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Abstract. In this work we consider generic algorithms to find near-
collisions for a hash function. If we consider only hash computations, it
is easy to compute a lower-bound for the complexity of near-collision
algorithms, and to build a matching algorithm. However, this algorithm
needs a lot of memory, and makes more than 2n/2 memory accesses.
Recently, several algorithms have been proposed without this memory
requirement; they require more hash evaluations, but the attack is actually
more practical. They can be divided in two main categories: they are
either based on truncation, or based on covering codes.

In this paper, we give a new insight to the generic complexity of a near-
collision attack. First, we consider time-memory trade-offs for truncation-
based algorithms. For a practical implementation, it seems reasonable
to assume that some memory is available and we show that taking
advantage of this memory can significantly reduce the complexity. Second,
we show a new method combining truncation and covering codes. The new
algorithm is always at least as good as the previous works, and often gives
a significant improvement. We illustrate our results by giving a 10-near
collision for MD5: our algorithm has a complexity of 245.4 using 1TB of
memory while the best previous algorithm required 252.5 computations.

Keywords: Hash function, near-collision, generic attack, time-memory
trade-off

1 Introduction

Hash functions are fundamental cryptographic primitives used in many construc-
tions and protocols. A hash function takes a bitstring of arbitrary length as input,
and outputs a digest, a small bitstring of fixed length n:

h : {0, 1}∗ → {0, 1}n

When used in a cryptographic context, we expect a hash function to resist three
major attacks:

Collision attack: Given h, find x 6= x′ s.t. h(x) = h(x′).
Second-preimage attack: Given h and x, find x′ 6= x s.t. h(x) = h(x′).
Preimage attack: Given h and h, find x s.t. h(x) = h.
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Due to the birthday paradox, we have a generic collision attack with complexity
2n/2, while brute force preimage or second-preimage attacks have complexity 2n:
this defines the security requirements of an n-bit hash function.

More generally, we expect a hash function to behave like a random function.
This requirement can not really be formalized but we expect that any property
that can be shown on a given hash function should also be present on a random
function.

In particular, we expect that it should be hard to find two messages resulting
in a digest with a small difference. This property is called near-collision, and
several attacks have been proposed in this setting recently [10,3,18,5,1].

It is relatively easy to give a lower bound on the complexity of near-collision
attacks: one needs at least 2n/2/

√
Bw(n) hash function evaluation. However the

only known way to reach this lower bound requires a lot of memory, and more
than 2n/2 memory accesses. In order to bridge this gap, Lamberger et al. proposed
a memory-less approach based on covering codes[7,8], with a complexity between
2n/2 and 2n/2/

√
Bw/2(n).

In this work, we revisit the problem of finding near-collisions with an algorithm
that can be efficiently implemented in practice. We start from the observation
that the machines used to run this kind of large computation (clusters, GPUs, or
dedicated hardware) usually have a decent amount of memory readily available, or
it can be added at a reasonable cost. Therefore, we do not aim for a memory-less
algorithm, we only aim for an algorithm with a practical amount of memory, and
a practical number of memory accesses. Our results show that we can indeed
reach a lower complexity than the memory-less algorithms based on covering
codes.

We first review previous collision and near-collision algorithms in Section 2.
We describe the main idea of our time-memory trade-off applied to truncation-
based algorithms in Section 3, and we describe a more general algorithm in
Section 4 that includes previous algorithms as special cases.

We use the following notations through this paper:

n Hash function output size;

t Truncated output size;

w Maximum distance for near-collisions;

M Memory size (number of chains stored);

Bw(n) Size of a Hamming ball of radius w.

2 Previous Works

Let us first discuss techniques to find full collisions (i.e. w = 0). This allows to
explain the basic techniques which will be used later to find near-collisions.

2



2.1 Finding full Collisions

The basic approach to find collisions or near-collisions in a generic manner is to
evaluate the hash function a large number of times on random inputs, and to
compute the Hamming distance for each pair of outputs. After i evaluations of
the hash function, one can test i(i− 1)/2 pairs, and this birthday effect allows to
find collisions with only O(2n/2) evaluations of the hash function. More precisely,
the expected number of computation required is i =

√
π/2 · 2n/2[19, Appendix

A]. When looking for full collisions, instead of comparing each new output to all
the previous ones, which require Ω(2n) comparisons in total, one can create a
list of all the outputs, and sort the list in time O(n2n/2), or use a hash table to
reduce the number of comparisons to O(2n/2).

Memory-less algorithms. Even if we avoid the complexity of Ω(2n) com-
parisons, the memory complexity of this simple approach makes it impractical.
Several works have shown that collisions can be found with little or no memory,
with a small increase in the time complexity. The main idea was introduced by
Pollard as the “rho” algorithm for factorization [13] and discrete logarithms [14],
and was later generalized to collision search. The hash function is first restricted
from {0, 1}∗ → {0, 1}n to {0, 1}n → {0, 1}n, so that it can be iterated. After
some number of steps, a chain of iterations reaches a cycle, and the graph will
have the shape of the greek letter “ρ”. On average, the cycle has length O(2n/2)
and is reached after O(2n/2) steps. The point where the tail of the ρ meets
with the cycle gives a collision in the hash function. It can be detected in time
O(2n/2) with little or no memory, using various cycle detection methods, such as
Floyd’s algorithm [6], Brent’s algorithm [2], using distinguished points [15], or
several other techniques [16,12]. These techniques mostly differ by the memory
requirements (constant or logarithmic), and the constant in the O(·) (between 1
and 3).

In this work we focus on the distinguished point approach because it can
be efficiently parallelized, and our focus is on problems with a relatively large
complexity. The complexity of finding collisions using distinguished points is
analyzed in detail by van Oorschot and Wiener in [19]. The main step of the
algorithm is to compute chains of iterations, starting from a random point, and
stopping when a distinguished point is reached, with an easily recognized feature,
such as a number of leading zeroes. The algorithm uses a table to store M such
chains (i.e. starting points and ending points) and when the same ending point
is seen twice, this most likely corresponds to a collision. To locate the collision,
one has to run the computation again from the starting point.

The analysis of van Oorschot and Wiener considers two different situations,
depending on i, the number of collision one is looking for. An important parameter
in the analysis is the proportion of distinguished points θ.

Finding a small number of collisions i.e. i�M .
If we have enough memory to store all the chains, we can expect to find
i collisions after a workload of Θ(

√
2ni), since this covers Θ(2ni) pairs of
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points. More precisely, the complexity given by van Oorschot and Wiener1 is
Csmall =

√
π/2 ·

√
2ni+ 2.5i/θ.

We choose the distinguishing property so that the memory will just be filled
at the end, but we try to avoid overwriting chains, so we use θ = M/Csmall .
This results in Csmall =

√
π/2 ·

√
2ni/(1− 2.5i/M). If i�M , this becomes:

Csmall =
√
π/2 ·

√
2ni.

There is a speedup factor of
√
i compared to finding i collisions independently.

Finding a large number of collisions i.e. i�M .
In this case, the memory will have to be overwritten. The analysis of [19]
shows that when the memory is full, the complexity per collision is roughly
2nθ/M +2/θ. This reaches a minimum of

√
8 · 2n/M for θ =

√
2M/2n. More

precisely, van Oorschot and Wiener performed experiments to determine
the actual constants, and the optimal complexity, reached with when θ =
2.25

√
M/2n, is:

Clarge ≈ 5
√

2n/M · i.

There is a speedup factor of
√
M/4 compared to finding i collisions indepen-

dently.

Global bound. More generally, we can express an upper bound on the com-
plexity that works in both situations by summing the two expressions:

C ≤

(√
π

2
+ 5

√
i

M

)
√

2ni. (1)

When i�M or i�M , one term is negligible, and this expression is equivalent
to Csmall or Clarge , respectively. Moreover, we verified experimentally that this is
also an upper bound when i ≈M , and the bound is relatively tight. In all cases,
there is a linear speedup when using several machines in parallel (see [19] for full
details).

2.2 Near-collisions

A w-near-collision is a pair of messages x, x′ such that ‖h(x)⊕h(x′)‖ ≤ w, where
‖ · ‖ is the Hamming weight. Let us first introduce some results regarding the
Hamming distance.

Definition 1. We denote the size of a Hamming ball of radius w by
Bw(n) = # {x ∈ {0, 1}n : ‖x‖ ≤ w} .
1 In [19], the complexity is given as

√
π/2 ·

√
2ni+ 2.5/θ, but this only holds if i is

smaller than the number of processors used in the attack.
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Property 1. We have Bw(n) =
∑w
i=0

(
n
i

)
.

Property 2. The probability that a random pair x, x′ results in a w-near-collisions
is Bw(n)/2n.

Property 3. We have the following relation: Bw(n) = Bw(n− 1) + Bw−1(n− 1).

Lemma 1. We have the following inequality:

Bw−1(x) ≤
(
x

w

)
w

x− 2w + 1

Proof. (following [11])

Bw−1(x)(
x
w

) =

(
x

w−1
)

+
(
x

w−2
)

+
(
x

w−3
)

+ · · ·(
x
w

)
=

w

x− w + 1
+

w(w − 1)

(x− w + 1)(x− w + 2)
+ · · ·

≤ w

x− w + 1
+

(
w

x− w + 1

)2

+ · · ·

≤
w

x−w+1

1− w
x−w+1

=
w

x− 2w + 1
using the sum of a geometric series ut

We can now describe algorithms for near-collision attacks.

Memory-full algorithm. The obvious method to find near-collisions is to
evaluate the hash function a large number of times on random inputs, and to
compute the Hamming distance between each pair of outputs. After i evaluations
of the hash function, one can test i(i − 1)/2 pairs, and a pair gives a w-near-
collision with probability Bw(n)/2n. The expected number of hash function
computations before finding a near-collision is i =

√
π/2 · 2n/Bw(n). This also

gives a lower bound on the number of hash evaluations needed for any near-
collision algorithm: we need at least

√
π/2 · 2n/Bw(n) evaluations in order to

have a w-near-collision with a non-negligible probability.

However, this simple approach requires i · Bw(n) = Ω(
√

2n · Bw(n)) memory

access to a table of size i = Ω(
√

2n/Bw(n)), because for every new point, we
must check whether a point at distance less than w was reached previously. As
opposed to a collision attack, we can not reduce this complexity using a sorting
algorithm, a hash table, or chain of iterations; for any practical implementation,
this will in fact be the bottleneck. This leads to the study of techniques to find
near-collision without this huge memory complexity. Two categories of algorithms
have proposed recently to solve this problem by reducing it to finding collision in
a related function (which can done in a memory-less way).
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Using collisions in a truncated hash function. A simple approach is to look
for collisions in a truncated version of the hash function. In the simplest case, the
hash function is truncated to t = n− w bits, and any collision in the truncated
version will give a w-near-collision for the full hash function. More interestingly,
if the hash function is truncated to t = n− 2w − 1 bits, a t-bit collision will give
a w-near-collision of the full hash function with probability 1/2 [8]. This gives
a near-collision algorithm with expected complexity

√
π/2 · 2(n−2w)/2 using a

memory-less collision finding algorithm on the truncated function.

This can be represented as:

0 n− 2w − 1 n

no difference w differences

More generally, one can truncate τ bits, find collisions in a n− τ -bit function,
and check the Hamming weight of the τ truncated bits. This will give a w-near-
collision with probability Bw(τ)/2τ . The optimal value of τ can be found by
evaluating the complexity for all choices of τ . This problem is discussed more
formally in [9].

Using covering codes. A more efficient approach is to use covering codes,
as proposed by Lamberger et al. [8,7]. The idea is to use a covering code with
radius w/2, i.e. a set of codewords C such that for any point x ∈ {0, 1}n, there
exists a codeword c(x) ∈ C with ‖x ⊕ c(x)‖ ≤ w/2. If the decoding function
c is efficient, we can look for collisions in c ◦ h. If c(h(x)) = c(h(x′)), then
h(x) and h(x′) are decoded to the same codeword c; we have ‖h(x′)⊕ h(x)‖ ≤
‖h(x′) ⊕ c‖ + ‖h(x) ⊕ c‖ ≤ w, which gives a w-near-collision. With a code of
dimension k, the attack has a complexity of

√
π/2 · 2k/2.

This can be represented as:

0 n

w = 2R differences

Finding the optimal k and building a corresponding code is a hard problem.
The sphere covering bound shows that 2k ≥ 2n/Bw/2(n), but there is a gap
between the best known codes and this lower bound. This problem is discussed by
Lamberger et al. in the context of near-collision attacks [8,7] using a concatenation
of Hamming codes. With a given length n, and a covering radius of R = w/2,
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the optimal code following their construction has a dimension:

k = n−R · `− r (2)

where ` :=
⌊
log2

( n
R

+ 1
)⌋

and r :=

⌊
n−R(2` − 1)

2`

⌋
.

This result is listed in Table 2 for some relevant values of the parameters,
together with the lower bound implied by the sphere covering bound.

3 Time-memory Trade-off with Truncation

Our first algorithm is a simple generalization of the truncation based method
described in Section 2.2. We observe that if we truncate τ bits with τ > 2w − 1,
the probability that a collision in the truncated function is a near-collision of the
full hash function decreases rapidly, and we need to find many collisions. In a
truly memory-less approach, finding i such collisions require

√
π/2 ·

√
2n−τ · i

computations, and there is little to gain by truncating more than 2w − 1 bits2

However, with some memory, this can be significantly reduced — by a factor
√
i

if M � i, or
√
M/4 if M � i, as detailed in Section 2.1.

In the following section, we explore this idea, and study the optimal value of
τ and the complexity of the resulting attack, depending on how much memory
is available. In a practical implementation of a near-collision attack, it seems
reasonable to assume that some memory is available, and we show that this leads
to significantly better attacks.

0 n− τ n

no difference w differences

3.1 Complexity

Our algorithm is quite simple: we truncate τ bits of the hash function, and we
look for collisions for the remaining n− τ bits. For each n− τ -bit collision, we
compute the Hamming distance in the truncated τ bits. We expect to find a
w-near-collision after testing i = 2τ/Bw(τ) collisions.

We observe that i(τ) is monotically increasing since Bw(τ) = Bw(τ − 1) +
Bw−1(τ − 1) < 2Bw(τ − 1). With a small τ , we only need a small number
of collision, but the collisions are harder to find because the number of non-
truncated bit, n − τ is large. In order to find the best trade-off, we need an
accurate evaluation of the complexity of the algorithm, depending on the value
of τ and M . We use the analysis of van Oorschot and Wiener [19], as recalled in
Section 2.1.

2 As shown in [9], the minimal complexity is achieved with τ ∼ (2 +
√

2)(w − 1).
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3.2 Finding Optimal Parameters

In order to find an algebraic characterization of the optimal τ , we follow the
analysis of Section 2.1, and we consider two cases for the complexity, depending
on the relationship between i and M .

Small τ , small number of collisions i.e. 2τ/Bw(τ)�M
The complexity is

Csmall =
√
π/2 ·

√
2n−τ · 2τ/Bw(τ) =

√
π/2 · 2n/2/

√
Bw(τ).

This decreases when τ grows.
Large τ , large number of collisions i.e. 2τ/Bw(τ)�M

The complexity is

Clarge =
5
√

2n−τ/M · 2τ

Bw(τ)
=

5 · 2n/2+τ/2

Bw(τ)
√
M

.

For most useful values of the parameters, this complexity is increasing when τ
grows. More precisely, we prove that Clarge is increasing when τ ≥ (

√
2 + 2)w:

Clarge is increasing ⇐⇒ Clarge(τ − 1)

Clarge(τ)
≤ 1

⇐⇒ Bw(τ)

Bw(τ − 1)
≤
√

2

We use Bw(τ) = Bw(τ − 1) + Bw−1(τ − 1) to simplify:

⇐⇒ Bw(τ − 1) + Bw−1(τ − 1)

Bw(τ − 1)
≤
√

2

⇐⇒ Bw−1(τ − 1)

Bw(τ − 1)
≤
√

2− 1

⇐⇒ Bw(τ − 1)

Bw−1(τ − 1)
≥
√

2 + 1

We use Bw(τ − 1) =
(
τ−1
w

)
+ Bw−1(τ − 1) to further simplify:

⇐⇒
(
τ−1
w

)
+ Bw−1(τ − 1)

Bw−1(τ − 1)
≥
√

2 + 1

⇐⇒
(
τ−1
w

)
Bw−1(τ − 1)

≥
√

2

Using Lemma 1, we have
(
τ−1
w

)
/Bw−1(τ − 1) ≥ τ−2w

w . When τ ≥ (
√

2 + 2)w,

this gives
(
τ−1
w

)
/Bw−1(τ − 1) ≥

√
2, and Clarge(τ) is increasing. Note that

this formula only makes sense when M � 2τ/Bw(τ), i.e. for large values of
τ , and the assumption that τ ≥ (

√
2 + 2)w will be true in this domain for

useful values of the parameters. In particular it is true as soon as M > 224

and w < 48.
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Optimal τ . When τ is small i.e. 2τ/Bw(τ)�M , the complexity decreases with
τ , but when τ is large, i.e. 2τ/Bw(τ)�M , it increases with τ . This proves that
the optimal choice of τ satisfies

2τ/Bw(τ) ≈M.

For this value of τ , the two expressions Csmall and Clarge are equal up to a small
constant3, and the complexity is given by

C ≈ 2n/2/
√
Bw(τ).

This is larger than the optimal complexity reached by the memory-full algo-
rithm of 2n/2/

√
Bw(n), but for most parameters, it is better than the bound of

2n/2/
√
Bw/2(n) which limits covering-code based algorithms.

Optimal τ in practice. For given values of n and w, we can find a better
estimation of the optimal τ . We use the upper bound of (1), which gives the
following upper bound on the complexity:

C ≤ Csmall + Clarge =

(√
π

2
+ 5

√
2τ/Bw(τ)

M

)
·

√
2n

Bw(τ)
.

To find a good trade-off, we evaluate this bound for all values of τ , and we use
the τ that gives the lowest bound. Our experiments show that the upper bound
is quite tight, and the τ found in this way is optimal or almost optimal.

4 Combining Truncation and Covering Codes

We can build a better algorithm by combining the truncation approach with
the covering-code technique. When we truncate the hash function to n− τ bits,
instead of looking for collisions in the truncated function, we can look for near-
collisions using a covering code. More precisely, we use a covering code of radius
R, to find 2R-near-collisions in the truncated hash function. Then we check if
one of the near-collisions have less than w − 2R active bits in the truncated part.
This approach covers both the truncation based techniques (when R = 0), and
the previous covering-code based techniques (when τ = 0 and R = w/2). This is
described by Algorithm 1, and can be represent by the following diagram:

0 n− τ n

2R differences w − 2R differences

3 Like in Section 2.1, the complexity is in fact continuous.
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Algorithm 1 Find near-collisions

Input: h, n, w
Parameter: τ , R, k

Let c be the decoding function of a covering code [n− τ, k,R]
repeat

Find a collision x, x′ for c ◦ Truncn−τ ◦ h
. This implies ‖Truncn−τ (h(x))⊕ Truncn−τ (h(x′))‖ ≤ 2R

until ‖h(x)⊕ h(x′)‖ ≤ w

If we use a covering code of dimension k, length n− τ , and radius R, we will
have near-collisions with a distance of 2R. Using the same ideas as in the previous
section, we use a time-memory trade-off to find a large number of near-collisions;
we can find i near-collisions for a cost of roughly

√
2ki if i� M or

√
2k/M · i

if i � M . On average, we need i = 2τ/Bw−2R(τ) 2R-near-collisions. Like in
the previous section, we use the bound of (1) to evaluate the complexity of the
attack:

C ≤

(√
π

2
+ 5

√
2τ/Bw−2R(τ)

M

)√
2k · 2τ
Bw−2R(τ)

It seems quite hard to give of close formula of the optimal choice of R and τ
for a given n, w and M . In particular, we note that k is a function of R and τ .
However, it is easy to find the optimal parameters by trying all the possibilities
for R and τ , and evaluating the resulting complexity using (2) to compute the
optimal k. We give the optimal parameters for several cases in Table 2.

Like in the previous section, we observe that the best parameters usually
satisfy 2τ/Bw(τ) ≈M . Moreover, we note that for many parameters, the optimal
choice gives R = 0 and we just have a truncation-based attack without any
covering code. The covering codes allow to improve the complexity only for large
values of n or small values of M .

4.1 Improved Analysis

In the previous analysis, we only consider near-collisions with less than w − 2R
active bits in the truncated part. However, the algorithm can find w-near-collisions
with more active bits in the truncated part if the distance in the remaining part
is strictly smaller than 2R. In order to compute the probability that a collision
in the covering code gives a w-near-collision for the full hash function, we use the
distribution of the distance between two messages decoded to the same codeword,
as given in [7, Section 3.6].

For a Hamming code Hr of length n = 2r − 1, the distribution is:

d(y, y′) =


0 with prob. n+1

(n+1)2

1 with prob. 2n
(n+1)2

2 with prob. n(n−1)
(n+1)2 .
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The covering codes used in [8,7] are built as the direct sum of several Hamming
codes, and we can compute the distribution of their distance as a convolution of
the distribution for a Hamming code. For the truncation, the distribution is

d(y, y′) =

{
0 with prob. 1/2τ

i with prob.
(
τ
i

)
/2τ

This allows to compute accurately the probability that a collision in the covering
code is a near-collision for the hash function. The complexity will still be given
by

C ≤

(√
π

2
+ 5

√
i

M

)
√

2k · i

but we compute i from the distribution instead of using i = 2τ/Bw−2R(τ). In
addition, we can now consider a radius R larger than w/2, as suggested in [7]. In
this case, most collisions in the covering code will have a distance larger than w,
but the time-memory trade-off reduces the cost of finding many collisions.

4.2 Application.

Our final algorithm described in Algorithm 1 is quite general, and the behavior
will be very different depending on the parameters R and τ . We don’t see how to
analyze the optimal choice of parameters, but for a given value of n, w and M ,
we can just evaluate the complexity for all values of the parameters R and τ and
select the best ones.

We give the complexity of our algorithm for some values of n, w and M in
Table 2, and we provide code to find the optimal parameters in Listing 1 using
Sage [17]. We compare several possible trade-offs with previous approaches: the
simple memory-full algorithm, the covering code algorithm of [8,7] and the corre-
sponding lower bound, and the simple truncation of 2w− 1 bits. With reasonable
amounts of memory, our approach can lead to a significant improvement in the
complexity.

We note that the number of memory accesses is relatively limited (in the
order of M). The communication cost should not be a bottleneck for a practical
implementation. Additionally, the memory does not need to be in a single machine,
it can be distributed over the computing nodes. Like previous algorithms, our
algorithm scales linearly when using more than one processor. Moreover, it should
be noted that even the memory-less algorithms actually need some memory for
an efficient parallel implementation.

We implemented this algorithm to verify that it behaves as expected, and we
give a 10-near-collision for MD5 in Table 1.

Conclusion

In this work we present a new generic algorithm to find near-collision, that
generalizes both the previous truncation-based algorithms, and the previous
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Table 1. 10-near collision for MD5. This was found after a 20 hour computation using
1TB of memory, and 152 cores.

x x′ x⊕ x′
b6 24 ac c6 40 94 08 84 0d 87 0f a4 00 4b 6c bf bb a3 a3 62 40 df 64 3b

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MD5(x) MD5(x′) MD5(x)⊕MD5(x′)

ac 6b 49 aa fe 42 4f f8 68 79 db a8 fe 52 4f f8 c4 12 92 02 00 10 00 00

8a c9 5d f6 ef 4f 7b 3d 8a c9 5d f6 ef 4f 7b 3d 00 00 00 00 00 00 00 00

Table 2. Comparision of various approaches: log2 of the number of hash computations.
We omit a factor

√
π/2 so that birthday search is listed as 2n/2.

M-Full? Time-memory trade-off (τ, R) Covering codes Trunc.

128 bits 216 (1MB) 226 (1GB) 236 (1TB) bound† [8,7] τ=2w−1

w = 2 57.5 60.5 ( 1,1) 60.0 (25,0) 59.5 (35,0) 60.5 60.5 62.0
w = 4 52.3 57.6 (17,1) 56.5 (27,1) 55.6 (44,0) 57.5 58.0 60.0
w = 6 47.8 54.5 (19,2) 53.1 (35,1) 52.0 (46,1) 54.8 56.0 58.0
w = 8 43.8 51.6 (26,2) 49.8 (43,1) 48.5 (54,1) 52.3 54.0 56.0
w = 10 40.1 48.7 (33,2) 46.7 (50,1) 45.2 (62,1) 50.0 52.5 54.0

160 bits 216 (1MB) 226 (1GB) 236 (1TB)

w = 2 73.2 76.5 ( 5,1) 76.0 (17,1) 75.5 (35,0) 76.3 76.5 78.0
w = 4 67.7 73.2 (16,1) 72.2 (26,1) 71.6 (33,1) 73.2 74.0 76.0
w = 6 62.8 70.2 (24,1) 68.8 (33,1) 68.0 (46,1) 70.3 71.5 74.0
w = 8 58.5 67.3 (31,1) 65.7 (34,2) 64.5 (54,1) 67.7 69.5 72.0
w = 10 54.4 64.4 (33,2) 62.7 (45,2) 61.2 (62,1) 65.2 67.5 70.0

512 bits 226 (1GB) 236 (1TB) 246 (1PB)

w = 2 247.5 251.5 ( 2,2) 251.4 (26,1) 251.1 (36,1) 251.5 251.5 254.0
w = 4 240.3 247.7 ( 3,4) 247.2 (29,2) 246.7 (39,2) 247.5 248.0 252.0
w = 6 233.8 244.0 (27,2) 243.2 (38,2) 242.6 (49,2) 243.8 245.0 250.0
w = 8 227.7 240.5 (23,4) 239.6 (46,2) 238.7 (57,2) 240.3 242.0 248.0
w = 10 221.9 237.1 (30,4) 236.0 (42,4) 235.0 (65,2) 237.0 239.5 246.0

? Number of hash function evaluation needed. The actual complexity is dominated by
memory accesses (more than 2n/2 accesses to a huge table).
† Lower bound for memory-less covering code approaches (sphere covering bound).
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covering-code based algorithms. As opposed to previous work, we don’t aim for a
memory-less algorithm, but we study time-memory trade-offs. The algorithm has
been implemented in practice, and we give actual complexity figures including
the constants hidden in the analysis.

We show that with a practical amount of memory, this allows to select better
parameters than previous works; in most cases we achieve a complexity lower
than the sphere covering bound which limits the previous memory-less covering-
code based algorithms. The main advantage comes from the parallel collision
search algorithm of van Oorschot and Wiener, which can find i collisions in time
significantly less than

√
2n · i when using some memory.
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Listing 1. Sage code to compute the complexity of a generic near-collision attack.

@CachedFunction

def covering_k(n,R):

if R == 0:

return n

l = floor(log(n/R+1)/ log (2))

r = floor((n-R*(2^l -1))/2^l)

return n - R*l - r

@CachedFunction

def covering_dist(n,R):

if R == 0:

return [1]

l = floor(log(n/R+1)/ log (2))

r = floor((n-R*(2^l -1))/2^l)

d = [1]

m = 2^l

for i in [1..R-r]:

d = convolution(d, [m/m^2,(2*m-2)/m^2,((m -1)*(m -2))/m^2])

m = 2^(l+1)

for i in [1..r]:

d = convolution(d, [m/m^2,(2*m-2)/m^2,((m -1)*(m -2))/m^2])

return d

@CachedFunction

def binomial_dist(n):

return [ binomial(n,i)/2^n for i in [0..n] ]

@CachedFunction

def prob_dist(n,t,R):

return convolution(binomial_dist(t),covering_dist(n-t,R))

def near_complexity(n,mem ,maxw):

best = n

for t in [0..n]:

for R in [0..2* maxw]:

K = prob_dist(n,t,R)

p = sum(K[0: maxw +1])

C = (sqrt(pi /2)+5* sqrt (1/p/2^mem)) \

* sqrt (2^ covering_k(n-t,R)/p)

C = float(log(C)/log (2))

if C < best:

best = C

bestr = R

bestt = t

print "Compexity: %.1f (\\tau = %i, R = %i)" \

% (best , bestt , bestr)

return best
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