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Abstract. EAX′ (or EAX-prime) is an authenticated encryption (AE)
specified by ANSI C12.22 as a standard security function for Smart Grid.
EAX′ is based on EAX proposed by Bellare, Rogaway, and Wagner.
While EAX has a proof of security based on the pseudorandomness of
the internal blockcipher, no published security result is known for EAX′.
This paper studies the security of EAX′ and shows that there is a sharp
distinction in security of EAX′ depending on the input length. EAX′ en-
cryption takes two inputs, called cleartext and plaintext, and we present
various efficient attacks against EAX′ using single-block cleartext and
plaintext. At the same time we prove that if cleartexts are always longer
than one block, it is provably secure based on the pseudorandomness of
the blockcipher.

Keywords: Authenticated Encryption, EAX, EAX′, Attack, Provable
Security.

1 Introduction

ANSI C12.22 [3] specifies a blockcipher mode for authenticated encryption (AE)
as the standard security function for Smart Grid. It is called EAX′ (or EAX-
prime)5. As its name suggests, EAX′ is based on EAX proposed by Bellare,
Rogaway, and Wagner at FSE 2004 [7]. Though EAX is already efficient with
a small amount of precomputation, EAX′ aims at even reducing the amount of
precomputation and memory, for making it suitable to the resource-constrained
devices, typically smart meters. ANSI submitted EAX′ to NIST [13] and NIST
called for the public comments on the proposal to approve EAX′. Following
ANSI C12.22, IEEE 1703 [6] and MC1222 [4] included EAX′. There is also an
RFC [5] related to ANSI C12.22.

Though EAX′ is similar to EAX, to the best of our knowledge, its formal
security analysis has not been published to date. In this paper, we investigate
⋆ A part of the result was presented at DIAC [12].
5 The authors of [13] exchangeably use the three names, EAX′, EAX’, and EAX-
prime, to mean their proposal. To avoid any confusion by overlooking the tiny prime
symbol or apostrophe, which could be misunderstood as claiming an attack on EAX,
we prefer the longer name “EAX-prime” for the title. In the text we prefer the name
EAX′.



the security of EAX′ and show that there is a sharp distinction depending on
the input length. The encryption algorithm of EAX′ takes two inputs, called
cleartext and plaintext. In the standard AE terminology, the cleartext serves as
a nonce, or a combination of nonce and associated data (the latter is also called
header).

First, we show that if the lengths of cleartext and plaintext are not exceeding
one block, there exist attacks against EAX′ for both privacy and authenticity.
Specifically, we present

– forgeries, i.e., cleartext/ciphertext pairs with valid authentication tags,
– chosen-plaintext distinguishers, distinguishing the EAX′ encryption from a

random encryption process, and
– chosen-ciphertext plaintext recovery attacks, decrypting ciphertexts by asking

for the decryption of another ciphertext with a valid authentication tag.

Our attacks are simple and efficient as they require only one or two queries.
The simplest one even produces a successful forgery without observing any valid
plaintext/ciphertext pair. Our forgery and distinguishing attacks strictly require
the target system to accept one-block cleartext and plaintext. The plaintext
recovery attacks relax this condition, and given any ciphertext with one-block
cleartext it works for any circumstance where ciphertext is decrypted without
checking the cleartext length. This makes the possibility of attack even larger.
Our attacks imply that, while the original EAX has a proof of security, the
security of EAX′ has totally collapsed as a general-purpose AE.

Next, we show that if the cleartext is always longer than one block, it recovers
the provable security based on the pseudorandomness of the blockcipher for both
privacy and authenticity notions. The security proof is obtained by combining
previous proof techniques of EAX by Bellare, Rogaway, and Wagner [7] with
some non-trivial extensions, such as Iwata and Kurosawa’s one used for proving
the security of OMAC [9].

One may naturally wonder if our attacks are applicable to ANSI C12.22.
Unfortunately we do not know if ANCI C12.22 protocols exclude one-block
cleartexts or not, hence we have no clear answer. Still, considering the effect
of our attacks, we conclude that EAX′ must be used with cleartext length check
mechanisms at both ends of encryption and decryption.

2 Preliminaries

Basic Notations. Let N = {0, 1, . . . }. Let {0, 1}∗ be the set of all finite-length
binary strings, including the empty string ε. The bit length of a binary string

X is written as |X|, and let |X|n
def
= ⌈|X|/n⌉. Here |ε| = 0. A concatenation

of X,Y ∈ {0, 1}∗ is written as X∥Y or simply XY . A sequence of a zeros

(ones) is denoted by 0a (1a). For k ≥ 0, let {0, 1}>k def
=

∪
i=k+1,...{0, 1}i and

({0, 1}n)>k def
=

∪
j=k+1,...({0, 1}n)j , and ({0, 1}n)+ def

= ({0, 1}n)>0. We also de-

fine {0, 1}≥k, ({0, 1}n)≥k, {0, 1}<k, ({0, 1}n)<k, {0, 1}≤k, and ({0, 1}n)≤k anal-



ogously. For X,Y ∈ {0, 1}n, X + Y or X − Y is considered as an addition or a
subtraction modulo 2n.

For X ∈ {0, 1}∗, let X[1]∥X[2]∥ . . . ∥X[m]
n← X denote the n-bit block par-

titioning of X, i.e., X[1]∥X[2]∥ . . . ∥X[m] = X where m = |X|n, and |X[i]| = n
for i < m and |X[m]| ≤ n. For X,Y ∈ {0, 1}∗, let X ⊕end Y be the XOR of X
into the end of Y if |X| ≤ |Y |, i.e. X ⊕end Y = (0|Y |−|X|∥X) ⊕ Y . Otherwise
X ⊕end Y = X ⊕ (0|X|−|Y |∥Y ).

For a finite set X , if X is uniformly chosen from X we write X
$← X .

Random Function and Random Permutation. Let Func(n,m) be the set
of all functions {0, 1}n → {0, 1}m. We may abbreviate Func(n, n) to Func(n). In
addition, let Perm(n) be the set of all permutations over {0, 1}n. A uniform ran-
dom function (URF) having n-bit input and m-bit output is the set Func(n,m)
with uniform distribution over Func(n,m). It is denoted by R, and the corre-

sponding sampling is written as R
$← Func(n,m). An n-bit uniform random

permutation (URP) is the set Perm(n) with uniform distribution over Perm(n).

It is denoted by P, and the corresponding sampling is written as P
$← Perm(n).

Galois Field. Following [7], an n-bit string X may be viewed as an element
of GF(2n) by taking X as a coefficient vector of the polynomial in GF(2n). We
write 2X to denote the multiplication of 2 and X over GF(2n), where 2 denotes
the generator of the field GF(2n). This operation is called doubling. We also
write 4L to denote 2(2L). The doubling is efficiently implemented by one-bit
shift with conditional XOR of a constant, see e.g. [9].

3 Specification of EAX-Prime

We describe the encryption and decryption algorithms of EAX′. We changed the
original notations of EAX′ [3,13] following those of EAX [7]. This illustrates the
similarities and the differences of EAX and EAX′ (See also the last part of this
section).

EAX′ is a mode of operation based on an n-bit blockcipher, E. Here we
typically assume (n,E) = (128,AES-128), however other choice is possible [13].
The key of E is written as K. Formally, the encryption function of EAX′ accepts
a cleartext, N ∈ {0, 1}∗ with N ̸= ε, a plaintext, M ∈ {0, 1}∗, and a secret key,
K, to produce the ciphertext, C ∈ {0, 1}∗, with |C| = |M | and the tag T ∈
{0, 1}32. The decryption function, which we also call the verification function,
accepts N , C, T , and K and generates the decrypted plaintext M if (N,C, T )
is valid, or the flag ⊥ if invalid. Cleartext N contains information that needs
to be authenticated, but not encrypted. ANSI document requires that N must
be unique for all encryptions using the same key6. Hence N can be seen as a
combination of a nonce and associated data in the standard terminology of AE
(e.g., see [7]). The plaintext M can be the empty string ε, corresponding to the

6 In ANSI C12.22, the uniqueness of N is guaranteed by including time information
with a specific format.



null string in [13], and in this case EAX′ works as a message authentication code
for N .

For generality we assume that the tag length is specified by a predeter-
mined parameter, τ ∈ {1, . . . , n}. The original definition employs τ = 32. Let
EAX′[E, τ ] be EAX′ using n-bit blockcipher E with τ -bit tag. The corresponding
encryption and decryption algorithms are written as EAX′-EK,τ and EAX′-DK,τ .
If τ is clear from the context we may write EAX′[E] and EAX′-EK and EAX′-DK .
These algorithms and their components are shown in Fig. 1. The encryption al-
gorithm of EAX′ is depicted in Fig. 2. In Fig. 1, α denotes an n-bit constant,
(1n−32∥0115∥0115). Note that CBC′

K(0n,M) is equivalent to the standard CBC-
MAC using EK with input M , denoted by CBCK(M). In our description, we
fixed an apparent error in line 72 of the original definition of EAX′.encryptK
in [3, 13]. Some editorial errors of [13] were also pointed out by [1].
EAX′ and the Original EAX. The major differences between EAX′ and
the original EAX are summarized as follows. For other minor differences, see
Section 3 of [13]. For the definition of EAX, see [7].

1. Role of N . Inputs to EAX′-EK consist of a cleartext N and a plaintext
M , whereas those to the original EAX consist of a nonce N , a header (or
associated data) H, and a plaintext M . EAX′ requires N to be unique, hence
it works as a nonce. EAX′ does not explicitly define a header H; information
corresponding to the header is included in the cleartext N .

2. Tweaking method for CMAC. For input M , CMAC [2] using EK is de-
fined as CMACK(M) = CBCK(pad(M ;D,Q)). The original EAX uses the
tweaked CMAC having an n-bit tweak t, defined as CMACK(t∥M), for
t ∈ {0n, 0n−11, 0n−210}, to process N , H, and C. For fast operation we
need to precompute EK(t) for all t and store them to RAM. EAX′ employs
a different way to tweak CMAC accepting two tweak values (i = 0, 1) to gen-

erate CMAC′(0)
K and CMAC′(1)

K for processing N and C. For fast operation
we can precompute L = EK(0n). This reduces the precomputation time and
RAM consumption from the original EAX.

3. Counter mode incrementation. The original EAX uses CMACK(0n∥N) as an

initial counter block for CTR mode, while that of EAX′ is CMAC′(0)
K (N)∧α

to set some bits to zero. One can find a similar zeroing-out in the deter-
ministic authenticated encryption called SIV [15]. As explained by [15], this
contributes to a slight simpler operation.

4 Attacks Based on One-Block Cleartext

4.1 Chosen-Message Forgeries

We first describe forgery attacks against EAX′[E, τ ]. Throughout the section D
andQ denote 2L and 4L with L = EK(0n). The adversaryA we consider here can
access both encryption and decryption (verification) oracles, namely EAX′-EK
and EAX′-DK . Suppose A (possibly adaptively) asks q queries to the encryption



Algorithm EAX′-EK,τ (N,M)

1. N ← CMAC′(0)
K (N)

2. C ← CTR′
K(N,M)

3. T ← N ⊕ CMAC′(1)
K (C)

4. T ← msbτ (T )
5. return (C, T )

Algorithm EAX′-DK,τ (N,C, T )

1. N ← CMAC′(0)
K (N)

2. T ← N ⊕ CMAC′(1)
K (C)

3. T̂ ← msbτ (T )

4. if T̂ ̸= T return ⊥
5. M ← CTR′

K(N,C)
6. return M

Algorithm CMAC′(i)
K (M) (for i ∈ {0, 1})

1. L← EK(0n)
2. D ← 2L, Q← 4L
3. if i = 0 then
4. return CBC′

K(D, pad(M ;D,Q))
5. if i = 1 then
6. return CBC′

K(Q, pad(M ;D,Q))

Algorithm CTR′
K(N,M)

1. m← |M |n
2. N∧ ← N ∧ α
3. S ← EK(N∧)∥ · · · ∥EK(N∧ +m− 1)
4. C ←M ⊕msb|M|(S)
5. return C

Algorithm CBC′
K(I,M) (for M ∈

({0, 1}n)+)

1. M [1]∥M [2]∥ . . . ∥M [m]
n←M

2. C[0]← I
3. for i← 1 to m do
4. C[i]← EK(M [i]⊕ C[i− 1])
5. return C[m]

Algorithm pad(M ;B1, B2)

1. if |M | ∈ {n, 2n, 3n, . . . , }
2. then return M ⊕end B1

3. else
4. return (M∥10n−1−(|M| mod n))⊕endB2

Fig. 1. (Upper) The encryption and decryption algorithms of EAX′[E, τ ], origi-
nally with τ = 32. (Lower) Component algorithms of EAX′[E, τ ]. Here, α =
(1n−32∥0115∥0115).

oracle, (N1,M1), . . . , (Nq,Mq), and receives (C1, T1), . . . , (Cq, Tq), and then asks
(N,C, T ) to the decryption oracle. We say A is successful if A receives a string
other than ⊥ and (N,C, T ) ̸= (Ni, Ci, Ti) for any 1 ≤ i ≤ q (see also Section 5).
Here we assume the nonce-respecting adversary [14]; it is allowed to query any
(Ni,Mi) to the encryption oracle as long as Ni is unique.

Suppose M ∈ {0, 1}≤n. Then pad(M ;D,Q) = M ⊕end D = M ⊕ D when
|M | = n and pad(M ;D,Q) = M∥10n−1−|M | ⊕end Q = M∥10n−1−|M | ⊕Q when

0 ≤ |M | < n. Therefore, the definition of CMAC′(i)
K in the previous section

conforms to that

CMAC′(0)
K (M) =

{
EK(M) if |M | = n

EK(M∥10n−1−|M | ⊕D ⊕Q) if 0 ≤ |M | < n

CMAC′(1)
K (M) =

{
EK(M ⊕D ⊕Q) if |M | = n

EK(M∥10n−1−|M |) if 0 ≤ |M | < n

The above observation immediately gives the following attacks:
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Fig. 2. The encryption algorithm of EAX′. In the figure, |N |n = b and |M |n = m.
bp(x) = x if |x| = n and bp(x) = x∥10n−1−(|x| mod n) if |x| < n.

Forgery attack 1 (|N | = n and |C| < n).

1. Prepare (N,C) such that |N | = n and |C| < n and C∥10n−1−|C| = N .
2. Query (N,C, T ) to the verification oracle, where T = 0τ .

This attack always succeeds as the “valid” tag for (N,C) is msbτ (EK(N) ⊕
EK(C∥10n−1−|C|)) = 0τ .

Forgery attack 2 (|N | < n and |C| = n).

1. Prepare (N,C) such that |N | < n, |C| = n, and N∥10n−1−|N | = C.
2. Query (N,C, T ) to the verification oracle, where T = 0τ .

The attack is again successful as the valid tag for (N,C) is msbτ (EK(D ⊕Q⊕
N∥10n−1−|N |) ⊕ EK(Q ⊕ D ⊕ C)) = 0τ . These attacks use only one forgery
attempt and no encryption query. By using one encryption query the forgery
attack is possible even when |N | = n and |C| = n:

Forgery attack 3 (|N | = |M | = n).

1. Query (N,M) with |N | = |M | = n and N ̸= 0n to the encryption oracle.
2. Obtain (C, T ) (where |C| = n) from the oracle and see if C ̸= 0n (quit if

C = 0n).



3. Query (Ñ , C̃, T̃ ) to the verification oracle, where |Ñ | < n, Ñ∥10n−1−|Ñ | = C,

|C̃| < n, C̃∥10n−1−|C̃| = N , and T̃ = T .

The above attack is almost always successful; unless C = 0n we have T =
msbτ (EK(N)⊕ EK(Q⊕D ⊕ C)) and the valid tag for (Ñ , C̃) is

msbτ (EK(D ⊕Q⊕ Ñ∥10n−1−|Ñ |)⊕ EK(Q⊕Q⊕ C̃∥10n−1−|C̃|))

= msbτ (EK(D ⊕Q⊕ C)⊕ EK(N)),

thus equals to T . The converse of Forgery attack 3 is also possible for |N | < n
and |M | < n:

Forgery attack 4 (|N | < n and |M | < n).

1. Query (N,M) with |N | < n and |M | < n to the encryption oracle.
2. Obtain (C, T ) (where |C| = |M | < n) from the oracle.

3. Query (Ñ , C̃, T̃ ) to the verification oracle, where |Ñ | = |C̃| = n, Ñ =

C∥10n−1−|C|, C̃ = N∥10n−1−|N |, and T̃ = T .

We have T = msbτ (EK(D ⊕ Q ⊕N∥10n−1−|N |) ⊕ EK(Q ⊕ Q ⊕ C∥10n−1−|C|))

and the valid tag for (Ñ , C̃) is

msbτ (EK(D ⊕D ⊕ Ñ)⊕ EK(Q⊕D ⊕ C̃))

= msbτ (EK(C∥10n−1−|C|)⊕ EK(Q⊕D ⊕N∥10n−1−|N |)) = T.

Partially Selective Forgeries. A forgery is selective instead of existential,
if the adversary can determine the content of the message to be forged. Since
EAX′ provides authenticated encryption with associated data (AEAD), the con-
tent of the message consists of both the confidential plaintext M and the non-
confidential associated data (or cleartext) N . While the above attacks do not
allow to choose M , the adversary can arbitrarily choose N (restricted to |N | ≤ n
and, for |N | = n, N ̸= 0n). In this sense, the forgery attacks above are partially
selective.

4.2 Chosen-Plaintext Distinguishers

The forgery attacks above are based on the idea of generating (N,C) that makes
the tag T = 0τ . To distinguish EAX′-EK from a random encryption process,
which produces (|M | + τ)-bit random sequence on receiving (N,M), one can
similarly make (N,M) so that EAX′-EK will generate (C, T ) with T = 0τ .

Distinguishing attack 1 (|N | = n and |M | = 0).

1. Query (N,M) to the encryption oracle, where N = 10n−1 and M = ε.
2. Obtain (C, T ) from the oracle with C = ε.
3. If T = 0τ then return 1, otherwise return 0.



As EAX′-EK returns T = 0τ with probability 1 while the same event occurs
with probability 1/2τ with a random encryption process, this enables us to easily
distinguish T from random with the distinguishing advantage almost 1, using
only one encryption query.

Distinguishing attack 2 (|N | = n, 1 ≤ |M | < n, and fixed i for 1 ≤ i ≤ n−1).

1. Fix M ∈ {0, 1}i, and query (N,M) to the encryption oracle with N =
M∥10n−1−|M |.

2. Obtain (C, T ) from the oracle.
3. If C = M and T = 0τ then return 1, otherwise return 0.

In this case, we have C = M with probability 1/2i for both EAX′-EK and a
random encryption process. Given the event C = M , we have

T = msbτ (EK(N)⊕ EK(C∥10n−1−|C|)) = 0τ

with probability 1 for EAX′-EK , while T = 0τ occurs with probability 1/2τ for
the random encryption process. Thus, with probability 1/2i the distinguisher
succeeds with a high probability, which is non-negligible when i is small.

4.3 Chosen-Ciphertext Plaintext Recovery Attacks

Consider a triple (N∗, C∗, T ∗) of cleartext N∗, ciphertext C∗ and tag T ∗. The
corresponding plaintext M∗ is unknown. The adversary can ask a decryption
oracle, for the decryption of any (N,C, T ) under its choice, except for (N,C, T ) =
(N∗, C∗, T ∗) (otherwise, finding M∗ would be trivial). The adversary receives
either ⊥ (if verification fails) or the decryption M of C. This is the setting in
a chosen ciphertext attack. Below, we focus on plaintext recovery attacks, where
the adversary actually finds (a part of) M∗. We describe two attacks: the first
for |N∗| = n, the second for |N∗| < n.

Plaintext recovery attack 1 (|N∗| = n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.
2. Prepare C with |C| < n and C∥10n−1−|C| = N∗ and T = 0τ .
3. Query (N∗, C, T ) to the decryption oracle. Let M be the answer.
4. Compute the keystream KS = C ⊕M ∈ {0, 1}|C|.

Since the decryption of (N∗, C∗, T ∗) uses the same keystream KS, we now can
compute the first |C| bits of M∗, or the full M∗ if |M∗| ≤ |C|. It succeeds for
the same reason as Forgery attack 1 (unless N∗ = 0n, in which case there is no
C in Step 2, or C∗∥10n−1−|C∗| = N∗ and T ∗ = 0τ , in which case the decryption
query in Step 3 makes the attack trivial).

Plaintext recovery attack 2 (|N∗| < n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.
2. Prepare C with |C| = n and N∗∥10n−1−|N∗| = C and T = 0τ .
3. Query (N∗, C, T ) to the decryption oracle. Let M be the answer.
4. Compute the keystream KS = C ⊕M ∈ {0, 1}n.
Unless N∗∥10n−1−|N∗| = C∗ and T ∗ = 0τ , the attack succeeds for the same
reason as Forgery attack 2.



4.4 Remarks

The Source of Attacks. Not to mention, our attacks cannot be applied on
the original EAX having the proof of security. Our attacks exploit the wrong
tweaking method of CMAC in EAX′. While the tweaking method in the orig-
inal EAX provides a set of computationally independent PRFs, the tweaking

method of EAX′ fails to do this. For instance CMAC′(0)
K (M) = CMAC′(1)

K (M ′)
holds with probability 1 for any (M,M ′) such that |M | = n and |M ′| < n

and M ′∥10n−1−|M ′| = M , which is unlikely to occur if CMAC′(0)
K and CMAC′(1)

K

were computationally independent. The SIV-like counter incrementation also in-
creases the collision probability of counter blocks, however this only leads to a
small degradation in security, as mentioned by [3], hence our attacks do not rely
on this fact.

Applicability to ANSI C12.22 Protocols. All our attacks require |N | ≤ n.
The forgery and distinguishing attacks also require |M |, |C| ≤ n, and the plain-
text recovery attacks actually require at most the first n bits of the ciphertext.
In addition, the forgery and plaintext recovery attacks could not be prevented by
restricting the input length at encryption: one must implement the input length
check at decryption as well.

One can find some examples that have |M | = n or |M | = 0 (i.e. the authenti-
cation of N) with n = 128 in communication examples of ANSI C12.22 (Annex
G of [3]) or test vectors7 of EAX′ (Section V of [13]). At the same time, we do
not know8 whether |N | > n holds for ANSI C12.22 protocols, even though the
specification [13] does not, at least explicitly, regulate the length of cleartext.
The reference code of EAX′ given by [3, 6] has no restriction on input lengths,
and we verified our attacks with that code.

A natural question arises from the above observation: whether EAX′ is prov-
ably secure under the restriction |N | > n. In the next section we provide a
positive answer to this question.

5 Provable Security for More-than-One-Block Cleartext

Now we are going to prove that EAX′ provides the provable security when the
cleartext N is always more than n bits for both encryption and decryption.
Combined with the attacks described in the previous section, the result of this
section draws a sharp distinction on the security between the case |N | > n and
the case |N | ≤ n.

7 One can find test vectors with n-bit cleartexts in [13]. However, they seem to contain
an editorial error; the cleartext may mean the plaintext and vice versa.

8 In [13], “Justification” of Issue 6 (in page 3) states that “The CMAC′ computations
here always involve CBC of at least two blocks”. This looks odd since M or C can
be null (as stated by ANSI) and CMAC′ taking the empty string certainly operates
on the single-block CBC, but it may be a hint that |N | > n would hold for any
legitimate ANSI C12.22 messages.



Security Notions. Following [7,14], we introduce two security notions, privacy
and authenticity, to model the security of EAX′. For c oracles, O1, O2, . . . , Oc,
we write AO1,O2,...,Oc to represent the adversary A accessing these c oracles in
an arbitrarily order. If F and G are oracles having the same input and output
domains, we say they are compatible.

A CPA-adversary A against EAX′[E, τ ] accesses EAX′-EK,τ . The encryption
queries made by A are denoted by (N1,M1), . . . , (Nq,Mq). We define A’s pa-

rameter list as (q, σN , σM ), where σN
def
=

∑q
i=1 |Ni|n and σM

def
=

∑q
i=1 |Mi|n if all

|Mi|n > 0. For convention, if |Mi| = 0 for some i ≤ q, σM
def
= (

∑q
i=1 |Mi|n) + 1.

We also define random-bit oracle, $, which takes (N,M) ∈ {0, 1}∗ × {0, 1}∗ and

returns (C, T )
$← {0, 1}|M | × {0, 1}τ . The privacy notion for CPA-adversary A

is defined as

Adv
priv

EAX′[E,τ ]
(A) def

= Pr[K
$← K : AEAX′-EK ⇒ 1]− Pr[A$ ⇒ 1]. (1)

We assume A in the privacy notion is nonce-respecting, i.e., all Nis are dis-
tinct. Similarly, a CCA-adversary A against EAX′[E, τ ] accesses EAX′-EK,τ

and EAX′-DK,τ . The encryption and decryption queries made by A are de-

noted by (N1,M1), . . . , (Nq,Mq) and (Ñ1, C̃1, T̃1), . . . , (Ñqv , C̃qv , T̃qv ). We define

A’s parameter list as (q, qv, σN , σM , σÑ , σC̃), where σÑ

def
=

∑qv
i=1 |Ñi|n, σC̃

def
=∑qv

i=1 |C̃i|n when all |C̃i|n > 0 and σC̃

def
= (

∑qv
i=1 |C̃i|n) + 1 otherwise. The def-

initions of σN and σM are the same as above. The authenticity notion for a
CCA-adversary A is defined as

AdvauthEAX′[E,τ ](A)
def
= Pr[K

$← K : AEAX′-EK ,EAX′-DK forges ], (2)

where A forges if EAX′-DK returns a bit string (other than ⊥) for a query

(Ñi, C̃i, T̃i) for some 1 ≤ i ≤ qv such that (Ñi, C̃i, T̃i) ̸= (Nj , Cj , Tj) for all 1 ≤
j ≤ q. We assume A in the authenticity notion is always nonce-respecting with
respect to encryption queries; using the same N for encryption and decryption
queries is allowed, and the same N can be repeated within decryption queries,
i.e. Ni is different from Nj for any j ̸= i but Ñi may be equal to Nj or Ñi′ for
some j and i′ ̸= i.
Bounds. We denote EAX′ with an n-bit URP being used as a blockcipher by
EAX′[Perm(n), τ ] and the corresponding encryption and decryption functions by
EAX′-EP and EAX′-DP. Similarly, the subscript K in the component algorithms

is substituted with P, e.g. CMAC′(i)
P . We here provide the security bounds for

EAX′[Perm(n), τ ]; the computational counterpart for EAX′[E, τ ] is trivial. The
security bound for the privacy notion is as follows.

Theorem 1. Let A be the CPA-adversary against EAX′[Perm(n), τ ] who does
not query cleartexts of n bits or shorter and has parameter list (q, σN , σM ). Let
σpriv = σN + σM . Then we have

Adv
priv

EAX′[Perm(n),τ ]
(A) ≤

18σ2
priv

2n
.



The security bound for the authenticity notion is as follows.

Theorem 2. Let A be the CCA-adversary against EAX′[Perm(n), τ ] who does
not query cleartexts of n bits or shorter for both encryption and decryption ora-
cles, and has parameter list (q, qv, σN , σM , σÑ , σC̃). Let σauth = σN +σM +σÑ +
σC̃ . Then we have

AdvauthEAX′[Perm(n),τ ](A) ≤
18σ2

auth

2n
+

qv
2τ

.

6 Proofs of Theorem 1 and Theorem 2

6.1 Overview

The proofs of Theorems 1 and 2 are bit long, hence we first provide the overview.
The basic strategy follows from the proof of the original EAX [7] with some ex-
tensions taken from OMAC proofs [9, 10]. We first break down the algorithm
of EAX′[Perm(n), τ ] into a pair of functions, which we call OMAC-extension,
OMAC-e[P] = (OMAC-e[P](0),OMAC-e[P](1)), where OMAC-e[P](0) : {0, 1}>n×
N → ({0, 1}n)>0 and OMAC-e[P](1) : {0, 1}∗ → {0, 1}n. It uses an n-bit ran-
dom permutation P and an additional independent and random value, U ∈
{0, 1}n. Intuitively, OMAC-e[P](0) is a function that takes (N, d), where d =
|M |n (d = |C|n) for encryption (decryption), and produces N ⊕ U and the
d-block keystream before truncation, i.e., S of Fig. 1 (See also Fig. 2). Sim-

ilarly, OMAC-e[P](1) takes a ciphertext, C, and produces CMAC′(1)
P (C) ⊕ U .

Since (N ⊕U)⊕ (CMAC′(1)
P (C)⊕U) = N ⊕CMAC′(1)

P (C), such a function pair
can perfectly simulate EAX′[Perm(n), τ ]. We introduce U to make the remaining
analysis less involved. Then, the bound evaluation for EAX′[Perm(n), τ ] is mostly
reduced to that of the indistinguishability between OMAC-e[P] and a random

function pair RND = (RND(0),RND(1)). Here RND(0) takes (N, d) and samples

Y
$← ({0, 1}n)dmax+1 if N is new, and outputs the first (d+1) blocks of Y , where

dmax is the maximum possible value of d implied by the game we consider. Sim-

ilarly RND(1) takes C ∈ {0, 1}∗ and outputs Y ′ $← {0, 1}n if C is new. To bound
the indistinguishability between OMAC-e[P] and RND, we further break down
OMAC-e[P] into a set of ten small functions, Q = {Qi}i=1,...,10, following the
proof of OMAC [9]. Using two random values in addition to U , these functions
are built so that they behave close to a set of independent URFs or URPs, and
at the same time have the capability to perfectly simulate OMAC-e[P] (hence
EAX′[Perm(n)]). The indistinguishability of Q from the set of URPs/URFs is
relatively easy to derive, and as a result the following analysis becomes much
easier.

6.2 Proof

Setup. Without loss of generality and for simplicity this section assumes that
the space of valid cleartexts of EAX′ is {0, 1}>n, rather than restricting the
adversary’s strategy.



For convenience we introduce the following notions. Let FK : X → Y and
GK′ : X → Y be two keyed functions with K ∈ K and K ′ ∈ K′, and let A be
the CPA-adversary. We define

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]. (3)

Note that this definition can be naturally extended when GK′ is substituted
with the random-bit oracle compatible with FK . Moreover, when FK and GK′

are compatible with EAX′-EK , we define Adv
cpa-nr
F,G (A) as the same function as

Adv
cpa
F,G(A) but CPA-adversary A is restricted to be nonce-respecting. Let F =

(F e
K , F d

K) and G = (Ge
K′ , G

d
K′) be the pairs of functions that are compatible

with (EAX′-EK ,EAX′-DK). We define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,Fd

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,G

d
K′ ⇒ 1], (4)

where the underlying A is assumed to be nonce-respecting for encryption queries.
Note that we have Advpriv

EAX′[E,τ ]
(A) = Adv

cpa-nr

EAX′-EK ,$
(A) for any nonce-respecting

CPA-adversary A.
Step 1: OMAC-extension. For x ∈ {0, 1}≤n, let bp(x) = x if |x| = n and
bp(x) = x∥10n−1−(|x| mod n) if |x| < n. If x = ε then bp(x) = 10n−1. We first
define OMAC-extension using an n-bit URP, denoted by OMAC-e[P] : {0, 1} ×
{0, 1}∗ × N → ({0, 1}n)>0. The definition is given in Fig. 3. See also Fig. 4.
Actually it consists of two functions, written as

OMAC-e[P](0) : {0, 1}>n × N→ ({0, 1}n)>0, and (5)

OMAC-e[P](1) : {0, 1}∗ → {0, 1}n, (6)

where the first argument to OMAC-e[P], t ∈ {0, 1}, specifies which function to be
used, i.e., OMAC-e[P](0, X, d) = OMAC-e[P](0)(X, d) and OMAC-e[P](1, X, d) =
OMAC-e[P](1)(X) (d is discarded). Here |OMAC-e[P](0)(X, d)| = (d + 1)n. For
simplicity we assume the input domain of OMAC-e[P] is a set of (t,X, d) ∈
{0, 1} × {0, 1}∗ × N that is acceptable for OMAC-e[P](t). More formally, when
t = 0 we assume |X| > n and d ∈ N, and when t = 1 we assume d is
fixed (say 0). As described in Section 6.1, OMAC-e[P] enables us to simulate
EAX′-EP and EAX′-DP; note that the simulator only needs to compute the sum

of two outputs from CMAC′(0)
P and CMAC′(1)

P , and not to compute the out-
put itself. For instance, if we want to perform EAX′-EP for N = (N [1]∥N [2])
and M = (M [1]∥M [2]) with |N [1]| = |N [2]| = |M [1]| = n and |M [2]| =
n − 2, then the procedure is (1) Y ∥S[1]S[2] ← OMAC-e[P](0, N, 2), (2) C ←
msb2n−2(S[1]S[2])⊕M , (3) Y ′ ← OMAC-e[P](1, C, 0), where the last argument
is arbitrary, (4) T ← msbτ (Y ⊕Y ′), and (5) output (C, T ). The following propo-
sition is easy to check.

Proposition 1. There exist deterministic procedures, fe(·) and fd(·), that use
OMAC-e[P] as a black box and perfectly simulate EAX′-EP and EAX′-DP. That
is, we have9 EAX′-EP ≡ fe(OMAC-e[P]) and EAX′-DP ≡ fd(OMAC-e[P]).
9 Here F ≡ G means the equivalence of the output probability distribution functions,
i.e. Pr[F (x1) = y1, . . . , F (xq) = yq] = Pr[G(x1) = y1, . . . , G(xq) = yq]) for any



Algorithm OMAC-e[P]:
Initialization
00 L← P(0n), U

$← {0, 1}n
On query (t,X, d) ∈ {0, 1} × {0, 1}∗ × N
10 X[1]∥X[2]∥ . . . ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0 (note: w ← w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1]← P(2L⊕X[1])
14 for i = 1 to m− 2 do Y [i+ 1]← P(Y [i]⊕X[i+ 1])
15 V ← P(Y [m− 1]⊕ bp(X[m])⊕ 2w+1L)
15 Y ← V ⊕ U
16 if d = 0 return Y
17 else V ∧ ← V ∧ α
18 for j = 0 to d− 1 do S[j + 1]← P(V ∧ + j)
19 return Y ∥S[1]S[2] . . . S[d]
20 if t = 1
21 if |X| ≤ n then Y ′ ← P(bp(X)⊕ 4L⊕ 2w+1L)⊕ U ; return Y ′

22 else Y ′[1]← P(4L⊕X[1])
23 for i = 1 to m− 2 do Y ′[i+ 1]← P(Y ′[i]⊕X[i+ 1])
24 Y ′ ← P(Y ′[m− 1]⊕ bp(X[m])⊕ 2w+1L)⊕ U
25 return Y ′

Fig. 3. OMAC-extension using an n-bit URP, P.

A keyed function F compatible with OMAC-e[P] is said to have OMAC-e
profile, and we denote F (t,X, d) by F (t)(X, d). Suppose an adversary querying F
of OMAC-e profile has q queries (t1, X1, d1), . . . , (tq, Xq, dq) and corresponding
answers are Y1, . . . , Yq. Such an adversary is called to be with parameter list

(q, σin, σout) where σin
def
=

∑
i=1,...,q |Xi|n and σout

def
=

∑
i=1,...,q;ti=0 |Yi|n.

To further analyze OMAC-e[P], we introduce a set of ten functions, Q =
{Qi}i=1,...,10.

Definition 1. Let Qi : {0, 1}n → {0, 1}n for i = 1, 2, 3, 4, 7, 8, 9 and let Qj :
{0, 1}n × N → ({0, 1}n)>0 for j = 5, 6, and let Q10 : {0, 1}n \ {0n} → {0, 1}n.
These functions are defined as

Q1(x)
def
= P(2L⊕ x)⊕ Rnd1, Q2(x)

def
= P(4L⊕ x)⊕ Rnd2,

Q3(x)
def
= P(Rnd1 ⊕ x)⊕ Rnd1, Q4(x)

def
= P(Rnd2 ⊕ x)⊕ Rnd2,

Q5(x, d)
def
= GP,U (P(2L⊕ Rnd1 ⊕ x), d), Q6(x, d)

def
= GP,U (P(4L⊕ Rnd1 ⊕ x), d)

Q7(x)
def
= P(2L⊕ Rnd2 ⊕ x)⊕ U, Q8(x)

def
= P(4L⊕ Rnd2 ⊕ x)⊕ U,

Q9(x)
def
= P(2L⊕ 4L⊕ x)⊕ U, Q10(x)

def
= P(x)⊕ U,

fixed possible x1, . . . , xq and y1, . . . , yq. The probabilities are defined over F and G’s
randomness.
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Fig. 4. Component Functions of OMAC-extension. Here D and Q denote 2L and 4L
with L = P(0n), and U is uniformly random over n bits.

where P is an n-bit URP, and L = P(0n), and Rnd1 and Rnd2 are independent
n-bit random sequences, and U is another random n-bit value. Here, GP,U (v, d)
is v⊕U if d = 0 and (v⊕U∥P(v∧α)∥P((v∧α)+1)∥ . . . ∥P((v∧α)+ (d− 1))) if
d > 0. The sampling procedures for P, Rnd1, Rnd2, and U are shared by all Qis.

We also treat Q as a tweakable function with tweak t ∈ {1, . . . , 10} by writing
Q(t, x, d) = Qt(x, d) when t ∈ {5, 6} and otherwise Q(t, x, d) = Qt(x). We can
easily see that OMAC-e[P] can be simulated with black-box access to Q, just the
same as Q functions appeared in the proof of OMAC [9] that simulate OMAC.

We next define Q̃ = {Q̃i}i=1,...,10. For all i = 1, . . . , 10, Q̃i is compatible
with Qi.

Definition 2. Let P1, . . . ,P4 be four independent n-bit URPs. Let R7, . . . ,R10

be four independent n-bit URFs, and let R5 and R6 be two independent URFs



with n-bit input and (dmax + 1)n-bit output. Using them we define

Q̃1(x)
def
= P1(x), Q̃2(x)

def
= P2(x),

Q̃3(x)
def
= P3(x), Q̃4(x)

def
= P4(x),

Q̃5(x, d)
def
= Rd+1

5 (x), Q̃6(x, d)
def
= Rd+1

6 (x)

Q̃7(x)
def
= R7(x), Q̃8(x)

def
= R8(x),

Q̃9(x)
def
= R9(x), Q̃10(x)

def
= R10(x),

where Rd+1
i (x) = msbn(d+1)(Ri(x)) for i = 5, 6. Here dmax is the maximum

possible value of queried d, which will be determined by the underlying game and
the adversary’s parameter.

We say a function compatible with Q is said to have Q profile. An adversary
querying a function of Q profile is characterized by the number of queries, q,
and the total sum of output n-bit blocks for t ∈ {5, 6}, σout. The next lemma

shows the CPA-advantage in distinguishing Q and Q̃.

Lemma 1. Let A be the adversary querying a function of Q profile with param-
eter list (q, σout). Then we have Adv

cpa

Q,Q̃
(A) ≤ (3.5q2 + 10σoutq + 2.5σ2

out)/2
n.

The proof is given in the full-version.
Step 2: Modified CBC-MAC. For any n-bit (keyed) permutations, G and
G′, let CBCG,G′ : ({0, 1}n)>0 → {0, 1}n be defined as

CBCG,G′(X[1]∥ . . . ∥X[m]) =

{
G(X[1]) if m = 1

CBCG′(G(X[1])∥X[2]∥ . . . ∥X[m]) if m ≥ 2,

where CBCG′ is the standard CBC-MAC using G′. We then define a function
compatible with OMAC-e[P], denoted by CBC. For any X ∈ {0, 1}∗, let w(X) =

1 if |X| mod n ̸= 0 orX = ε and otherwise w(X) = 0. For |X| > n, CBC(0)(X, d)
is computed as follows.

1. X[1]∥X[2]∥ . . . ∥X[m]
n← X and w ← w(X)

2. Z ← CBCP1,P3(X[1]∥ . . . ∥X[m− 1])

3. Output Y ∥S[1]∥ . . . ∥S[d]← Rd+1
5+w(Z ⊕ bp(X[m]))

Here, if d = 0 the output is Y . Similarly, forX ∈ {0, 1}∗, CBC(1)(X) is computed
as follows.

1. X[1]∥X[2]∥ . . . ∥X[m]
n← X and w ← w(X)

2. If |X| ≤ n output Y ′ ← R9+w(bp(X)),
3. Otherwise Z ′ ← CBCP2,P4(X[1]∥ . . . ∥X[m−1]), and output Y ′ ← R7+w(Z

′⊕
bp(X[m])).

The pseudo-code of CBC (combining CBC(0) and CBC(1)) is presented in
Fig. 5. Here, Ri

j(X) for j = 5, 6 denotes msbni(Rj(X)). One can simulate



OMAC-e[P] via black-box accesses to Q, including the final mask by U . For ex-
ample, to simulate OMAC-e[P](0, N, 2) for |N | = 3n, we first perform a partition,
N [1]∥N [2]∥N [3]

n← N , and then proceed as (1) Y [1] ← Q1(N [1]), (2) Y [2] ←
Q3(N [2] ⊕ Y [1]), and (3) Y [3]∥S[1]S[2] ← Q5(N [3] ⊕ Y [2]). If |N [3]| = n − 2
then Q5(N [3]⊕ Y [2]) is replaced with Q6(N [3]∥10⊕ Y [2]). For more examples,
OMAC-e[P](1, C, 0) for |C| = n can be simulated via calling Q9(C). For |C| < n,
OMAC-e[P](1, C, 0) can be simulated via calling Q10(bp(C)) = Q10(C∥10 . . . 0).
Formally, we have the following proposition.

Proposition 2. There exists a procedure h(·) that uses Q as a black box and
perfectly simulates OMAC-e[P], i.e. h(Q) ≡ OMAC-e[P]. Moreover, we have

h(Q̃) ≡ CBC for this h(·).

Let RND(0) and RND(1) be the independent random functions compatible
with OMAC-e[P](0) and OMAC-e[P](1). Here, RND(0) takes (N, d) ∈ {0, 1}>n×N
and samples Y

$← ({0, 1}n)dmax+1 if N is new, and outputs msbn(d+1)(Y ), where

dmax is the same as CBC. Similarly RND(1) takes C ∈ {0, 1}∗ and outputs

Y ′ $← {0, 1}n if C is new. We define RND as a function consisting of RND(0) and

RND(1) and taking t = 0, 1 as a tweak. Then, we have the following lemma. The
proof is given in the full-version.

Lemma 2. Let A be an adversary querying a function of OMAC-e profile with
parameter list (q, σin, σout). Then, Adv

cpa
CBC,RND(A) ≤ 2σ2

in/2
n.

Step 3: Derivation of PRIV Bound. Combining the above lemmas and
propositions, our PRIV bound is derived. Let A be the CPA-adversary against
AE with parameter list (q, σN , σM ). Then there exist adversary B querying to a
function of OMAC-e profile with 2q queries, σin = σN + σM input blocks, and
σout = σM +2q output blocks, and adversary C querying to a set of ten functions
with Q profile, using σN +σM queries and σM +q output n-bit blocks for queries
with t = 5, 6, such that

Adv
priv

EAX′[Perm(n)]
(A) = Adv

cpa-nr

EAX′-EP,$
(A) = Adv

cpa-nr

fe(OMAC-e[P]),$(A) (7)

≤ Adv
cpa-nr

fe(OMAC-e[P]),fe(CBC)(A) + Adv
cpa-nr

fe(CBC),fe(RND)(A) + Adv
cpa-nr

fe(RND),$(A)︸ ︷︷ ︸
=0

(8)

≤ Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B) (9)

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) (10)

≤ Adv
cpa

Q,Q̃
(C) + 2(σN + σM )2

2n
(11)

≤ 3.5(σN + σM )2 + 10(σM + q)(σN + σM ) + 2.5(σM + q)2

2n
+

2(σN + σM )2

2n
(12)

≤ 18(σN + σM )2

2n
=

18σ2
priv

2n
, (13)



as q ≤ σN . Here, the second equality in Eq. (7) follows from Prop. 1, Eq. (10)
follows from Prop. 2, Eq. (11) follows from Lemma 2, and Eq. (12) follows from
Lemma 1. In addition, Advcpa-nrfe(RND),(A) = 0 holds because when A queries (N,M)

to fe(RND) the output is a subsequence of RND(0)(N, |M |n) with the first n bits

XORed by the output of RND(1) (whose input is a part of RND(0)(N, |M |n)).
As N is always fresh, the output is always random. This concludes the proof of
Theorem 1.

Step 4: Derivation of AUTH Bound. The AUTH bound is derived in a sim-
ilar way. Let EAX′ be the AE algorithm compatible with EAX′[Perm(n)] using
fe(RND) and fd(RND) for the encryption and decryption algorithms. We let A
be the CCA-adversary against AE with parameter list (q, qv, σN , σM , σÑ , σC̃).
Then we have the following bound.

AdvauthEAX′(A) ≤ qv/2
τ . (14)

The proof of Eq. (14) is given in the full-version. Then, there exist adversary
B querying to a function of OMAC-e profile with 2(q + qv) queries with σin =
σN + σM + σÑ + σC̃ and σout = σM + 2q + σC̃ + 2qv, and adversary C querying
to a function of Q profile with σN +σM +σÑ +σC̃ queries and σM + q+σC̃ + qv
output blocks for queries with t = 5, 6, such that

AdvauthEAX′[Perm(n)](A)

≤ Advcca-nr(EAX′-EP,EAX′-DP),(fe(RND),fd(RND))(A) + AdvauthEAX′(A) (15)

≤ Advcca-nr(fe(OMAC-e[P]),fd(OMAC-e[P])),(fe(RND),fd(RND))(A) +
qv
2τ

(16)

≤ Adv
cpa

OMAC-e[P],RND(B) +
qv
2τ

(17)

≤ Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B) +

qv
2τ

(18)

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) +

qv
2τ

(19)

≤ Adv
cpa

Q,Q̃
(C) +

2(σN + σM + σÑ + σC̃)
2

2n
+

qv
2τ

(20)

≤
3.5(σN + σM + σÑ + σC̃)

2 + 10(σM + q + σC̃ + qv)(σN + σM + σÑ + σC̃)

2n

+
2.5(σM + q + σC̃ + qv)

2

2n
+

2(σN + σM + σÑ + σC̃)
2

2n
+

qv
2τ

(21)

≤ 18σ2
auth

2n
+

qv
2τ

, (22)

since q ≤ σN and qv ≤ σÑ . Here, Eq. (16) follows from Prop. 1 and Eq. (14),
Eq. (19) follows from Prop. 2, Eq. (20) follows from Lemma 2, and Eq. (21)
follows from Lemma 1. This concludes the proof of Theorem 2.



Algorithm CBC (given dmax):
Initialization
00 for i = 1 to 4 do Pi

$← Perm(n)

01 R5
$← Func(n, dmax), R6

$← Func(n, dmax)

02 for j = 7 to 10 do Rj
$← Func(n) (note: R10’s actual input is in {0, 1}n \{0n})

On query (t,X, d) ∈ {0, 1} × {0, 1}∗ × N
10 X[1]∥X[2]∥ . . . ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0 (note: w ← w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1]← P1(X[1])
14 for i = 1 to m− 2 do Y [i+ 1]← P3(Y [i]⊕X[i+ 1])
15 if d = 0 then Y ← R1

5+w(Y [m− 1]⊕ bp(X[m])); return Y
16 else Y ∥S[1]∥S[2]∥ . . . ∥S[d]← Rd+1

5+w(Y [m− 1]⊕ bp(X[m]))
17 return Y ∥S[1]∥S[2]∥ . . . ∥S[d]
18 if t = 1
19 if |X| ≤ n then Y ′ ← R9+w(bp(X)); return Y ′

20 else Y ′[1]← P2(X[1])
21 for i = 1 to m− 2 do Y ′[i+ 1]← P4(Y

′[i]⊕X[i+ 1])
22 Y ′ ← R7+w(Y

′[m− 1]⊕ bp(X[m]))
23 return Y ′

Fig. 5. CBC using four n-bit URPs, four n-bit URFs, and two n-bit input, (dmax+1)n-
bit output URFs.

7 Fixing the Flaw

There would be ways to fix the flaw of EAX′ to make it as a secure general-
purpose AE accepting cleartexts of any length. Below, we provide some of them,
naming it to EAX′′. The concept here is not to touch the inside of EAX′, in-
stead using it as a black box. We only propose the fixes for encryption, as the
corresponding decryptions are fairly straightforward.

Method 1: EAX′′
1 -EK(N,M)

def
= EAX′-EK(0n∥N,M).

Method 2: Use two keys for E, K and K ′, and let

EAX′′
2 -EK,K′(N,M)

def
=

{
EAX′-EK(N,M) if |N | > n,

EAX′-EK′(0n∥N,M) if |N | ≤ n,

where K and K ′ are independent or K ′ = K ⊕ cst for a non-zero constant
cst. The choice of cst must be done with care to avoid related-key attacks.
For instance, letting cst = 1|K| seems natural while this is problematic with
DES due to the complementary property of the key schedule. One option is
to use a random-looking constant, say the first few digits of π.

Method 3: Use a key for E, K, and an independent n-bit key, L, and let

EAX′′
3 -EK,L(N,M)

def
=

{
EAX′-EK(N,M) if |N | > n,

EAX′-E⊕K,L(0
n∥N,M) if |N | ≤ n,



where EAX′-E⊕K,L is EAX′ encryption with blockcipher ẼK,L defined as

ẼK,L(X) = EK(X ⊕ L).

The security bounds of the above methods are easily derived from the results
of Theorems 1 and 2. For the latter option of Method 2 we also need a very
restricted form of related-key security of E, and for Method 3 we need the
theory of tweakable blockcipher [11]. Each method has its own pros and cons:
Method 1 is the simplest but needs additional blockcipher calls irrespective of
|N |. Methods 2 and 3 keep the original operation for |N | > n, but need additional
key or a stronger security requirement on E. We also warn that Method 3 allows
a partial key recovery attack with birthday complexity.

8 Concluding Remarks

Practical Implications. Attacks as those described in the current paper are
often turned down by non-cryptographers as “only theoretical” or “don’t apply
in practice”. Indeed, none of our attacks is applicable if the cleartext size exceeds
n bits. But even if ANSI C12.22 prohibited any cleartexts of size n = 128 bits
or shorter, including EAX′ in the standard would be like an unexploded bomb
– waiting to go off any time in the future. Remember that EAX′ is intended for
Smart Grid, i.e., for the use in dedicated industrial systems such as electrical
meters, controllers and appliances. It hardly seems reasonable to assume that
every device will always carefully check cleartexts and plaintexts for validity and
plausibility. Also, vendors may be tempted to implement their own nonstandard
extensions avoiding “unnecessarily long” texts.

For a non-cryptographer, assuming a “decryption oracle” may seem strange
– if there were such an oracle, why bother with message recovery attacks at all?
However, experience shows that such theoretical attacks are often practically
exploitable. For example, some error messages return the input that caused the
error: “Syntax error in ‘xyzgarble’.” Even if the error message does not transmit
the entire fake plaintext, any error message telling the attacker whether the fake
message followed some syntactic conventions or not is potentially useful for the
attacker. See [8] for an early example.

Also note that our forgery attacks allow a malicious attacker to create a large
number of messages with given single-block cleartexts and random single-block
plaintexts, that appear to come from a trusted source, because the authentication
succeeded. What the actual devices will do when presented with apparently valid
random commands is a source of great speculation.
Our Recommendation. Whenever possible, avoid adopting EAX′ in new ap-
plications. If EAX′ cannot be avoided, then this has to be carefully implemented
to exclude one-block cleartexts. We note that specifying the minimum data
length in standard documents does not necessarily prevent the adversary from
using short cleartexts. Therefore, the cleartext length checking mechanisms are
needed at both ends of encryption and decryption. Instead, one can safely use
EAX′′ which allows the re-use of EAX′ implementations. Other provably secure
authenticated encryptions, including the original EAX, are also safe options.
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