
Masking Tables—An Underestimated Security
Risk

Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald

Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road

Bristol BS8 1UB, United Kingdom
firstname.lastname@bristol.ac.uk

Abstract. The literature on side-channel analysis describes numerous
masking schemes designed to protect block ciphers at the implementation
level. Such masking schemes typically require the computation of masked
tables prior to the execution of an encryption function. In this paper we
revisit an attack which directly exploits this computation in such a way
as to recover all or some of the masks used. We show that securely
implementing masking schemes is only possible where one has access to
a significant amount of random numbers.
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1 Introduction

In recent years a wide range of (higher-order) masking schemes have appeared
in the literature. A few of these works are dedicated hardware implementations
but the majority are designed to be implemented in embedded software (e.g. as
described by Akkar and Giraud [1]), which will be the focus of this article. For
instance, Rivain et al. [2] showed how to achieve resistance to second-order DPA
(using a table re-masking method). Recent work has discussed affine masking [3],
and a hardware-oriented masking scheme proposed by Ishai et al. [4–6].

First- and higher-order masking schemes (i.e. schemes which use one or sev-
eral random values as masks) are attractive because they (in theory) provide
provable security against differential power analysis (DPA) attacks and do not
require any specific alterations to a device. In other words, they seem (together
with hiding countermeasures) the panacea when it comes to securely implement-
ing ciphers such as AES and DES on otherwise leaky devices (i.e. devices not
resistant to DPA).

In this paper we focus on the precomputation based on a rather simple ob-
servation: if masks could be extracted by attacking the precomputation, there
would be no security at all in the masked encryption rounds. An attacker could
simply first extract the masks and use them to correctly predict the masked in-
termediate values, which would then make a standard DPA attack trivial. Even



if an implementation were to use on-the-fly computations of masked S-box ta-
bles, if these were vulnerable, then an attack would succeed, as demonstrated
by Pan et al. [7].

In this paper we set out to provide a thorough analysis of the application
of this type of attack to a variety of state-of-the-art masking approaches when
the precomputation is implemented using hiding strategies. We give a thorough
theoretical analysis using the evaluation approach suggested by Whitnall and
Oswald [8]. This enables us to show, independently of a specific device, how well
such attacks work by giving a number of key figures for varying signal-to-noise
ratios (SNR, as defined by Mangard et al. [9]), such as the magnitude of resulting
correlation coefficients, success probabilities for deriving masks, and the number
of traces required for the subsequent key recovery step.

Furthermore, we describe some practical results of attacks on real devices
for two representative platforms (an 8-bit and a 32-bit microprocessor). Our
results serve as both warning and guidance: they show that the attacks work
even with strong hiding countermeasures, and provide information about what
SNR is required such that hiding begins to effectively mitigate our attacks.

We have structured our work as follows. We begin by briefly recalling the
necessary background with regards to Boolean and affine masking, hiding coun-
termeasures, and the working principle of standard DPA attacks in Sect. 2. Then
we explain our attacks against precomputation, including how we model them
for our theoretic analysis in Sect. 3. Results of this analysis are provided for all
combinations of masking schemes and hiding strategies, for different SNRs. Fol-
lowing on from that we describe our practical processors and setups and report
on practical attack outcomes in Sect. 4. We conclude in the last section of the
article. After providing references we also use an appendix to collect those tables
that are too unwieldy to be included in the main body of this work.

2 Background to Masking, Hiding, and DPA

The masking of intermediate values is a popular software countermeasure in
practice (evidence for this is provided by the large number of articles and patents
with industrial co-authors [1, 3, 10, 11]). Boolean masking fits well to symmetric
encryption schemes (such as AES) and variants such as higher-order masking
or affine masking have been the topic of many recent publications. The simple
underlying principle of any masking scheme is that, rather than processing the
intermediate values (e.g. a key byte, plaintext byte, output of an S-box look-up)
directly, one conceals these values with some random value. The hope is that the
intermediate value will no longer be predictable and hence the implementation
will be secure with regard to (first-order) DPA attacks.

To complicate the adversary’s task even further one may also employ hiding
techniques. In software this typically means using dummy (or sequences of) in-
structions (i.e. additional sequences of instructions operating on dummy data,
which are indistinguishable from the flow of the actual algorithm) and randomis-
ing the sequence of instructions in various ways. Adding dummy instructions is



simple but can be costly, moreover recent work points to the inherent difficulty
of achieving indistinguishability in practice [12].

In the following sections we introduce details of Boolean and affine masking
that are relevant for DPA attacks on the precomputation that we concentrate
on. Further, we explain three randomization strategies which are relatively cheap
to implement, and to the best of our knowledge are relevant in practice. We
complete the necessary background by very briefly explaining Differential Power
Analysis (DPA).

2.1 Masking

We now explain the general principle of masking schemes based on Boolean
masks. Thereafter we explain how other schemes such as second-order Boolean
masking and affine masking are different.

Boolean masks are random values that are exclusive-ored (short XORed)
with intermediate values. In the case of AES, this implies that every state byte
is masked in this way (whether or not different masks are used for different state
bytes depends on efficiency considerations and on the order of DPA attacks one
wants to prevent). Similarly, all keys bytes are masked (the decision for different
or equal masks again depends on security and efficiency considerations). For
example, Herbst et al. [13] give a full explanation of a first-order masking scheme
for a typical software implementation of AES1. To keep this paper self-contained
we briefly summarise how the masked round functions are implemented:

AddRoundKey remains the same but operates on masked inputs. We assume key
and plaintext mask are different.

SubBytes is replaced by a masked table which is precomputed at the beginning
of each encryption round using Alg. 1. There are two random values involved
in this precomputation: r, the address mask and s, the data mask.

Algorithm 1: Masking a Substitution Table for Boolean Masking.

Input: S a 256-byte substitution table, random values r, s ∈ {0, . . . , 255}.
Output: S′ a 256-byte masked substitution table.

1 for i← 0 to 255 do
2 S′[i] = S[i⊕ r]⊕ s
3 end

4 return S′

ShiftRows remains unchanged.
The MixColumns function is implemented to ensure that all intermediate val-

ues remain masked throughout.

1 Herbst et al. describe how to mask AES and randomise the flow within rounds (the
S-box precomputation is not randomised).



KeySchedule remains the same but works on masked data using the same
masked substitution table as the masked SubBytes function.

Second-order Boolean Masking: Second-order masking extends first-order
masking by applying a second mask to each intermediate value, i.e. a value is
represented by three shares (x = (x1, x2, x3), such that x = x1 ⊕ x2 ⊕ x3). A
masking scheme for AES following this principle has been described by Rivain
et al. [2]. As for Boolean masking, the majority of the round functions remain
largely unchanged. However, conducting a SubBytes operation becomes prob-
lematic because, unlike in first-order masking, it is not possible to ‘re-use’ a
precomputed table (re-using a table with the same set of masks two or more
times would produce a second-order leakage). Consequently, the entire masked
S-box needs to be produced when required during the round function. Alg. 2
shows how to securely compute such an S-box.

Algorithm 2: Masking a Substitution Table for Second-Order Boolean
Masking [2].

Input: S a 256-byte substitution table, random values
r1, r2, r3, s1, s2 ∈ {0, . . . , 255}, and x′ where x = x′ ⊕ r1 ⊕ r2

Output: S(x)⊕ s1 ⊕ s2.

1 r′ = (r1 ⊕ r2)⊕ r3
2 for i← 0 to 255 do
3 a = i⊕ r′

4 S′[i] = (S[a⊕ x′]⊕ s1)⊕ s2
5 end

6 return S′[r3]

Affine Masking: Fumaroli et al. proposed an alternative masking scheme that
uses an affine transformation G rather than a Boolean mask [3]. Hence to mask
a value x ones applies G where

G : F28 −→ F28 : x 7−→ r · x⊕ r′ ,

with randomly chosen mask bytes r ∈ F28 \ {0} and r′ ∈ F28 .

Affine masking can be applied to all round functions by adapting the func-
tions accordingly (see Fumaroli et al. [3] for details). As we focus our attacks
on those operations relating to the computation required to produce a masked
substitution table we only give the algorithm required to generate such a table,
see Alg 3.



Algorithm 3: Masking a Substitution Table for Affine Masking.

Input: S a 256-byte substitution table, r, r′ two random values used as masks.
Output: S a 256-byte masked substitution table.

1 for i← 0 to 255 do
2 G[i] = r · i⊕ r′

3 end

4 for i← 0 to 255 do
5 S′[i] = G[S[G[i]]]
6 end

7 return G,S′

2.2 Hiding

Our focus is on how to generate a masked (S-box) table prior to an encryption
run in some random order. Randomly going through the loop indices can be
achieved in various ways, and we list the three most generic strategies in order
of increasing complexity. Using Alg. 1 as an example, line 2 would be replaced
by

S′[f(i)] = S[f(i)⊕ r]⊕ s
for some function f .

Random start index. One method to introduce some randomness into the in-
dexing (when looking at multiple runs of the loop as in multiple traces) is to
randomly choose the start index. That is

f : {0, . . . , 255} −→ {0, . . . , 255} : x 7−→ x+ k mod 256 ,

where a fresh k ∈ {0, . . . , 255} is generated for each instance of the algorithm.
This is also the method that was suggested by Herbst et al. [13].

Random walk. Another simple method, defined by Naccache et al. [14], uses an
LFSR to generate a (pseudo)random walk through the indices. That is,

f : {0, . . . , 255} −→ {0, . . . , 255} : x 7−→ (((x⊕ w)× u) + y)⊕ z mod 256 ,

where a fresh w, y, z ∈ {0, . . . , 255} and u ∈ {1, 3, . . . , 255} are generated for
each instance of the algorithm.

Random permutation. To go through all the indices one could generate a random
permutation of the 256 elements in {0, . . . , 255}. However, creating such a ran-
dom permutation requires the generation of 256 random numbers [15]. Random
number generation is costly and one approach to make this more practical is to
generate a shorter sequence of random numbers and apply the same sequence
repeatedly to the 256 elements. That is,

f : {0, . . . , 255} −→ {0, . . . , 255} : x 7−→ gx mod n +m
⌊x
n

⌋
mod 256 ,



where g is a random sequence of length m given m|256 and n = 256/m. As pre-
viously, a fresh random sequence is generated for each instance of the algorithm.
Intuitively, the larger m is, the closer one gets to a truly random permutation.

2.3 Differential Power Analysis

We consider a ‘standard’ Differential Power Analysis (DPA) scenario as defined
by Mangard et al. [16]. That is, we assume that the power consumption T of a
cryptographic device depends on some internal value (or state) Fk∗(X) which we
call the intermediate value: a function Fk∗ : X → Z of some part of the known
plaintext (a random variable X ∈ X ) which is dependent on some part of a secret
key k∗ ∈ K. Consequently, we have T = L ◦ Fk∗(X) + ε, where L : Z −→ R
describes the data-dependent component and ε contains the remaining power
consumption which can be modelled as independent random noise. We consider
an attacker who acquires N power measurements corresponding to encryptions
of N known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key
k∗. The attacker can accurately compute the internal values as they would be
under each key hypothesis {Fk(xi)}Ni=1, k ∈ K and uses whatever information
available about the true leakage function L to construct a prediction model
M : Z →M .

DPA is based on the assumption that the power model values corresponding
to the correct key hypothesis should have a closer resemblance to true trace
measurements than the power model values corresponding to incorrect key hy-
potheses. This similarity can be measured using the correlation coefficient:

Dρ,T (k) = ρ(T,Mk) =
cov(T,Mk)√

var(T )
√

var(Mk)
. (1)

Whitnall and Oswald [8] note that the nearest rival margin (i.e., the distance
between the correct key and the closest rival hypothesis when the theoretic dis-
tinguishing vector2 is ranked) has a substantial bearing on practical outcomes,
because the number of needed power traces (NNT) that are required to detect a
statistically significant difference increases as the actual magnitude of the true
difference decreases. By defining practically relevant scenarios, it is hence possi-
ble to derive true correlation coefficients, examine the resulting margins and then
conclude on the number of needed traces (as explained in Ch. 4 and 6 of [9]).
The correlation coefficient in an ideal (noise-free) setting scales with the SNR
as shown in (2) (which corresponds to (6.5) Ch. 6 of [9]). Given the correlation
coefficient corresponding to the correct key ρck and the correlation coefficient
of the nearest rival ρnr we can use (3) (which corresponds to (4.43) in [9]) to
calculate the NNT. In this equation we choose α = 0.05 according to the usual
statistical practice).

2 The theoretic distinguishing vector represents the underlying values which an attack
seeks to estimate, and is computed from known distributions rather than estimated
on sampled data.



ρ(T,Mk) =
ρ(L ◦ Fk∗(X),Mk)√

1 + 1
SNR

(2)

NNT = 3 + 8 · z21−α(
ln 1+ρck

1−ρck − ln 1+ρnr

1−ρnr

)2 (3)

3 Mask Recovery Attacks

In an attack on the precomputation we take a single power consumption trace
for one encryption run and extract the part of the trace that corresponds to the
precomputation. This trace is then divided up into 256 portions that are then
used as a set of traces to conduct a standard DPA. The message is the index i
used to control the loop, and the unknowns that we wish to derive are the masks
used.

3.1 Boolean Masking

To attack an implementation of Boolean masking (see Alg. 1) one proceeds by
determining the mask r used to blind the address of the S-box table followed
by the mask s used to mask the data elements in the table. Note that the
application of this strategy does not change when applying it to second-order
Boolean masking: in order to target the masked S-box outputs it is sufficient to
extract r1 ⊕ r2 and s1 ⊕ s2 as they occur in Alg. 2—which, in practice, is no
different to extracting r and s from Alg. 1. Wherever we present tables and results
labelled ‘Boolean masking’ it should be understood that they relate equally to
second- and first-order outcomes.

Masking only. We now explain in more detail how the above description trans-
lates into a model that can be used to predict attack outcomes. As per our
description, we first attempt to extract r. The attack outcome here is a distin-
guishing vector that allows us to ‘rank’ our hypotheses for r. We then use r to
determine s. Looking at this differently: we can actually test several values of
r and examine the attack outcomes for s in each case (intuitively for incorrect
r the recovery of s will completely fail). In our work we settled on allowing a
certain number of the best, denoted h, hypotheses for r to be tested with s.
Consequently, to model the mask recovery attack for our theoretic analysis we
define the Kx,h to represent the h highest ranking hypotheses for the variable x.
We can then consider the probability of complete mask recovery to be

Pr(r ∈ Kr,h) · Pr(s ∈ Ks,1|r is known)

We also take into account the probability of partially uncovering the masks, by
which we mean that our guess at r is correct and our guess at s is incorrect but
close (i.e. a short Hamming distance from the correct s)—which is reasonable



because the nearest rivals in an attack against an XOR operation are of this
form. These probabilities can be computed, for any given number of observations
(i.e., in our case the N = 256 trace-segments relating to the loops of the S-box
masking procedure), via a formula related to Eqn. (3):

Pr(ρcm distinguished from ρalt) = 1− Φ

z1−α −
(

ln 1+ρcm
1−ρcm − ln 1+ρalt

1−ρalt

)
2 ·
√

2/(N − 3)

 (4)

where ρcm denotes the correct-hypothesis correlation and ρalt denotes the cor-
relation produced by the relevant alternative (for example, the h-th ranked can-
didate for r). The values ρcm and ρalt are taken directly from theoretic distin-
guishing vector. As (4) shows we use the statistical power related to the correct-
hypothesis correlation and the relevant alternative to approximate the proba-
bilities for recovering r, and having r ranked among the first Kr,h hypotheses
respectively. Our method of retaining and confirming h hypotheses means that
we are not so concerned with minimising ‘false positives’—which corresponds
(implicitly) with relaxing the significance criteria. For our theoretic analysis to
be meaningful we need to choose, for these computations, a value of α which
reflects an attacker’s approach in practice, rather than obey typical statistical
conventions which impose strong decision criteria as protection against false pos-
itives.3 We settle on α = 0.2, which we were able to experimentally confirm does
align well with the apparent workings of our attack strategy in practice.

Based on these probabilities we can model the success of the subsequent key
recovery step carried out in a practical attack. The probabilities for (partial)
mask recovery describe how, in effect, an adversary would bias the masks (either
remove them if masks are recovered without error, or correctly predict most of
the bits effectively leaving only a small bias due to the remaining unknown bits).
With this information we can compute theoretic outcomes for the key recovery
step and use the nearest rival margins to obtain the number of needed traces
(for the entire attack) in practice for a given SNR4.

3 Note that in many typical applications of formal hypothesis testing—medical treat-
ment evaluation, for example—false positives have serious consequences. Competent
analysts will opt to increase their sample sizes rather than weaken their decision
criteria in order to get conclusive results. Since the unmasking phase of a mask re-
covery attack is constrained to a sample size of 256 an attacker does not have this
option, nor are the consequences of a false positive so ‘expensive’.

4 Throughout this paper we assume in our models that the device leaks the Hamming
weight and that the adversary uses this as power model. This is not a shortcoming for
several reasons. Firstly, the numbers we provide are independent of the actual power
model; they do however depend on the fact that we assume that the adversary’s
model effectively matches the leakage model of the device. If an adversary were to
use an imprecise model, this would change the outcomes and the analysis would need
to be done accounting for the imprecision. Secondly, leakages observed in practice
from software implementations on small processors originate typically from transfers
of intermediate data or address values over buses. These components typically leak
the Hamming weight or the Hamming distance from some fixed value.



Table 1. Data complexity of mask recovery attacks against a Boolean masked AES
S-box (straightforward pre-computation phase).

2−5 2−3 2−1 21 23 25 27 Pure signal

S-box unmasked 29.4 56.9 91.2 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 55.0 42.7 8.8 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.123 0.296 0.565 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.100 0.241 0.459 0.663 0.766 0.800 0.809 0.812
Traces needed 538 90 22 8 5 4 4 3

Table 1 lists the outcomes of these theoretic, modelled attacks for different
SNRs (where h = 10). The top line states the SNR level, increasing from high
noise at the left, towards no noise on the right. The second table line then lists
the percentage of masks fully recovered, and the third line lists the percentage of
masks partially recovered (a single-bit error). The numbers show that, up to an
SNR of two, full mask recovery is possible, but afterwards only partial recovery
is possible. The precise cut-off point for full recovery is 1.897 as we determined in
our theoretic model. The fourth and fifth line list then the values of the correct
key correlation and the margin to the nearest rival in the key recovery step. This
margin actually translates into the number of needed power traces. As the values
show up to an SNR of 2−1 the attack is basically equally effective as would be
a standard DPA attack on an unprotected device.

Masking and hiding. We now investigate how the three hiding strategies we
listed before impact on the effectiveness of the mask recovery attacks. We briefly
describe how the countermeasures change the model we detailed before. When
the starting index for the precomputation is chosen randomly, the first step of
the unmasking procedure attempts to recover the index i and the address mask
r, by trying each pair. In fact there is irresolvable ambiguity between two equally
ranked hypotheses—the correct pair (r,i) and the shifted pair (r+ 128 mod 256,
i + 128 mod 256). Fortunately, this does not pose an obstacle to recovering the
mask on the S-box output, as either pair will produce the same unmasked address
and therefore provide the predicted values for the second stage mask recovery
attack.

When the pre-computation is performed according to the ordering given by
an LFSR, the LFSR function itself must be recovered, which requires more attack
steps and leads to a larger aggregate loss of precision. However, it is still feasible.
If the index function is of the form

f : {0, . . . , 255} −→ {0, . . . , 255} : x 7−→ (((x⊕ w)× u) + y)⊕ z mod 256 ,

then, by retaining the top h hypotheses at every step (which in practice is usually
smaller than for the standard attack—we take h = 4 in our analysis, to represent
an attacker’s response to the increased computational complexity), and using the



following step as confirmation, we estimate the proportion unmasked as:

Pr(w ∈ Kw,h) · Pr(x ∈ Kx,h|w is known) · Pr(y ∈ Ky,h|w, x are known)

· Pr(z ⊕ r ∈ Kz⊕r,h|w, x, y are known) · Pr(s ∈ Ks,1|w, x, y, z ⊕ r are known),

noting that we are unable to recover r as distinct from z, but that, for the
purposes of unmasking the address, it is sufficient to recover the XOR between
the two.

The theoretic analysis for attacks against the implementation which permutes
the indices in aligned blocks before precomputing the masked table is slightly
more complicated because one must take into account the probability of uncov-
ering only a proportion of the columns (see Sect. 2.2 for notation). Additionally,
as with the random start index variant, there remains ambiguity over the correct
column and mask pair: each column hypothesis will result in a maximal peak for
a certain hypothesis on the mask (From an information theoretic perspective, it
is clear that we cannot expect to recover 10 bits of information from an 8-bit
target value). However, all of these pairs reproduce the same (correct) 8-bit un-
masked address value, and since this is what we need for the second stage output
unmasking the ambiguity does not matter.

The proportion unmasked is estimated (via the Law of Total Probability5)
as:

n∑
c=1

Pr(c columns are unmasked) · Pr(s ∈ Ks,1|c columns are unmasked)

=

n∑
c=1

(
n

c

)
· Pr(column unmasked)c · (1− Pr(column unmasked))n−c

· Pr(s ∈ Ks,1|c columns are unmasked)

Table 2 (which is laid out similarly to Table 1) presents the theoretic mask recov-
ery rates and subsequent key recovery performance for the hiding countermea-
sures. The attack remains (theoretically) successful against all countermeasures,
although the noise threshold at which mask recovery begins to deteriorate varies.
For the randomised start index this threshold is 1.897, for the random walk it
is 9.409, for the column-wise permutations it is 3.959, 9.029, and 25.260 for the
4-, 8- and 16-column variants respectively, whilst for the 32-column variant irre-
solvable ambiguity on some of the columns means that the masks can never be
perfectly recovered, even from noise-free leakage.

3.2 Affine Masking

The attack on the affine masking scheme requires the recovery of a multiplicative
and a Boolean mask. As is clear from Alg. 3, we cannot recover the Boolean mask

5 Law of Total Probability states that if {Bn : n = 1, 2, 3, . . .} is a finite or countably
infinite partition of a sample space and each event Bn is measurable, then for any
event A, Pr(A) =

∑
n Pr(A ∩Bn) =

∑
n Pr(A|Bn) Pr(Bn) .



Table 2. Data complexity of mask recovery attacks against a Boolean masked AES
S-box with hiding countermeasures.

2−5 2−3 2−1 21 23 25 27 Pure signal
Randomised start index

S-box unmasked 20.5 50.1 91.1 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 41.1 41.3 8.9 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.089 0.270 0.564 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.073 0.220 0.459 0.663 0.766 0.800 0.809 0.812
Traces needed 1024 109 22 8 5 4 4 3

Random walk (LFSR)
S-box unmasked 1.1 8.6 50.9 97.6 100.0 100.0 100.0 100.0
S-box partially unmasked 3.9 21.0 40.2 2.4 0.0 0.0 0.0 0.0
Correct key correlation 0.01 0.08 0.47 0.81 0.94 0.98 1.00 1.00
Nearest rival margin 0.01 0.07 0.38 0.66 0.77 0.80 0.81 0.81
Traces needed 169275 1249 34 9 5 4 4 3

Permuted in 4 columns
S-box unmasked 24.1 42.7 87.4 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 31.7 38.1 12.0 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.083 0.237 0.557 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.068 0.193 0.452 0.663 0.766 0.800 0.809 0.812
Traces needed 1175 142 23 8 5 4 4 3

Permuted in 8 columns
S-box unmasked 23.3 33.0 65.6 99.5 100.0 100.0 100.0 100.0
S-box partially unmasked 23.0 28.1 23.2 0.5 0.0 0.0 0.0 0.0
Correct key correlation 0.071 0.180 0.479 0.815 0.943 0.985 0.996 1.000
Nearest rival margin 0.057 0.146 0.389 0.662 0.766 0.800 0.809 0.812
Traces needed 1644 249 32 9 5 4 4 3

Permuted in 16 columns
S-box unmasked 23.3 28.7 45.3 86.9 100.0 100.0 100.0 100.0
S-box partially unmasked 18.7 21.0 22.9 9.0 0.0 0.0 0.0 0.0
Correct key correlation 0.065 0.148 0.361 0.765 0.943 0.985 0.996 1.000
Nearest rival margin 0.053 0.121 0.293 0.621 0.766 0.800 0.809 0.812
Traces needed 1933 369 59 10 5 4 4 3

Permuted in 32 columns
S-box unmasked 22.9 26.2 33.1 47.2 75.3 96.7 99.4 99.4
S-box partially unmasked 15.9 16.0 16.2 16.5 12.2 2.5 0.6 0.6
Correct key correlation 0.061 0.127 0.261 0.487 0.797 0.971 0.994 0.998
Nearest rival margin 0.049 0.103 0.212 0.395 0.647 0.789 0.808 0.811
Traces needed 2223 502 117 31 9 4 4 3

r′ without having first recovered the multiplicative mask r. But once we have
recovered the Boolean mask r′ we can use it to ‘confirm’ the correctness of the
multiplicative mask r.

Masking only The strategy for recovering the multiplicative and additive com-
ponents of an affine-masked S-box output is slightly different. By retaining the
top h = 10 (say) candidates on the multiplicative mask, then looking at the
highest peak produced by the additive hypotheses for each of the 10, we hope
to confirm the correct multiplicative mask at the same time as discovering the
correct additive hypothesis. Because the input and output are masked with the
same values we only need recover the two, e.g. by attacking the pre-computation
of the affine transformation look-up table. If the outputs in the masked S-box
pre-computation can be identified and targeted then the nonlinearity of the S-
box improves the recovery of the second, additive mask—otherwise the margin
between the correct mask and the incorrect alternatives will be small, as always
when attacking a Boolean addition. We have produced two versions of the anal-



ysis accordingly—one where we suppose the S-box structure may be exploited,
one where we suppose it cannot. These are presented in Tab. 3, from which
we see that, when the S-box nonlinearity is exploited, the affine masked table
precomputation is more vulnerable to mask recovery than the Boolean masked
table pre-computation (the SNR thresholds at which the mask recovery begins
to degrade are 0.500 when the S-box is exploited in the mask recovery stage,
and 1.897—the same as for the Boolean masking—when it is not). However, the
more complex nature of the mask application means that any imperfection in
the mask recovery incurs a greater penalty on the number of traces needed for
the key recovery stage (compared to the attacks on Boolean masking), so that
in noisy scenarios the affine scheme is the more resilient to the overall attack
strategy.

Table 3. Data complexity of mask recovery attacks against an affine masked AES
S-box.

2−5 2−3 2−1 21 23 25 27 Pure signal
Exploiting the S-box

Both masks recovered 57.7 97.4 100.0 100.0 100.0 100.0 100.0 100.0
Multiplicative mask recovered 19.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.101 0.325 0.577 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.082 0.264 0.469 0.663 0.766 0.800 0.809 0.812
Traces needed 804 74 21 8 5 4 4 3

Not exploiting the S-box
Both masks recovered 27.2 56.3 91.2 100.0 100.0 100.0 100.0 100.0
Multiplicative mask recovered 33.7 32.8 8.8 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.048 0.188 0.526 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.037 0.151 0.430 0.663 0.766 0.800 0.809 0.812
Traces needed 3911 233 26 9 5 4 4 3

Masking and hiding For the deliberately-complicated versions of the masking
schemes, different problems are associated with recovering the affine transfor-
mations to those which are associated with recovering the Boolean transforma-
tions. In particular, there are far more cases where ambiguity prevents recov-
ering the correct pairs with any confidence. In the analysis, we have generally
adopted the approach that, where c candidate pairs are equally theoretically
ranked, the probability of recovering the correct one is taken to be 1

c -times the
probability that the c will stand out together. That is, we cannot, except by
chance, distinguish it from the others, but will be able to unmask a proportion
( 1
c × Pr(top set correctly identified)) which will still help us in the key-recovery

phase of the attack.
The permuted columns variant requires particular adaptation, as there is

increasing ambiguity as the size of the permutation increases, with some even
producing constant leakage by virtue of the form of the affine transformation
(this does not happen with the Boolean masking). For a theoretic analysis, it
is tricky in places to approximate the best that can be achieved by a canny
attacker because different ways of combining the information and confirming
candidate hypotheses will inevitably produce different outcomes, and it is not



possible to explore and evaluate them all. We propose a strategy whereby each
column is attacked separately (searching over the column index space as well
as the mask space) and then the recovered affine transformation candidates are
compared over the columns to find the most likely. Accordingly, the proportion
unmasked for the key-recovery stage is computed as the probability of the correct
transformation achieving a majority vote.

The results corresponding to the modelling of these attacks can be found
in Tab. 6 and Tab. 7 of App. A. Essentially, they show that the attacks are
less efficient than on the Boolean scheme, but that we can still expect them to
succeed for realistic platforms (they work for very low SNRs).

4 Theory put to Practice

To gain some insight into the practical effectiveness of such attacks we performed
some of them on two platforms, an 8-bit and a 32-bit microprocessor. The 8-bit
microprocessor was an AT89S5253, which has an 8051 architecture. In this case
acquisitions were taken with a sampling rate of 500 MS/s and a clock speed
of 11 MHz. No filtering was conducted since this did not have any impact on
the SNR. The 32-bit microprocessor was an ARM7TDMI microprocessor, where
acquisitions were taken with a sampling rate of 200 MS/s and a clock speed of
7.3728 MHz. These acquisitions were filtered using a low-pass filter with a corner
frequency at 7.3728 MHz to improved the SNR.

The SNR (as defined by Mangard et al. [9]) of these two setups is rather
different: the 8-bit controller features a very strong signal such that the overall
SNR is about 22, whereas the 32-bit processor only delivers an SNR of 0.54.

Boolean masking requires a simple precomputation as described in Alg. 1
and Alg. 2 resp. As these algorithms suggest, one can see distinct patterns cor-
responding to the 256 loops when inspecting power traces corresponding to the
execution of these algorithm on a device6. This is demonstrated in Fig. 1 where
the rounds of Alg. 1 are clearly visible.

Our experiments showed that on both platforms mask recovery worked al-
most perfectly. To provide some meaningful and statistically sound numbers we
repeated the experiment 1000 times with different masks and produced the re-
sults shown in Tab. 4. These numbers give the error rates for recovering the masks
r and s in Alg. 1, and show clearly that for both platforms the fact that we have
256 traces available is sufficient to recover the masks even with the relatively
poor SNR of the 32-bit platform. Note that proportions of data masks recovered
with zero-bit errors correspond to the first row of Tab. 1 (“S-box un-masked”),
while the proportions recovered with one-bit errors relate to the second row (“S-
box partially un-masked”). The SNRs of the two devices mean that both can be
expected to lead to almost perfect mask recovery (as indicated by the first two
rows in Tab. 1), which is reflected in our practical experiments. Some results
of the AT89 attacks are somewhat peculiar: we consistently observed a single

6 The practical attacks applied to an implementation of second-order Boolean mask-
ing.



Fig. 1. The above traces show the instantaneous power consumption during the first ten
rounds of Alg. 1. The left trace corresponds to the AT89 microprocessor and the right
traces to the ARM microprocessor. The power consumption showing the individual
rounds are delimited by dashed lines.

bit error in the recovered data masks (but not always for the same bit). We are
currently unable to explain this behavior in any satisfying way.

Table 4. The error rates for identifying masks for implementations of Boolean masking.

Address Mask Data Mask

Error (bits) 0 1 2 3 4+ 0 1 2 3 4+

ARM 0.99 0.0012 0.0020 0.00075 0.00020 0.92 0.075 0.0030 0.00075 0.0029
AT89 0.98 0.0081 0.0079 0.0067 0.00010 0 0.98 0.0027 0.0047 0.015

The introduction of simple hiding strategies has almost no impact, only a
sufficiently strong permutation starts to degrade the attack performance in prac-
tice. We show some more results giving the error rates for data mask recovery
for the ARM7 platform in Tab. 5. The numbers indicate that, as the size of the
permutation increases, the distribution of the error rate approaches a binomial
distribution where one would not be able to conduct an attack. All the permuta-
tion lengths tested would lead to a viable attack, we refer the reader to Mangard
et al. [9] for a description of how to compute the number of traces required to
conduct an attack.

5 Conclusion

Masking schemes are popular in the literature, as indicated by the large number
of publications in this area. Claims about the security of these schemes are typ-
ically supported by evaluation with regards to what (higher) order DPA attacks
they can resist, but no focus has yet been put on scrutinising the practically
inevitable precomputation of masked tables.



Table 5. Error rates for Boolean Masking using different hiding strategies.

Data Mask, ARM

Error (bits) 0 1 2 3 4 5 6 7 8

RSI 0.94 0.035 0.0040 0.0060 0.0080 0.0030 0 0.0010 0

Random walk 0.35 0.52 0.11 0.011 0.0070 0.0040 0.0020 0.0010 0

Random
Permutation:
n = 4 0.84 0.093 0.017 0.016 0.013 0.012 0.0070 0 0
n = 8 0.47 0.15 0.11 0.066 0.10 0.061 0.030 0.0070 0
n = 16 0.064 0.11 0.19 0.23 0.21 0.12 0.065 0.015 0.0020
n = 32 0.011 0.052 0.13 0.25 0.27 0.19 0.081 0.015 0.0020

After explaining, for the most common and practically relevant masking ap-
proaches, how to randomize the precomputation step, we analyze the security
of the resulting implementations using both a theoretic approach and practical
implementations. For the theoretic analysis we explain how to model our attacks
and what this allows us to conclude about the percentage of masks recovered,
nearest rival margins and hence the number of needed power traces for different
SNRs. This analysis is generic and to some extent independent of the power
model (it can be adapted to incorporate other models).

These theoretic results indicate that our attacks are likely to work in practice,
since we see good theoretic results even for low SNRs (with the exception of the
largest permutation). In the penultimate section of this paper we showed results
of actual attacks on two platforms. They tally with our theoretic outcomes and
hence confirm that our attacks are indeed highly relevant and applicable to prac-
tice. Without much effort we can break any of the implementations employing
masking and hiding in the precomputation.

Our results provide both a warning and some guidance. The warning is that,
without substantial extra effort to secure the computation of masked tables, this
operation will most likely leak the masks and hence render the masking of the
round function pointless. The guidance that we can give is with regards to the
SNR that needs to be achieved for the discussed randomisation strategies to
have some impact. Even if the device SNR itself is fixed, one can attempt to use
dummy instructions (bearing recent results in mind [12]) to lower the SNR by
desynchronising the loops in the precomputation. Given that the discussed ran-
domisation strategies themselves lead to a significant performance penalty (more
randomness required, increased effort in computing data and address values), a
further performance loss might however be unacceptable in practical applica-
tions. Our final conclusion is hence rather pessimistic: precisely for the devices
in which masking seems an inescapable necessity, the computation of masked
tables will most likely render the scheme insecure.
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Table 6. Data complexity of mask recovery attacks against an affine masked AES S-box with hiding countermeasures, when the
nonlinearity of the S-box is exploited in the mask-recovery stage. (SNR thresholds of degradation—where applicable—in parentheses).

2−5 2−3 2−1 21 23 25 27 Pure signal
Randomised start index (0.73)

Both masks recovered 42.3 85.1 99.9 100. 100. 100. 100. 100.
Multiplicative mask recovered 26.7 11.2 0.111 2.36e-010 0.000 0.000 0.000 0.000
Correct key correlation 0.0743 0.284 0.577 0.816 0.943 0.985 0.996 1.00
Nearest rival margin 0.0594 0.232 0.469 0.663 0.766 0.800 0.809 0.812
Traces needed 1.53e+003 96.8 21.0 8.50 5.16 4.07 3.63 3.02

Random walk (LFSR) (4.49)
Both masks recovered 0.380 4.81 46.5 97.6 100. 100. 100. 100.
Multiplicative mask recovered 0.632 5.02 24.9 2.39 3.30e-007 0.000 0.000 0.000
Correct key correlation 0.00149 0.0286 0.376 0.811 0.943 0.985 0.996 1.00
Nearest rival margin 0.00121 0.0232 0.306 0.659 0.766 0.800 0.809 0.812
Traces needed 3.71e+006 1.00e+004 54.2 8.67 5.16 4.07 3.63 3.02

Permuted in 4 columns (NA)
Both masks recovered 8.86 39.2 92.6 98.4 98.4 98.4 98.4 98.4
Multiplicative mask uncovered 32.3 35.4 6.85 1.58 1.57 1.57 1.57 1.57
Correct key correlation 0.0576 0.219 0.564 0.813 0.939 0.981 0.992 0.996
Nearest rival margin 0.0468 0.178 0.458 0.661 0.763 0.797 0.806 0.809
Traces needed 2.47e+003 167 22.1 8.6 5.24 4.19 3.81 3.63

Permuted in 8 columns (NA)
Both masks recovered 0.125 1.29 24.2 89.5 95.6 95.7 95.7 95.7
Multiplicative mask uncovered 12.3 24.3 47.8 10.3 4.35 4.32 4.32 4.32
Correct key correlation 0.0162 0.0651 0.347 0.794 0.933 0.974 0.985 0.989
Nearest rival margin 0.0132 0.0529 0.282 0.646 0.758 0.791 0.801 0.804
Traces needed 3.12e+004 1.93e+003 64.6 9.21 5.4 4.38 4.05 3.92

Permuted in 16 columns (NA)
Both masks recovered 1.16e-005 0.000135 0.0116 4.96 81 96.1 96.4 96.4
Multiplicative mask uncovered 0.857 1.66 6.05 41.5 18.8 3.95 3.61 3.61
Correct key correlation 0.00112 0.00414 0.0263 0.294 0.897 0.975 0.987 0.991
Nearest rival margin 0.000909 0.00337 0.0214 0.239 0.728 0.792 0.802 0.805
Traces needed 6.55e+006 4.78e+005 1.19e+004 90.9 6.28 4.35 3.99 3.86

Permuted in 32 columns (NA)
Both masks recovered 1.49e-014 7.11e-014 1.99e-012 2.1e-009 7.97e-005 0.775 35.7 76.1
Multiplicative mask uncovered 0.000117 0.000145 0.000248 0.00111 0.0443 4.98 29 17
Correct key correlation 1.52e-007 3.64e-007 1.07e-006 6.79e-006 0.000314 0.0444 0.572 0.889
Nearest rival margin 1.24e-007 2.96e-007 8.72e-007 5.52e-006 0.000255 0.0361 0.465 0.722
Traces needed 3.54e+014 6.2e+013 7.11e+012 1.78e+011 8.32e+007 4.16e+003 21.3 6.47



Table 7. Data complexity of mask recovery attacks against an affine masked AES S-box with hiding countermeasures, when the
nonlinearity of the S-box is not exploited in the mask-recovery stage. (SNR thresholds of degradation—where applicable—in parentheses).

2−5 2−3 2−1 21 23 25 27 Pure signal
Randomised start index (1.90)

Both masks recovered 19.9 49.2 91.1 100. 100. 100. 100. 100.
Multiplicative mask recovered 37.1 38.2 8.86 0.00274 0.000 0.000 0.000 0.000
Correct key correlation 0.0355 0.165 0.526 0.816 0.943 0.985 0.996 1.00
Nearest rival margin 0.0245 0.131 0.430 0.663 0.766 0.800 0.809 0.812
Traces needed 8.99e+003 312. 25.7 8.50 5.16 4.07 3.63 3.02

Random walk (LFSR) (4.49)
Both masks recovered 0.176 1.97 28.9 95.2 100. 100. 100. 100.
Multiplicative mask recovered 0.633 5.17 33.1 4.71 6.59e-007 0.000 0.000 0.000
Correct key correlation 0.00113 0.0195 0.310 0.806 0.943 0.985 0.996 1.00
Nearest rival margin 0.000919 0.0158 0.252 0.655 0.766 0.800 0.809 0.812
Traces needed 6.41e+006 2.16e+004 81.6 8.84 5.16 4.07 3.63 3.02

Permuted in 4 columns (NA)
Both masks recovered 4.35 14.9 51.2 87.4 92.3 92.4 92.4 92.4
Multiplicative mask uncovered 33.9 49.5 45 12.6 7.68 7.64 7.64 7.64
Correct key correlation 0.0519 0.173 0.49 0.791 0.925 0.966 0.977 0.981
Nearest rival margin 0.0421 0.141 0.398 0.643 0.751 0.785 0.794 0.797
Traces needed 3.04e+003 269 30.4 9.34 5.59 4.59 4.3 4.19

Permuted in 8 columns (NA)
Both masks recovered 0.0339 0.254 4.63 47 79.7 81.7 81.8 81.8
Multiplicative mask uncovered 12.3 24.6 60.1 52.5 20.3 18.3 18.2 18.2
Correct key correlation 0.0161 0.0623 0.287 0.705 0.895 0.94 0.951 0.954
Nearest rival margin 0.0131 0.0506 0.233 0.573 0.727 0.764 0.772 0.775
Traces needed 3.17e+004 2.11e+003 95.8 12.8 6.32 5.23 4.97 4.88

Permuted in 16 columns (NA)
Both masks recovered 1.82e-006 1.42e-005 0.000619 0.16 9.35 26.1 28.2 28.2
Multiplicative mask uncovered 0.857 1.66 6.05 43.6 89.7 73.9 71.8 71.8
Correct key correlation 0.00112 0.00414 0.0262 0.268 0.723 0.803 0.817 0.821
Nearest rival margin 0.000909 0.00337 0.0213 0.218 0.587 0.652 0.664 0.667
Traces needed 6.55e+006 4.78e+005 1.19e+004 110 12 8.94 8.47 8.37

Permuted in 32 columns (NA)
Both masks recovered 8.73e-019 4.03e-018 1.03e-016 7.99e-014 1.36e-009 6.57e-006 0.000549 0.00234
Multiplicative mask uncovered 0.000117 0.000145 0.000248 0.00111 0.0443 5.01 45.2 71.3
Correct key correlation 1.52e-007 3.64e-007 1.07e-006 6.79e-006 0.000313 0.037 0.337 0.535
Nearest rival margin 1.24e-007 2.96e-007 8.72e-007 5.52e-006 0.000254 0.0301 0.274 0.435
Traces needed 3.54e+014 6.2e+013 7.11e+012 1.78e+011 8.36e+007 5.97e+003 68.4 25


