.

Key search. Approaching the WD16 from the other direction, we then loop through
the 232 values of K1 and K2 and look for a match in

h′ = LS(LS(xi ⊕K1)⊕K2)⊕ LS(LS(xj ⊕K1)⊕K2) (12)

Here T (h′) gives a candidate for K4 with O(1) effort. Then we check for all 1 ≤
k ≤ n pairs (xk, yk) how many of those yield the same K3 value

K?
3 = LS(LS(xk ⊕K1)⊕K2)⊕ LS−1(LS−1(yk)⊕ T (h′)). (13)

If five or six of those K3 values agree, then there is a significant probability that we
have found the correct 64-bit quartet (K1,K2,K3,K4) of the secret key words.



Complexity. Since about 24 lookup key searches of 232 primitive operations (and a
total of 216 memory) is required, we estimate that the total complexity of this step is
less than 236 when adjusted to the scale of the complexity of brute force key search as
discussed in the beginning of Section 3.

3.6 Finding the rest:K5 · · ·K8 Search

After the first half of the keying material has been discovered, it is a simple matter to
brute force the rest. We have not found a time-memory tradeoff or other simple shortcut
for the recovery of this part. Hence the total complexity is dominated by the second
half, giving the total complexity of 264 processing and about 216 data.

It is quite easy to see that the last WD16 instance could be used to speed up key re-
covery if the difference between two keys would be at the right half of the key. However,
in the beginning of Section 3 we chose a specific difference which lies at the first words.
If we adopt the nonstandard setting of [10] where more than two “black boxes” with
specific key relations can be accessed, then it the overall complexity of key recovery
can be pushed down to the 236 range. However, this attack model is rather unrealistic.

3.7 Discussion

Our attacks are specific to the Hummingbird structure as they do not purely follow any
clear classical attack path such as linear or differential cryptanalysis. One may create a
number of different attacks based on the same observations.

We developed the attack described in this paper while we were implementing it. One
discovery led to the next. Our attack implementation used clear black box insulation
and therefore we have a high degree of confidence that it works. We have tested it with
various subsets of key space.

Design issues. The attacks are made possible by a combination of factors. Lessons
were perhaps not fully learned from the attacks of [3] which exploited the simplistic
key schedule and and algebraic properties of the the Hummingbird structure. However,
a simple and fast key schedule is partly dictated by the timing constraints of the RFID
environment and protocols for which Hummingbird was designed. It can also be argued
that having 16-bit datapaths with additive mixing has certain advantages when a ci-
pher is specifically to be used with a 16-bit embedded CPU, even though the particular
structure of Hummingbird may not fully utilize the potential.

Fixing WD16: Hummingbird-2ν. The main enabler of the attacks is the WD16 func-
tion and the way it is keyed. Furthermore WD16 has a linear mixing stage L(x) that
has suboptimal diffusion and does not allow effective use of lookup tables to speed up
decryption of data like the MDS [13] matrices of SHARK [14] and AES [15] do.

To mitigate both security and efficiency issues, we propose an alternative where
WD16(x, k1, k2, k3, k4) has been replaced with “S-boxless” χν(x, k1, k2, k3, k4) to
produce a variant called Hummingbird-2ν. Hummingbird-2ν is described in more detail
in Appendix A. This variant is geared towards hardware implementation. We note that



that the estimated implementation footprint for a 32-cycle version of HB2 is only 500
GE and an implementation that can perform both encryption and decryption is around
700 GE. More accurate implementation results will be reported separately.

4 Conclusions

We have discovered and demonstrated large related key classes which produce closely
correlated output for any given input. The weak key classes penetrate both the initial-
ization and actual ciphering stages of Hummingbird-2.

We have developed a full key recovery related-key attack algorithm which effec-
tively halves the cipher’s key size. This attack allows the secret key can to be recovered
with only 264 time and 216 data in a two-key setting. The attack has been implemented
and verified to work. Furthermore, the first half of the key can be recovered with only
236 effort. Other types of attacks may be derived from the same observations.

Even though it may be tempting to derive multiple keys from a single one (e.g.
one for each communication direction or medium), Hummingbird-2 should only be
used with strictly random keys. This approach is taken in the ISO protocol proposal [2].
System designs where the secret keys of tags are related or shortened should be avoided.
Key bits must never be used to denote access / product categories or other information.
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A Hummingbird-2ν

The new experimental variant Hummingbird-2ν is the same as Hummingbird-2, expect
that the WD16 substitution-permutation network has been replaced with a new function,
χν(x, k1, k2, k3, k4). The new variant is geared towards hardware implementation and
has a lower gate count than Hummingbird-2. Due to space constraints, we can only
give a brief description of the new variant here and leave more detailed analysis for a
separate report.

The new construction is based on χ functions, which are simple shift-invariant trans-
formations that were first characterized by Daemen in [16]. The SHA3 algorithm Kec-
cak uses a χ function as it’s sole nonlinear component [17]. This selection was done in
part to inspire research on functions of this type. The S-Boxes of the Hummingbird-2
WD16 design were selected based on extensive research [18].

We define two nonlinear functions f and g that operate on 16-bit words:

f(x) =
(
(x≪ 2) ∧ ¬(x≪ 1) ∧ (x≫ 1)

)
⊕ x

g(x) =
(
¬x ∧ (x≪ 4) ∧ ¬(x≪ 12)

)
⊕ (x≪ 8)



The steps required to compute y = χν(x, k1, k2, k3, k4) are

t1 = f(g(x⊕ k1)⊕ 4D71) t2 = f(g(t1 ⊕ k2)⊕ 0F65)

t3 = f(g(t2 ⊕ k3)⊕ 2746) t4 = f(g(t3 ⊕ k4)⊕ 0B7C)

t5 = f(g(t4 ⊕ k1)⊕ CFD5) t6 = f(g(t5 ⊕ k3)⊕ 8E45)

t7 = f(g(t6 ⊕ k2)⊕ 40DA) y = f(g(t7 ⊕ k4)⊕ 62F0)

We acknowledge that one could use more of the keying material in each χν function
to make divide-and-conquer attacks more difficult. We decided not to change the overall
structure outside the nonlinear component at all, however.

The “magic constants” 4D710F6527.. are derived from the Ehrenfeucht-Mycielski
sequence [19, 20]. The inverse function x = χ−1ν (y, k1, k2, k3, k4) is easy to derive
when we note that f and g are involutions: f(f(x)) = x and g(g(x)) = x. The steps
are simple performed in reverse order. In a hardware implementation the decryption
circuitry closely matches the encryption circuit.

Here are some test vectors for χν and a trace of execution for the last entry:

χν(0000, 0000, 0000, 0000, 0000) = FECB

χν(1234, 5555, 5555, 5555, 5555) = 18E6

χν(0000, 0123, 4567, 89AB, CDEF) = 3286

x=0000 t: 4C70 D80E 8857 2DB9 169D B89A 39B7 y=3286

Note that Hummingbird byte-word conversions are little-endian. Here’s a test vector
for Hummingbird-2ν encryption of 16 bytes and the resulting MAC:

KEY = 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
IV = 12 34 56 78 9A BC DE F0

PT = 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
CT = 63 66 F6 CB 60 0F A4 CE 52 78 D8 A8 5B 39 E2 B3

MAC = E8 50 64 50 68 CA 49 04 9C E8 6A 54 55 F0 00 F0


