
On Weak Keys and Forgery Attacks against
Polynomial-based MAC Schemes?

Gordon Procter and Carlos Cid

Information Security Group,
Royal Holloway, University of London

{gordon.procter.2011,carlos.cid}@rhul.ac.uk

Abstract. Universal hash functions are commonly used primitives for fast and secure message
authentication in the form of Message Authentication Codes (MACs) or Authenticated Encryption
with Associated Data (AEAD) schemes. These schemes are widely used and standardised, the most
well known being McGrew and Viega’s Galois/Counter Mode (GCM). In this paper we identify some
properties of hash functions based on polynomial evaluation that arise from the underlying algebraic
structure. As a result we are able to describe a general forgery attack, of which Saarinen’s cycling
attack from FSE 2012 is a special case. Our attack removes the requirement for long messages and
applies regardless of the field in which the hash function is evaluated. Furthermore we provide a
common description of all published attacks against GCM, by showing that the existing attacks are
the result of these algebraic properties of the polynomial-based hash function. Finally, we greatly
expand the number of known weak GCM keys and show that almost every subset of the keyspace
is a weak key class.

Keywords: Universal Hashing, MAC, Galois/Counter Mode, Cycling Attacks, Weak Keys.

1 Introduction

The study of information-theoretic message authentication codes and universal hashing was ini-
tiated by Gilbert et al. [14] and Carter and Wegman [10,11,38,39]. Universal hash functions
can be used to construct message authentication codes in both the information-theoretically
secure and computationally secure settings (see [9,39]). Simmons [33] provides a general sum-
mary of the theory of unconditionally secure message authentication. Bernstein [2,3] provides
a thorough description of the geneology and more recent literature of unconditionally secure
message authentication, including a description of the contributions of Bierbrauer et al. [5], den
Boer [12], and Taylor [36] to polynomial-based hashing. Bernstein [4] also gives an interesting
overview of the security of universal hash function based MACs in the computationally secure
setting. Shoup [32] describes several methods for realising universal hash function families that
are related to polynomials including the evaluation hash [5,12,36] which is a variant of the di-
vision hash or cryptographic CRC of Krawczyk [21] (itself a variant of Rabin’s fingerprinting
codes [27]).

In this paper, we focus on message authentication codes constructed from universal hash
functions that are realised by polynomial evaluation. These are widely used and standardised;
for examples see [2,13,17,20,22,31]. McGrew and Viega’s Galois/Counter Mode (GCM) [26] is the
most widely deployed polynomial-based scheme. The algorithm is generally assumed to be secure,
with a small number of papers containing attacks against the authentication component via the
universal hash function: Ferguson’s attack against truncated GCM tags [15], demonstrating
that the security of short tags is significantly lower than would be expected; Joux’s ‘forbidden
attack’ [19], illustrating the brittleness of GCM under nonce reuse; Handschuh and Preneel’s [16]

? The work described in this paper has been supported in part by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

extension to Joux’s attack [16]; and Saarinen’s cycling attacks [29], which highlight a weakness
due to the underlying algebraic structure of a hash function based on polynomial evaluation.
Both Handschuh and Preneel [16] and Saarinen [29] have described classes of weak keys for
polynomial evaluation based universal hash functions, with Saarinen particularly focusing on
GCM.

Contributions. A motivation of this work was the observation that all existing attacks against
GCM are algebraic in nature, and in fact seem to exploit a fundamental underlying algebraic
structure of the polynomial-based hash function. The contributions of this paper are to identify
and study some of the properties of hash functions based on polynomial evaluation that are
the result of this underlying algebraic structure. As a result, we are able to describe a general
forgery attack, of which Saarinen’s cycling attack is a special case; our attack can however
be used with short messages, applies regardless of the field in which the hash is evaluated, and
facilitates length extension attacks against GCM. Furthermore, we provide a common description
of all published attacks against GCM by showing that the existing attacks are the result of
these algebraic properties of the polynomial-based hash function. Finally, we greatly expand the
number of known weak GCM keys, and show that almost every subset of the keyspace is a weak
key class. We note that the attacks presented in this paper do not in any way contradict the
security bounds for GCM given by McGrew and Viega [24]. However the algebraic properties
(and related attacks) discussed in this paper appear to be an inherent feature of polynomial-
based authentication schemes and therefore should be considered in the security assessment of
new schemes and extensions of existing ones.

Structure. This paper is structured as follows. In Section 2 we introduce the notation that
will be used throughout this paper and provide a brief description of the syntax and security of
message authentication codes. In Section 3 we give a basic overview of three schemes that use
hash functions based on polynomial evaluation for message authentication, including GCM and
SGCM. In Section 4 we describe the main technique used in this paper for the cryptanalysis
of polynomial-based authentication schemes and discuss some features of the resulting attack
that make it more interesting than cycling attacks. Section 5 contains a common description of
the existing attacks against GCM. In Section 6 we show that there are many more weak key
classes for hash functions based on polynomial evaluation than have previously been described
and suggest a method to realise a key recovery attack against polynomial-based hash function
schemes. Section 7 contains a discussion of the consequences of this attack.

2 Preliminaries

2.1 Notation

We consider a message M parsed as M1|| . . . ||Mm, where each Mi is n bits long and || represents
concatenation of strings. In the syntax of authenticated encryption with associated data [28],
this message consists of associated data A ∈ A that is authenticated but not encrypted and
plaintext P ∈ P that will be encrypted and authenticated.

A family of hash functions will be denoted H = {hH : {0, 1}? → {0, 1}n | H ∈ KH} with each
hash function hH indexed by a key H ∈ KH. A block cipher E is a family of permutations on
{0, 1}n, with each permutation indexed by a key k ∈ KE . The application of a block cipher to
input x ∈ {0, 1}n using key k will be denoted by Ek(x). Where a nonce is used it will be denoted
by N.

A finite field will be denoted by K unless the order of the field has particular relevance, in
which case it will be denoted by Fpr with |F| = pr. The multiplicative group of a field K will be
denoted by K?.

2.2 Universal hash functions

A family of hash functions is said to be ε–almost ⊕ universal if for every M,M ′ ∈ {0, 1}?
with M 6= M ′ and for every c ∈ {0, 1}n, PrH∈KH [hH(M)⊕ hH(M ′) = c] < ε. Throughout this
paper ε–almost ⊕ universal will be abbreviated to ε–AXU. This condition was introduced by
Krawczyk [21] under the name ε–OTP–Secure as it is a necessary and sufficient condition for
unconditional MAC security when the output of the hash function is encrypted with the one
time pad in a field of characteristic 2. In this paper we will generally refer to ε–AXU hash
function families; however any remark made that requires an ε–AXU hash function family in
characteristic 2 will also hold for an ε–almost strongly universal [34] or ε–almost ∆ universal
[35] hash function family in any finite field.

A polynomial based hash function family is a common way to realise an ε–AXU hash function
family. Shoup [32] describes several examples of this type of construction; the main example of
interest to this paper is the evaluation hash. In the case of the evaluation hash the message M
determines a polynomial gM =

∑m
i=1Mix

i ∈ K[x], where M = M1|| . . . ||Mm with each Mi ∈ K.
The hash key is an element H ∈ K and we define the hash function by hH(M) = gM(H).

There are several methods for turning a universal hash function into a message authentication
code (see [9,39] for early examples). The two most common methods are Ek(N) + hH(M) and
Ek(hH(M)).

2.3 Syntax

We will follow Black et al. [8] for a description of the syntax of nonce-based message authenti-
cation schemes. A message authentication scheme is a pair of algorithms, Gen and MAC, with
four associated sets: K, the set of possible keys;M, the message space; N , the set of nonces and
T , the set of possible authentication tags.

The key generation algorithm Gen takes as input the security parameter and probabilistically
outputs the shared key k ∈ K. The algorithm MAC takes as input a key k ∈ K, a nonce N ∈ N ,
and a message M ∈M and outputs a tag T ∈ T . The authenticity of a tuple (N,M, T) is verified
by computing MAC(k,N,M): if T = MAC(k,N,M) then the tag is valid, otherwise it is invalid.

2.4 Security

An adversary attacking a message authentication scheme is given access to two oracles: a tag
generation oracle S and a verification oracle V. At the beginning of the experiment Gen is run
to obtain k, then MAC takes queries (N,M) and returns MAC(k,N,M). The verification oracle
takes queries (N,M, T) and returns 1 if T = MAC(k,N,M) or 0 otherwise. An adversary is said
to successfully forge an authentication tag if they can produce a verification query (N,M, T) so
that V returns 1 when (N,M) was not previously queried to S.

A common restriction of this security notion is to nonce-respecting adversaries where, al-
though the adversary can control the nonce, they never query S for (N,M ′) if they have previ-
ously queried S for (N,M).

McGrew and Viega [24], Ferguson [15], and Handschuh and Preneel [16] all assert that the
probability of creating a valid (non-truncated) tag having seen a single valid (message, tag)
pair is approximately m/|K| where the polynomial is evaluated in K and m is the length of
message that the construction operates on. It is worth emphasising that in this context, m is the

maximum permissable message length. This is included in the original paper [24] but is not made
explicitly clear in the later papers [15,16]. In this paper we will demonstrate the importance of
this distinction via a method of forging GCM tags using a longer message than the one that was
given in the valid (message, tag) pair from the tag generation oracle.

Throughout this paper we will focus on GCM for concreteness however the majority of the
comments apply equally to any other hash function based on polynomial evaluation. Most of the
results in this paper apply equally to both common constructions of MACs from universal hash
functions, either T = Ek(N) + hH(M) or T = Ek(hH(M)), as our results are based on collisions
in the hash function. Where necessary it will be made clear that a remark is dependent on one
of these general constructions or the specific structure of GCM.

3 Polynomial-based Authentication Schemes

We present below a brief description of some of the main authentication schemes based on
polynomial evaluation hash functions that are of relevance to our work.

3.1 Galois/Counter Mode

Galois/Counter Mode (GCM) is an AEAD scheme submitted to NIST by McGrew and Viega
in 2004, with the specification slightly revised in 2005 [26] (although the revision contained ‘no
normative changes [from the 2004 specification]’). GCM combines counter mode encryption with
a polynomial evaluation based MAC following the Encrypt–then–MAC paradigm, although the
authentication key is derived from the block cipher key.

AES–GCM encryption takes as input: a key k, an initialisation vector IV (the nonce), plain-
text P = P1|| . . . ||Pp and additional data A = A1|| . . . ||Aa. The key is 128, 192 or 256 bits long;
the IV should preferably be 96 bits long although any length is supported (see [18]); and for each
i, |Pi| = |Ai| = 128 except for perhaps a partial final block. With this input, AES–GCM returns
a ciphertext C = C1|| . . . ||Cp (the same length as the plaintext) and an authentication tag T.

The plaintext is encrypted using AES in counter mode, under key k with counter value
starting at CTR1. If the IV is 96 bits long the initial counter value (CTR0) is IV||0311, otherwise
it is a polynomial evaluation based hash of IV after zero padding (using the hash key described
below). For each i, CTRi = inc(CTRi−1), where inc(·) increments the last 32 bits of its argument
(modulo 232).

The authentication tag is computed from a polynomial evaluation hash (in F2128). The mes-
sage M is parsed as 128-bit blocks (with partial final blocks zero padded) and each block is
interpreted as an element of F2128 . The first block M1 encodes the length of the (unpadded)
plaintext and additional data and will be referred to as the ‘length field’ throughout this pa-
per. This is followed by blocks of additional data M2, . . . ,Ma+1 = Aa, . . . ,A1 and then the
encrypted plaintext Ma+2, . . . ,Ma+p+1 = Cp, . . . ,C1. Note that in this description the labelling
of the blocks Mi are reversed from those given in the original GCM specification as this gives
a neater description of the polynomial used in evaluating the hash function. The hash key H
is derived from the block cipher key: H = Ek(0128). The hash function is then computed as
hH(M) =

∑a+p+1
i=1 MiH

i (where all operations are in F2128). The authentication tag is given by:

TM = Ek(CTR0)⊕ hH(M).

3.2 Sophie Germain Counter Mode

In 2012, Saarinen [29] observed cycling attacks against GCM and other polynomial MACs and
hashes. Following this Saarinen proposed SGCM [30] as a variant of GCM; SGCM differs from

GCM only by the choice of field in which the hash is computed. SGCM uses Fq, where q =
2128+12451, rather than F2128 , as F?q has significantly fewer subgroups than F?2128 . It was claimed
that SGCM offers increased resistance to cycling attacks as a result of this change.

3.3 Poly1305–AES

Bernstein proposed Poly1305–AES in 2005 [2]1. Poly1305–AES takes as input two 128-bit keys,
one for AES and one for the hash (with some specific bits set to zero); a 128 bit nonce; and a
message (a byte string). The output of Poly1305–AES is a 128-bit authentication tag.

The hash of a message is computed by evaluating a message-dependant polynomial at the
secret key (in F2130−5), and encrypting this by adding (in F2130−5) the output of AESk(N) before
reducing modulo 2128.

4 Algebraic Structure of Polynomial-based Authentication Schemes

LetH be a family of hash functionsH = {hH : {0, 1}? → {0, 1}n | H ∈ KH} based on polynomial
evaluation and let M be an input string. Let hH(M) = gM(H), where gM(x) =

∑m
i=1Mix

i ∈ K[x]
and H ∈ K. Now let q(x) =

∑r
i=1 qix

i ∈ K[x] be a polynomial with constant term zero, such
that q(H) = 0. Then it follows that

hH(M) = gM(H) = gM(H) + q(H) = gM+Q(H) = hH(M +Q),

where Q = q1||q2|| . . . ||qr and the addition M +Q is done block-wise (the shorter is zero-padded
if required). Thus given a polynomial q(x) satisfying these properties, it is straightforward to
construct collisions for the hash function. It is trivial to see that one can use any polynomial
q(x) ∈ 〈x2 −Hx〉 ⊆ K[x].

Collisions in the hash function correspond to MAC forgeries by substituting the original
message for the one that yields a collision in the hash function. These forgeries arise from
collisions in the hash function and hence the messages can be substituted without any dependence
on the method or key used to encrypt the output of the hash function. This method allows an
adversary to create forgeries when he has seen a tuple of (nonce, message, tag) by only modifying
the message.

It should be noted that the polynomial defined by the message will always have a zero
constant term and therefore the polynomial q(x) that is used to forge will always have x as
a factor. If this term were non-zero and the hash of a message was encrypted additively (i.e.
T = Ek(N) + hH(M)), it would be possible to flip bits in the first message block and flip the
same bits in the authentication tag to create a valid forgery. This is the major difference between
Shoup’s Cryptographic CRC [32] and Rabin’s fingerprinting codes [27].

The main observation of this paper is that by working with polynomials in the ideal 〈x2−Hx〉,
it is straightforward to produce forgeries for polynomial evaluation based authentication schemes.
In [29], Saarinen proposed cycling attacks by working with particular polynomials, namely xn−x
(for more detail, see Section 5.4). The forgery is successful if (x −H)|(xn − x) and therefore if
xn − x ∈ 〈x2 − Hx〉. However, the forgery will be successful if any polynomial in this ideal is
used to mount a similar attack. Furthermore, use of these polynomials also makes it possible to
test for membership of large subsets of the keyspace with a single valid (message, tag) pair and
a single verification query (see Section 6).

1 There is a preliminary version from 2004 on his website: http://cr.yp.to/mac.html

http://cr.yp.to/mac.html

4.1 Malleability

In [29], Saarinen also describes ‘targeted bit forgeries’ against GCM where, rather than swapping
the full blocks Mi and Mi+jt, corresponding bits in each ciphertext block are flipped. This can
also be described by the more general attack, by using a multiple of q(x).

If q(H) = 0, then α · q(H) = 0 for any α ∈ K and

TM = Ek(N) + hH(M)

= Ek(N) +M1 ·H + · · ·+Mm ·Hm

= Ek(N) + (M1 + αq1) ·H + · · ·+ (Mm + αqm) ·Hm

= TM+αQ

where TM+αQ is the authentication tag for the message M1⊕α · q1|| . . . ||Mm⊕α · qm (recall that
M contains the associated data, encrypted plaintext and the length of both).

If the plaintext is encrypted using a stream cipher (or a block cipher in counter mode)
flipping bits in the ciphertext causes the same bits in the paintext to be flipped. This allows us
to predict relations between the original plaintext and the forged plaintext (as Ci⊕αqi decrypts
to Pi ⊕ αqi). Because α can be chosen so as to set Ci ⊕ αqi equal to any value chosen by the
adversary (for a single i), an adversary can choose a differential (in a single block) between the
original message and the forged message.

If further control over the underlying plaintext in required, several forgery polynomials could
be used. In the best case, using t polynomials permits the adversary control over tmessage blocks.
The cost of this extra malleability is that the forgery is only successful if the authentication key
is a root of the greatest common divisor of the two polynomials. This can be extended to give
as much control over the plaintext as required, but for every extra malleable block the success
probability is reduced by at least 1

|KH| .

If the plaintext were encrypted using a block cipher (not in counter mode) then an adversary
would not have this fine control over the plaintext, but would still be able to manipulate the
ciphertext in this way.

This property also permits an adversary to create as many forgeries as there are non-zero
elements in the field (see [7,25] for further discussion of multiple forgeries).

4.2 Length Extension

In the GCM specification, the last block input to the hash function (corresponding to the term
M1 ·H in the MAC calculation) describes the length of the plaintext and additional data. The
more general attack described in this paper allows an adversary to manipulate the length field
(even though it does not explicitly appear in the sent message). If an adversary is given a valid
tag for a message then the content of the length field is known, as it correctly encodes the length
of the plaintext and additional data. It is therefore possible to choose a differential in the length
field so that it corresponds to the length of the new message. In particular, forgeries can be
created using high degree polynomial q(x) regardless of the size of the message in the initial
(message,tag) pair.

This is an important remark as it removes one significant limitation on the effectiveness of
cycling attacks against GCM [29], which is the length of the message necessary to launch an
attack. For a cycling attack to be attempted, an adversary requires as many blocks of correctly
authenticated data as there are elements in the subgroup with which he wishes to forge, in order
to swap the first and last blocks. By manipulating the length field any forgery probability can
be realised starting with a valid authentication tag on a single message block.

A common criticism of GCM is that the maximum message length may be restrictive in the
future as data rates increase [15]. However, it follows from our work (and the original security
proofs [24]) that increasing the maximum permissible length would significantly decrease the
security of the scheme.

4.3 Key recovery

Saarinen suggests that once a weak key has been identified (by a successful cycling attack), the
adversary would create many forgeries by further cycling attacks [29, Sect. 9]. Translating this to
the more general polynomial root description: once a successful forgery occurs, the authentication
key is known to be one of the roots of the ‘forgery polynomial’ q. Therefore rather than making
repeated ‘cycling forgeries’ with guaranteed success but limited control of the plaintext, the
adversary can aim to recover the authentication key and forge authentication tags for arbitrary
messages. By attempting to forge using a subset of the roots of the forgery polynomial (and
reducing the number of roots in the subset after each successful attempt), an adversary can
gradually recover the authentication key using a method that is independent of encryption
method or key used. This would give a forgery probability less than 1 at each stage, however the
adversary can choose a trade-off between the forgery probability and the speed of recovering the
authentication key. This is analogous to the key recovery attack described by Handschuh and
Preneel [16] (where the subsets are chosen to realise a binary search of the keyspace). Note that
in the case of GCM, recovery of the hash key H does not lead to the recovery of the encryption
key k as H = Ek(0).

4.4 Choosing Polynomials

To maximise the probability of a successful forgery it is important that the polynomial used to
attempt a forgery has many distinct roots, as a root with multiplicities increases the degree of the
polynomial (and hence the length of the attempted forgery) without increasing the probability
of success. The näıve way to achieve this is to compute q(x) =

∏
i (x−Hi) for as many Hi as is

required to give the desired forgery probability.
Alternatively, if the polynomial defined by the hash function is evaluated in Fpr and the

irreducible factorisation of xp
r − x is computed in a subfield Fpd , a subset of these factors

can be multiplied together (in Fpd). By choosing distinct irreducible factors, the roots of the
product polynomial will be distinct. Cycling attacks [29] employ a variation on this method.
The factorisation

22
n − 1 =

n∏
i=1

22
i−1

+ 1

allows Saarinen to find factors of x2
128−x in F2[x] which can be used in a cycling attack (although

they are not necessarily irreducible):

x2
128 − x = x(x− 1)

(x3 − 1)

x− 1

(x5 − 1)

x− 1

(x17 − 1)

x− 1
· · ·

= x(x− 1)(1 + x+ x2)(1 + x+ · · ·+ x4)(1 + x+ · · ·+ x16) . . .

To carry out a cycling attack using a subgroup of order t, the factors x, (x − 1) and (xt−1)
x−1

are multiplied together to obtain the polynomial xt+1− x. In general there is no requirement to
select (x−1) or to use only three factors, for example the polynomial x(1+x+x2)(1+x+. . . x16)
could be used to give a forgery probability of 19

2128
. This is not a cycling attack, as the polynomial

used contains more than two terms so the forgery does not involve simply swapping two message
blocks, but it does rely on the same underlying algebraic structure.

A third option is to use a randomly selected polynomial in Fpr [x]. One potential issue with
this method is the presence of repeated factors. Square-free factorisation has been extensively
studied as it is a common first step in many polynomial factorisation algorithms (for example,
see [37, Ch. 14]). It may be feasible to sample polynomials from Fpr [x] randomly and process
this polynomial to make it more desirable by removing repeated factors. This method does not
appear promising due to the large number of irreducible polynomials of any given degree in Fpr [x]
and the observation that a degree d polynomial that consists of a single linear factor and an
irreducible polynomial of degree d−1 is almost as bad as a degree d irreducible polynomial from
a forgery probability perspective. Irreducible polynomials in Fp that are known to have a root
in Fpr would be good candidates for attempting forgeries as the normality of Fpr/Fp guarantees
that these polynomials will split into linear factors. Unfortunately this does not appear to be
a well studied area. A further disadvantage of choosing random polynomials is that, although
the roots of a polynomial in K[x] can be identified efficiently (see [1] for example), it would
be unlikely that a non-intersecting subset of the keyspace would be used for a second forgery
attempt if the first was unsuccessful.

5 Existing Attacks against GCM

We show below that the four known attacks on GCM can be described as special cases of the
properties discussed in Section 4.

5.1 Ferguson’s Short Tag Attack

Ferguson’s attack against GCM when short tags are used [15] begins by attempting to forge
using a particular class of polynomials (linearised polynomials). Linearised polynomials have
the property that their roots form a linear subspace of the splitting field of the polynomial
(see [23, Ch 3.4] for an overview). Ferguson uses polynomials in F2[x] that split over F2128 , so
the roots correspond to possible authentication keys and it is possible to describe the roots of a
linearised polynomial using a matrix over F2. Multiple successful forgeries reduce the dimension
of the subspace of the keyspace that contains the authentication key and eventually an adversary
can recover the key.

5.2 Joux’s Forbidden Attack

Joux’s ‘forbidden attack’ against GCM [19] is also a specific case of the properties discussed in
this paper. This attack requires two messages, M and M ′, that are authenticated with the same
(key, IV) pair. Reusing the (key, IV) pair in GCM has the effect of reusing H, k and N:

TM ⊕ TM ′ = (hH(M)⊕ fk(N))⊕ (hH(M ′)⊕ fk(N))

= hH(M)⊕ hH(M ′)

= hH(M ⊕M ′)

The adversary knows TM , TM ′ and both messages so is able to derive a polynomial that is
satisfied by the hash key. This attack is prevented if we only consider nonce-respecting adver-
saries.

5.3 Handschuh and Preneel

Handschuh and Preneel [16] describe a key recovery attack and a method to verify a guess for
a key. They identify the key recovery attack as an extension of Joux’s ‘forbidden attack’ which
does not require nonce reuse. It consists of attempting to create a forgery and then searching
through the roots of the polynomial defined by the difference betweeen the original message and
the forged message. This was initially identified by Black and Cochran [6], but extended and
generalised by Handschuh and Preneel. The method for verifying a key guess H corresponds
precisely with attemping to forge using the polynomial (x2 −Hx).

Handschuh and Preneel consider their attack to be infeasible for GCM due to the blocksize
of 128 bits, however it is precisely as feasible as Saarinen’s cycling attacks.

5.4 Saarinen’s Cycling Attacks

In 2012, Saarinen observed cycling attacks against GCM and other polynomial-based MACs and
hashes [29]. If a hash key H lies in a subgroup of order t, then Ht = 1 ∈ K and (for any i, j)
message blocks Mi and Mi+jt can be swapped without changing the value of the hash.

For example (ignoring GCM’s length encoding), if H4 = H then blocks M1 and M4 can be
swapped without changing the value of the hash:

hH(M1||M2||M3||M4) = M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

= M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H4

= hH(M4||M2||M3||M1).

It is more natural and general to consider the authentication keys that fall in low order
subgroups as roots of a low degree polynomial. Cycling attacks correspond to the general attack
introduced in this paper, using the polynomial

q(x) = (Mi −Mi+jt)(x
t+1 − x),

noting that in fields of characteristic 2 subtraction is the same as ⊕.

hH(M1||M2||M3||M4) =M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

=M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

⊕ (M1 ⊕M4) ·H ⊕ (M1 ⊕M4) ·H4

=M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H
=hH(M4||M2||M3||M1)

Using the more general ‘polynomial roots’ description it is possible to forge using any subset
of the keyspace. If the authentication keys that we wish to attempt to forge with are the elements
of a low order subgroup, for example the order three subgroup of F?2128 (identified by Saarinen [29,
Sect. 4.1]) plus the all zero key:

H0 = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H1 = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H2 = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

H3 = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

then the polynomial that is created corresponds precisely to Saarinen’s cycling attack. In this
case (x−H0)(x−H1)(x−H2)(x−H3) = x4 − x.

6 Weak Keys for Polynomial-based Authentication Schemes

For any cryptographic algorithm, a relevant question for its security assessment is whether it
contains weak keys. Handschuh and Preneel [16, Sect. 3.1] give the following definition of weak
keys:

In symmetric cryptology, a class of keys [D] is called a weak key class if for the members of
that class the algorithm behaves in an unexpected way and if it is easy to detect whether
a particular unknown key belongs to this class. For a MAC algorithm, the unexpected
behavior can be that the forgery probability for this key is substantially larger than
average. Moreover, if a weak key class [D] is of size C, one requires that identifying that
a key belongs to this class requires testing fewer than C keys by exhaustive search and
fewer than C verification queries.

Handschuh and Preneel [16] identify 0 as a weak authentication key for GCM and other
similar constructions as h0(M) = 0 for every message M. Following the definition above and
because |D| = 1, an adversary is not allowed to test any key by exhaustive search, nor are
they allowed any verification queries. For a single element subset of the keyspace D = {H?}
to be a weak key class, a nonce-respecting adversary has to be able to identify whether or not
H = H? when they are given a number of (message, tag) pairs of their choosing (each created
using a different IV). We note that a nonce-respecting adversary can detect whether D = {0} if
|IV| 6= 96: in this case all IVs hash to give the same initial counter value and h0(M) = 0 for every
message M so all messages have the same authentication tag (as identified in [24, Sect. 5]). If
|IV| = 96 a different initial counter value is used to encrypt the output of the hash function and
so although the output of the hash function does not change this cannot be detected given the
output of the MAC algorithm.

Saarinen [29] demonstrated that the situation is much worse than described by Handschuh
and Preneel, as he was able to find classes of weak keys where the authentication key falls
in a low order subgroup of K?. It is then possible to create a valid forgery by swapping two
message blocks of a valid (message, tag) pair without changing the authentication tag if the
authentication key lies in a subgroup with order dividing the distance between the swapped
message blocks.

This forgery will be successful if and only if the key is an element of such a subgroup and
therefore this provides a simple method for identifying weak keys which requires one valid (mes-
sage, tag) pair and one verification query. These classes of weak keys therefore meet Handschuh
and Preneel’s definition of weak keys.

For example, the subset of authentication keys corresponding zero and the elements of the
subgroup of order 3 in F2128 is a weak key class. Membership of this subset can be confirmed by a
successful forgery if Mi and Mj are swapped and i ≡ j mod 3. This is equivalent to attempting
a forgery using (a multiple of) the polynomial x4 − x.

However, it follows from the discussion in Section 4 that it is possible to derive comparable
statements for any set of authentication keys in F2128 , except that rather than ‘nice’ binary
descriptions, the polynomial description will involve elements of F2128 . In particular, for any set
of authentication keys D we can use any polynomial in the ideal

∏
H∈D〈x2 − Hx〉 to test for

membership of that subset of the keyspace. It follows that almost every subset of the GCM
keyspace is weak. We discuss this issue further in Sections 6.1 and 7.

6.1 Keyspace Search

Based on the properties discussed in Section 4 it is possible to test for membership of any subset
of the keyspace using at most two verification queries. Membership of subsets that include the

zero key can be tested by setting q(x) =
∏
H∈D (x−H). This therefore requires one verification

query, independent of the size of D. To test for membership of a subset D that does not include
zero, first test whether H ∈ D∪{0} and then rule out H = 0 using the method described below.
This therefore requires two verification queries, but again is independent of the size of D. The
distinction between subsets including zero or not including zero is a consequence of the constant
term of gM(x) being zero to avoid predictable changes in the output of the hash from flipping
low order bits.

Therefore, using Handschuh and Preneel’s definition, a set D of GCM authentication keys is
a weak key class if either: |D| ≥ 3 or |D| ≥ 2 and 0 ∈ D.

Given one valid (message, tag) pair for a single block message and one verification query it
is easy to determine whether or not H = 0. If the adversary attempts to forge using any other
single block message and the same tag, then the forgery is successful if and only if H = 0 as
seen below.

If no length encoding is used:

T = E(CTR0) + (M ·H)

= E(CTR0) + (M ′ ·H)

⇔ (M −M ′) ·H = 0

⇔M = M ′ or H = 0

If a GCM style length encoding is used:

T = E(CTR0) + (length ·H) + (M ·H2)

= E(CTR0) + (length ·H) + (M ′ ·H2)

⇔ (M −M ′) ·H2 = 0

⇔M = M ′ or H = 0

By testing for membership of subsets of the keyspace, it is plausible that an adversary could
recover one bit of the authentication key with each forgery attempt. If q(x) =

∏
H∈Y (x−H),

where Y is the set of authentication keys for which the first bit is zero, then a successful forgery
confirms that the first bit of the authentication key is zero and a failure confirms that the first
bit is one. Repeating this for each bit of the authentication key, the whole key could be recovered
using 128 verification queries.

This would require unfeasibly large messages to be used in the forgery attempts in the case
of authentication keys corresponding to elements of a field with |K| ≈ 2128, but it is a strong
argument against using a hash function based on polynomial evaluation in a field with |K| � 2128.
This may be a direction taken by variants of GCM designed to improve the performance of GCM
(see [40] for one such example), however we recommend extreme caution when considering these
modifications. In the case of GCM the size of the subsets that can be tested is limited to around
256 as the maximum message length is limited.

One advantage of being able to test for membership of arbitrary subsets is that it allows the
adversary to use any partial knowledge of the authentication key that they may have.

7 Discussions and Conclusions

7.1 Choice of Fields

It is true that the security against cycling attacks, as presented in [29], can be increased by
evaluating a hash function in a field with a multiplicative group, the order of which does not

have many factors. However the attack introduced in this paper (of which cycling attacks is a
special case) applies equally well in any finite field, so Saarinen’s claim that ‘The security of
polynomial-evaluation MACs against attacks of this type of attack can be determined from the
factorization of the group size in a straightforward manner’ [29, Sect. 8] is somewhat misleading.

Saarinen’s claim is valid in the sense that the factorisation of |K| − 1 determines the extent
to which the process of computing irreducible factors will succeed; however an attack using∏
H∈D (x−H) will work equally well in every field. In particular, it follows from our work that

the SGCM variant of GCM has the same inherent weaknesses regarding polynomial based forgery
attacks.

7.2 Length Extension

It is unfortunate that including the length of the additional authenticated data and plaintext in
the input to the hash function is not sufficient to prevent the length extension attack presented
in this paper. In schemes that use a GCM–like length encoding, if the value of the length field
were encrypted using a block cipher before being input to the hash function, it would not be
possible to alter the message length as described in Section 4. However, one of the design goals
of GCM was to take advantage of AES pipelining, which precludes the use of the block cipher
to compute the authentication tag.

7.3 Malleability

Part of the reason that this weakness in the algebraic structure of polynomial hashing is prob-
lematic for GCM is that it allows an adversary to choose the changes that are made to the
plaintext in a forged message. This is because addition in a field of characteristic 2 is used for
both the counter mode encryption and the hash function evaluation.

One way to avoid this issue is to use different operations during encryption and MAC gen-
eration. This is one significant advantage that (CTR & Poly1305–AES) [2] has over GCM, as
in this scheme the MAC is computed using addition in a prime order field while the message is
encrypted using addition in a field of characteristic 2.

An alternative method to increase the difficulty for an adversary attempting to make mean-
ingful manipulations of plaintext is to use a mode of operation other than CTR as this will
prevent the ‘targeted bit forgeries’ described by Saarinen [29, Sect. 6] and the analogous forg-
eries in this paper.

GCM roughly follows the Encrypt–then–MAC paradigm, as is generally perceived to be best
practice (although MAC–then–Encrypt has also been proved secure in the nonce-based AEAD
setting [28]). Despite going against the perceived best practice, using a MAC–then–Encrypt
approach (in addition to the proposed changes described above) would make it harder for an
adversary to create ciphertexts that correctly decrypt to a plaintext known to be related to
a (plaintext,ciphertext) pair obtained from a query. We note however that the introduction of
other weaknesses caused by making these changes has not been ruled out.

7.4 Weak Keys

The weak key classes that are identified in Section 6 cause the forgery probability to be higher
than expected because an adversary can detect whether the authentication key that is being
used is a member of that class and can then forge with probability one.

The broader issue with polynomial evaluation based hashes is that it is possible to test for
membership of large subsets of the keyspace with only one or two verification queries and once
an adversary has successfully confirmed membership of a subset he can either continue to forge

messages or conduct a search of a much reduced keyspace. This is an unusual and undesirable
property of a cryptosystem.

It is interesting that the two-element subsets of the keyspace containing zero are weak key
classes, while those that do not contain zero are not, yet any subset of the keyspace containing
at least three elements is weak. This perhaps suggests a problem with the definition of a weak
key class. In our opinion the definition is correct and the observations made in this paper are
unavoidable properties of hash functions based on polynomial evaluation that result from the
algebraic structure of the construction, so are not best described in terms of the number of weak
keys.

The most important discussion around this issue is whether an algorithm in which almost
every subset of the keyspace is a weak key class is a weak algorithm or whether this is a property
of the construction that, although highly undesirable, is not considered to reduce the security
of the scheme to an unacceptable level. We suggest that in the case of GCM it is the latter; in
other polynomial-based MAC schemes with different parameters it may be the former and this
property must be considered when designing and evaluating schemes.

References

1. E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation, 24(111):pp.
713–735, 1970.

2. D. J. Bernstein. The Poly1305-AES message-authentication code. In H. Gilbert and H. Handschuh, editors,
FSE, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.

3. D. J. Bernstein. The Poly1305-AES message-authentication code. Slides from FSE, 2005. http://cr.yp.
to/talks/2005.02.21-1/slides.pdf.

4. D. J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup authenticators. In R. Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 164–180. Springer, 2005.

5. J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets. On families of hash functions via geometric codes
and concatenation. In Douglas Stinson, editor, Advances in Cryptology CRYPTO 93, volume 773 of Lecture
Notes in Computer Science, pages 331–342. Springer Berlin / Heidelberg, 1994. 10.1007/3-540-48329-2 28.

6. J. Black and M. Cochran. MAC reforgeability. Cryptology ePrint Archive, Report 2006/095, 2006.
7. J. Black and M. Cochran. MAC reforgeability. In O. Dunkelman, editor, FSE, volume 5665 of Lecture Notes

in Computer Science, pages 345–362. Springer, 2009.
8. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure message authenti-

cation. In Michael Wiener, editor, Advances in Cryptology CRYPTO 99, volume 1666 of Lecture Notes in
Computer Science, pages 79–79. Springer Berlin / Heidelberg, 1999. (full version).

9. G. Brassard. On computationally secure authentication tags requiring short secret shared keys. In D. Chaum,
R. L. Rivest, and A. T. Sherman, editors, CRYPTO, pages 79–86. Plenum Press, New York, 1982.

10. L. Carter and M. N. Wegman. Universal classes of hash functions (extended abstract). In J. E. Hopcroft,
E. P. Friedman, and M. A. Harrison, editors, STOC, pages 106–112. ACM, 1977.

11. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

12. B. den Boer. A simple and key-economical unconditional authentication scheme. Journal of Computer
Security, 2:65–72, 1993.

13. M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode (GCM) and GMAC.
NIST Special Publication 800-38D, NIST, Nov 2007.

14. F. J. MacWilliams E. N. Gilbert and N. J. A. Sloane. Codes which detect deception. Technical Report 3,
Bell Sys. Tech. J., Mar 1974.

15. N. Ferguson. Authentication weaknesses in GCM. Comments submitted to NIST Modes of Operation Process,
2005.

16. H. Handschuh and B. Preneel. Key-recovery attacks on universal hash function based MAC algorithms. In
D. Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 144–161. Springer,
2008.

17. K. Igoe and J. Solinas. AES Galois Counter Mode for the secure shell transport layer protocol. IETF Request
for Comments 5647, 2009.

18. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In R. Safavi-Naini
and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer,
2012.

http://cr.yp.to/talks/2005.02.21-1/slides.pdf
http://cr.yp.to/talks/2005.02.21-1/slides.pdf

19. A. Joux. Authentication failures in NIST version of GCM. Comments submitted to NIST Modes of Operation
Process, 2006.

20. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated encryption mode.
In B. K. Roy and W. Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 408–426.
Springer, 2004.

21. H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor, CRYPTO, volume 839 of
Lecture Notes in Computer Science, pages 129–139. Springer, 1994.

22. L. Law and J. Solinas. Suite B cryptographic suites for IPsec. IETF Request for Comments 6379, 2011.
23. R. Lidl and H. Neiderreiter. Finite Fields, volume 20 of Encylopedia of Mathematics and its Applications.

Cambridge University Press, 2nd edition, 1997.
24. D. McGrew and J. Viega. The security and performance of the Galois/Counter Mode (GCM) of operation.

In Anne Canteaut and Kapaleeswaran Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004,
volume 3348 of Lecture Notes in Computer Science, pages 377–413. Springer Berlin / Heidelberg, 2005.
10.1007/978-3-540-30556-9 27.

25. D. A. McGrew and S. R. Fluhrer. Multiple forgery attacks against message authentication codes. Comments
submitted to NIST on the Choice Between CWC or GCM, 2005.

26. D. A. McGrew and J. Viega. The Galois/Counter Mode of operation (GCM). Submission to NIST Modes of
Operation Process, May 2005.

27. M. O. Rabin. Fingerprinting with random polynomials. Technical Report, 1981.
28. P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM Conference on

Computer and Communications Security, pages 98–107. ACM, 2002.
29. M.-J. O. Saarinen. Cycling attacks on GCM, GHASH and other polynomial MACs and hashes. In A. Canteaut,

editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages 216–225. Springer, 2012.
30. M.-J. O. Saarinen. SGCM: The Sophie Germain Counter Mode. Cryptology ePrint Archive, Report 2012/326,

2012.
31. M. Salter and R. Housley. Suite B profile for transport layer security (TLS). IETF Request for Comments

6460, 2011.
32. V. Shoup. On fast and provably secure message authentication based on universal hashing. In N. Koblitz,

editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.
33. G. J. Simmons, Institute of Electrical, and Electronics Engineers. Contemporary cryptology: the science of

information integrity. IEEE Press, 1992.
34. D. R. Stinson. Universal hashing and authentication codes. Designs, Codes and Cryptography, 4(3):369–380,

1994.
35. D. R. Stinson. On the connections between universal hashing, combinatorial designs and error-correcting

codes. Electronic Colloquium on Computational Complexity (ECCC), 2(52), 1995.
36. R. Taylor. Near optimal unconditionally secure authentication. In Alfredo De Santis, editor, Advances in

Cryptology EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 244–253. Springer
Berlin / Heidelberg, 1995. 10.1007/BFb0053440.

37. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, Cambridge, 2nd
edition, 2003.

38. M. N. Wegman and L. Carter. New classes and applications of hash functions. In FOCS, pages 175–182.
IEEE Computer Society, 1979.

39. M. N. Wegman and L. Carter. New hash functions and their use in authentication and set equality. J.
Comput. Syst. Sci., 22(3):265–279, 1981.

40. K. Yasuda and K. Aoki. The security and performance of GCM when short multiplications are used instead.
Inscrypt 2012, to appear.

	On Weak Keys and Forgery Attacks againstPolynomial-based MAC Schemes

